# Copyright 2023 John-Mark Gurney. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. # # # ls shamirss.py | entr sh -c ' date; python -m coverage run -m unittest shamirss && coverage report -m' # import functools import operator import secrets import unittest.mock random = secrets.SystemRandom() def _makered(x, y): '''Make reduction table entry. given x * 2^8, reduce it assuming polynomial y. ''' x = x << 8 for i in range(3, -1, -1): if x & (1 << (i + 8)): x ^= (0x100 + y) << i assert x < 256 return x def evalpoly(polynomial, powers): return sum(( x * y for x, y in zip(polynomial, powers)), 0) def create_shares(data, k, nshares): '''Given data, create nshares, such that given any k shares, data can be recovered. data must be bytes, or able to be converted to bytes. The return value will be a list of length nshares. Each element will be a tuple of (, ).''' data = bytes(data) powers = (None, ) + tuple(GF2p8(x).powerseries(k - 1) for x in range(1, nshares + 1)) coeffs = [ [ x ] + [ random.randint(1, 255) for y in range(k - 1) ] for idx, x in enumerate(data) ] return [ (x, bytes([ int(evalpoly(coeffs[idx], powers[x])) for idx, val in enumerate(data) ])) for x in range(1, nshares + 1) ] def recover_data(shares, k): '''Recover the value given shares, where k is needed. shares must be as least length of k.''' if len(shares) < k: raise ValueError('not enough shares to recover') return bytes([ int(sum([ GF2p8(y[idx]) * functools.reduce(operator.mul, [ pix * ((GF2p8(pix) - x) ** -1) for pix, piy in shares[:k] if pix != x ], 1) for x, y in shares[:k] ], 0)) for idx in range(len(shares[0][1]))]) class GF2p8: _invcache = (None, 1, 195, 130, 162, 126, 65, 90, 81, 54, 63, 172, 227, 104, 45, 42, 235, 155, 27, 53, 220, 30, 86, 165, 178, 116, 52, 18, 213, 100, 21, 221, 182, 75, 142, 251, 206, 233, 217, 161, 110, 219, 15, 44, 43, 14, 145, 241, 89, 215, 58, 244, 26, 19, 9, 80, 169, 99, 50, 245, 201, 204, 173, 10, 91, 6, 230, 247, 71, 191, 190, 68, 103, 123, 183, 33, 175, 83, 147, 255, 55, 8, 174, 77, 196, 209, 22, 164, 214, 48, 7, 64, 139, 157, 187, 140, 239, 129, 168, 57, 29, 212, 122, 72, 13, 226, 202, 176, 199, 222, 40, 218, 151, 210, 242, 132, 25, 179, 185, 135, 167, 228, 102, 73, 149, 153, 5, 163, 238, 97, 3, 194, 115, 243, 184, 119, 224, 248, 156, 92, 95, 186, 34, 250, 240, 46, 254, 78, 152, 124, 211, 112, 148, 125, 234, 17, 138, 93, 188, 236, 216, 39, 4, 127, 87, 23, 229, 120, 98, 56, 171, 170, 11, 62, 82, 76, 107, 203, 24, 117, 192, 253, 32, 74, 134, 118, 141, 94, 158, 237, 70, 69, 180, 252, 131, 2, 84, 208, 223, 108, 205, 60, 106, 177, 61, 200, 36, 232, 197, 85, 113, 150, 101, 28, 88, 49, 160, 38, 111, 41, 20, 31, 109, 198, 136, 249, 105, 12, 121, 166, 66, 246, 207, 37, 154, 16, 159, 189, 128, 96, 144, 47, 114, 133, 51, 59, 231, 67, 137, 225, 143, 35, 193, 181, 146, 79) @staticmethod def _primativemul(a, b): masks = [ 0, 0xff ] r = 0 for i in range(0, 8): mask = a & 1 r ^= (masks[mask] & b) << i a = a >> 1 return r # polynomial 0x187 _reduce = tuple(_makered(x, 0x87) for x in range(0, 16)) def __init__(self, v): if v >= 256: raise ValueError('%d is not a member of GF(2^8)' % v) self._v = v # basic operations def __add__(self, o): if isinstance(o, int): return self + self.__class__(o) return self.__class__(self._v ^ o._v) def __radd__(self, o): return self.__add__(o) def __sub__(self, o): return self.__add__(o) def __rsub__(self, o): return self.