|
- # Copyright 2023 John-Mark Gurney.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- # 1. Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # 2. Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in the
- # documentation and/or other materials provided with the distribution.
- #
- # THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- # SUCH DAMAGE.
- #
-
- #
- # ls shamirss.py | entr sh -c ' date; python -m coverage run -m unittest shamirss && coverage report -m'
- #
-
- import functools
- import operator
- import secrets
- import unittest.mock
-
- random = secrets.SystemRandom()
-
- def _makered(x, y):
- '''Make reduction table entry.
-
- given x * 2^8, reduce it assuming polynomial y.
- '''
-
- x = x << 8
-
- for i in range(3, -1, -1):
- if x & (1 << (i + 8)):
- x ^= (0x100 + y) << i
-
- assert x < 256
-
- return x
-
- def evalpoly(polynomial, powers):
- return sum(( x * y for x, y in zip(polynomial, powers)), 0)
-
- def create_shares(data, k, nshares):
- '''Given data, create nshares, such that given any k shares,
- data can be recovered.
-
- data must be bytes, or able to be converted to bytes.
-
- The return value will be a list of length nshares. Each element
- will be a tuple of (<int in range [1, nshares + 1)>, <bytes>).'''
-
- data = bytes(data)
-
- powers = (None, ) + tuple(GF2p8(x).powerseries(k - 1) for x in
- range(1, nshares + 1))
-
- coeffs = [ [ x ] + [ random.randint(1, 255) for y in
- range(k - 1) ] for idx, x in enumerate(data) ]
-
- return [ (x, bytes([ int(evalpoly(coeffs[idx],
- powers[x])) for idx, val in enumerate(data) ])) for x in
- range(1, nshares + 1) ]
-
- def recover_data(shares, k):
- '''Recover the value given shares, where k is needed.
-
- shares must be as least length of k.'''
-
- if len(shares) < k:
- raise ValueError('not enough shares to recover')
-
- return bytes([ int(sum([ GF2p8(y[idx]) *
- functools.reduce(operator.mul, [ pix * ((GF2p8(pix) - x) ** -1) for
- pix, piy in shares[:k] if pix != x ], 1) for x, y in shares[:k] ],
- 0)) for idx in range(len(shares[0][1]))])
-
- class GF2p8:
- _invcache = (None, 1, 195, 130, 162, 126, 65, 90, 81, 54, 63, 172, 227, 104, 45, 42, 235, 155, 27, 53, 220, 30, 86, 165, 178, 116, 52, 18, 213, 100, 21, 221, 182, 75, 142, 251, 206, 233, 217, 161, 110, 219, 15, 44, 43, 14, 145, 241, 89, 215, 58, 244, 26, 19, 9, 80, 169, 99, 50, 245, 201, 204, 173, 10, 91, 6, 230, 247, 71, 191, 190, 68, 103, 123, 183, 33, 175, 83, 147, 255, 55, 8, 174, 77, 196, 209, 22, 164, 214, 48, 7, 64, 139, 157, 187, 140, 239, 129, 168, 57, 29, 212, 122, 72, 13, 226, 202, 176, 199, 222, 40, 218, 151, 210, 242, 132, 25, 179, 185, 135, 167, 228, 102, 73, 149, 153, 5, 163, 238, 97, 3, 194, 115, 243, 184, 119, 224, 248, 156, 92, 95, 186, 34, 250, 240, 46, 254, 78, 152, 124, 211, 112, 148, 125, 234, 17, 138, 93, 188, 236, 216, 39, 4, 127, 87, 23, 229, 120, 98, 56, 171, 170, 11, 62, 82, 76, 107, 203, 24, 117, 192, 253, 32, 74, 134, 118, 141, 94, 158, 237, 70, 69, 180, 252, 131, 2, 84, 208, 223, 108, 205, 60, 106, 177, 61, 200, 36, 232, 197, 85, 113, 150, 101, 28, 88, 49, 160, 38, 111, 41, 20, 31, 109, 198, 136, 249, 105, 12, 121, 166, 66, 246, 207, 37, 154, 16, 159, 189, 128, 96, 144, 47, 114, 133, 51, 59, 231, 67, 137, 225, 143, 35, 193, 181, 146, 79)
-
- @staticmethod
- def _primativemul(a, b):
- masks = [ 0, 0xff ]
-
- r = 0
-
- for i in range(0, 8):
- mask = a & 1
- r ^= (masks[mask] & b) << i
- a = a >> 1
-
- return r
-
- # polynomial 0x187
- _reduce = tuple(_makered(x, 0x87) for x in range(0, 16))
-
- def __init__(self, v):
- if v >= 256:
- raise ValueError('%d is not a member of GF(2^8)' % v)
-
- self._v = v
-
- # basic operations
- def __add__(self, o):
- if isinstance(o, int):
- return self + self.__class__(o)
-
- return self.__class__(self._v ^ o._v)
-
- def __radd__(self, o):
- return self.__add__(o)
-
- def __sub__(self, o):
- return self.__add__(o)
-
- def __rsub__(self, o):
- return self.__sub__(o)
-
- def __mul__(self, o):
-
- if isinstance(o, int):
- o = self.__class__(o)
-
- m = o._v
-
- # multiply
- r = self._primativemul(self._v, m)
-
- # reduce
- r ^= self._reduce[r >> 12] << 4
- r ^= self._reduce[(r >> 8) & 0xf ]
-
- r &= 0xff
-
- return self.__class__(r)
-
- def __rmul__(self, o):
- return self.__mul__(o)
-
- def __pow__(self, x):
- if x == -1 and self._invcache:
- return GF2p8(self._invcache[self._v])
-
- if x < 0:
- x += 255
-
- v = self.__class__(1)
-
- # TODO - make faster via caching and squaring
- for i in range(x):
- v *= self
-
- return v
-
- def powerseries(self, cnt):
- '''Generate [ self ** 0, self ** 1, ..., self ** cnt ].'''