__sub__(o) def __mul__(self, o): if isinstance(o, int): o = self.__class__(o) m = o._v # multiply r = self._primativemul(self._v, m) # reduce r ^= self._reduce[r >> 12] << 4 r ^= self._reduce[(r >> 8) & 0xf ] r &= 0xff return self.__class__(r) def __rmul__(self, o): return self.__mul__(o) def __pow__(self, x): if x == -1 and self._invcache: return GF2p8(self._invcache[self._v]) if x < 0: x += 255 v = self.__class__(1) # TODO - make faster via caching and squaring for i in range(x): v *= self return v def powerseries(self, cnt): '''Generate [ self ** 0, self ** 1, ..., self ** cnt ].''' r = [ 1 ] for i in range(1, cnt): r.append(r[-1] * self) return r def __eq__(self, o): if isinstance(o, int): return self._v == o return self._v == o._v def __int__(self): return self._v def __repr__(self): return '%s(%d)' % (self.__class__.__name__, self._v) class TestShamirSS(unittest.TestCase): def test_evalpoly(self): a = GF2p8(random.randint(0, 255)) powers = a.powerseries(5) vals = [ GF2p8(random.randint(0, 255)) for x in range(5) ] r = evalpoly(vals, powers) self.assertEqual(r, vals[0] + vals[1] * powers[1] + vals[2] * powers[2] + vals[3] * powers[3] + vals[4] * powers[4]) r = evalpoly(vals[:3], powers) self.assertEqual(r, vals[0] + vals[1] * powers[1] + vals[2] * powers[2]) def test_create_shares(self): self.assertRaises(TypeError, create_shares, '', 1, 1) val = bytes([ random.randint(0, 255) for x in range(100) ]) a = create_shares(val, 2, 3) # that it has the number of shares self.assertEqual(len(a), 3) # that the length of the share data matches passed in data self.assertEqual(len(a[0][1]), len(val)) # that one share isn't enough self.assertRaises(ValueError, recover_data, [ a[0] ], 2) self.assertEqual(val, recover_data(a[:2], 2)) def test_gf2p8_inv(self): a = GF2p8(random.randint(0, 255)) with unittest.mock.patch.object(GF2p8, '_invcache', []) as pinvc: ainv = a ** -1 self.assertEqual(a * ainv, 1) invcache = (None, ) + \ tuple(int(GF2p8(x) ** -1) for x in range(1, 256)) if GF2p8._invcache != invcache: # pragma: no cover print('inv cache:', repr(invcache)) self.assertEqual(GF2p8._invcache, invcache) def test_gf2p8_power(self): a = GF2p8(random.randint(0, 255)) v = GF2p8(1) for i in range(10): self.assertEqual(a ** i, v) v = v * a for i in range(10): a = GF2p8(random.randint(0, 255)) powers = a.powerseries(10) for j in range(10): self.assertEqual(powers[j], a ** j) def test_gf2p8_errors(self): self.assertRaises(ValueError, GF2p8, 1000) def test_gf2p8(self): self.assertEqual(int(GF2p8(5)), 5) self.assertEqual(repr(GF2p8(5)), 'GF2p8(5)') for i in range(10): a = GF2p8(random.randint(0, 255)) b = GF2p8(random.randint(0, 255)) c = GF2p8(random.randint(0, 255)) self.assertEqual(a * 0, 0) # Identity self.assertEqual(a + 0, a) self.assertEqual(a * 1, a) self.assertEqual(0 + a, a) self.assertEqual(1 * a, a) self.assertEqual(0 - a, a) # Associativity self.assertEqual((a + b) + c, a + (b + c)) self.assertEqual((a * b) * c, a * (b * c)) # Communitative self.assertEqual(a + b, b + a) self.assertEqual(a * b, b * a) # Distributive self.assertEqual(a * (b + c), a * b + a * c) self.assertEqual((b + c) * a, b * a + c * a) # Basic mul self.assertEqual(GF2p8(0x80) * 2, 0x87) self.assertEqual(GF2p8(0x80) * 6, (0x80 * 6) ^ (0x187 << 1)) self.assertEqual(GF2p8(0x80) * 8, (0x80 * 8) ^ (0x187 << 2) ^ (0x187 << 1) ^ 0x187) self.assertEqual(a + b - b, a)