-
- r = [ 1 ]
-
- for i in range(1, cnt):
- r.append(r[-1] * self)
-
- return r
-
- def __eq__(self, o):
- if isinstance(o, int):
- return self._v == o
-
- return self._v == o._v
-
- def __int__(self):
- return self._v
-
- def __repr__(self):
- return '%s(%d)' % (self.__class__.__name__, self._v)
-
- class TestShamirSS(unittest.TestCase):
- def test_evalpoly(self):
- a = GF2p8(random.randint(0, 255))
-
- powers = a.powerseries(5)
-
- vals = [ GF2p8(random.randint(0, 255)) for x in range(5) ]
-
- r = evalpoly(vals, powers)
- self.assertEqual(r, vals[0] + vals[1] * powers[1] + vals[2] *
- powers[2] + vals[3] * powers[3] + vals[4] * powers[4])
-
- r = evalpoly(vals[:3], powers)
- self.assertEqual(r, vals[0] + vals[1] * powers[1] + vals[2] *
- powers[2])
-
- def test_create_shares(self):
- self.assertRaises(TypeError, create_shares, '', 1, 1)
-
- val = bytes([ random.randint(0, 255) for x in range(100) ])
-
- a = create_shares(val, 2, 3)
-
- # that it has the number of shares
- self.assertEqual(len(a), 3)
-
- # that the length of the share data matches passed in data
- self.assertEqual(len(a[0][1]), len(val))
-
- # that one share isn't enough
- self.assertRaises(ValueError, recover_data, [ a[0] ], 2)
-
- self.assertEqual(val, recover_data(a[:2], 2))
-
- def test_gf2p8_inv(self):
-
- a = GF2p8(random.randint(0, 255))
-
- with unittest.mock.patch.object(GF2p8, '_invcache', []) as pinvc:
- ainv = a ** -1
-
- self.assertEqual(a * ainv, 1)
-
- invcache = (None, ) + \
- tuple(int(GF2p8(x) ** -1) for x in range(1, 256))
-
- if GF2p8._invcache != invcache: # pragma: no cover
- print('inv cache:', repr(invcache))
- self.assertEqual(GF2p8._invcache, invcache)
-
- def test_gf2p8_power(self):
- a = GF2p8(random.randint(0, 255))
-
- v = GF2p8(1)
- for i in range(10):
- self.assertEqual(a ** i, v)
-
- v = v * a
-
- for i in range(10):
- a = GF2p8(random.randint(0, 255))
-
- powers = a.powerseries(10)
- for j in range(10):
- self.assertEqual(powers[j], a ** j)
-
- def test_gf2p8_errors(self):
- self.assertRaises(ValueError, GF2p8, 1000)
-
- def test_gf2p8(self):
- self.assertEqual(int(GF2p8(5)), 5)
- self.assertEqual(repr(GF2p8(5)), 'GF2p8(5)')
-
- for i in range(10):
- a = GF2p8(random.randint(0, 255))
- b = GF2p8(random.randint(0, 255))
- c = GF2p8(random.randint(0, 255))
-
- self.assertEqual(a * 0, 0)
-
- # Identity
- self.assertEqual(a + 0, a)
- self.assertEqual(a * 1, a)
- self.assertEqual(0 + a, a)
- self.assertEqual(1 * a, a)
- self.assertEqual(0 - a, a)
-
- # Associativity
- self.assertEqual((a + b) + c, a + (b + c))
- self.assertEqual((a * b) * c, a * (b * c))
-
- # Communitative
- self.assertEqual(a + b, b + a)
- self.assertEqual(a * b, b * a)
-
- # Distributive
- self.assertEqual(a * (b + c), a * b + a * c)
- self.assertEqual((b + c) * a, b * a + c * a)
-
- # Basic mul
- self.assertEqual(GF2p8(0x80) * 2, 0x87)
- self.assertEqual(GF2p8(0x80) * 6,
- (0x80 * 6) ^ (0x187 << 1))
- self.assertEqual(GF2p8(0x80) * 8,
- (0x80 * 8) ^ (0x187 << 2) ^ (0x187 << 1) ^ 0x187)
-
- self.assertEqual(a + b - b, a)
|