| @@ -13,8 +13,6 @@ | |||
| #include <string.h> | |||
| #include "field.h" | |||
| #include "ec_point.h" // REMOVE! | |||
| #define WBITS DECAF_WORD_BITS | |||
| #if WBITS == 64 | |||
| @@ -833,11 +831,16 @@ decaf_bool_t decaf_448_direct_scalarmul ( | |||
| decaf_bool_t allow_identity, | |||
| decaf_bool_t short_circuit | |||
| ) { | |||
| /* The Montgomery ladder does not short-circuit return on invalid points, | |||
| * since it detects them during recompress. | |||
| */ | |||
| (void)short_circuit; | |||
| gf s0, x0, xa, za, xd, zd, xs, zs; | |||
| gf s0, x0, xa, za, xd, zd, xs, zs, L0, L1; | |||
| decaf_bool_t succ = gf_deser ( s0, base ); | |||
| succ &= allow_identity |~ gf_eq( s0, ZERO); | |||
| /* Prepare the Montgomery ladder: Q = 1:0, P+Q = P */ | |||
| gf_sqr ( xa, s0 ); | |||
| gf_cpy ( x0, xa ); | |||
| gf_cpy ( za, ONE ); | |||
| @@ -846,26 +849,38 @@ decaf_bool_t decaf_448_direct_scalarmul ( | |||
| int j; | |||
| decaf_bool_t pflip = 0; | |||
| for (j=448-1; j>=0; j--) { /* TODO: DECAF_SCALAR_BITS */ | |||
| decaf_bool_t flip = -((scalar->limb[j/WORD_BITS]>>(j%WORD_BITS))&1);; | |||
| cond_swap(xa,xd,flip^pflip); | |||
| cond_swap(za,zd,flip^pflip); | |||
| for (j=DECAF_448_SCALAR_BITS+1; j>=0; j--) { | |||
| /* FIXME: -1, but the test cases use too many bits */ | |||
| /* TODO PERF: consider a selection-based ladder. It uses more memory but is probably faster. */ | |||
| /* Augmented Montgomery ladder */ | |||
| decaf_bool_t flip = -((scalar->limb[j/WORD_BITS]>>(j%WORD_BITS))&1); | |||
| /* Differential add first... */ | |||
| gf_add_nr ( xs, xa, za ); | |||
| gf_sub_nr ( zs, xa, za ); | |||
| gf_add_nr ( xa, xd, zd ); | |||
| gf_sub_nr ( za, xd, zd ); | |||
| cond_sel(L0,xa,xs,flip^pflip); | |||
| cond_sel(L1,za,zs,flip^pflip); | |||
| gf_mul ( xd, xa, zs ); | |||
| gf_mul ( zd, xs, za ); | |||
| gf_add_nr ( xs, xd, zd ); | |||
| gf_sub_nr ( zd, xd, zd ); | |||
| gf_mul ( zs, zd, s0 ); | |||
| gf_sqr ( zd, xa ); | |||
| gf_sqr ( xa, za ); | |||
| /* ... and then double */ | |||
| gf_sqr ( zd, L0 ); | |||
| gf_sqr ( xa, L1 ); | |||
| gf_sub_nr ( za, zd, xa ); | |||
| gf_mul ( xd, xa, zd ); | |||
| gf_mlw ( zd, za, 1-EDWARDS_D ); | |||
| gf_add_nr ( xa, xa, zd ); | |||
| gf_mul ( zd, xa, za ); | |||
| /* OK, finish the dadd */ | |||
| gf_sqr ( xa, xs ); | |||
| gf_sqr ( za, zs ); | |||
| pflip = flip; | |||
| @@ -874,7 +889,7 @@ decaf_bool_t decaf_448_direct_scalarmul ( | |||
| cond_swap(za,zd,pflip); | |||
| /* OK, time to reserialize! Should be easy (heh, but seriously, TODO: simplify) */ | |||
| gf xz_d, xz_a, xz_s, den, L0, L1, L2, L3; | |||
| gf xz_d, xz_a, xz_s, den, L2, L3; | |||
| mask_t zcase, output_zero, sflip, za_zero; | |||
| gf_mul(xz_s, xs, zs); | |||
| gf_mul(xz_d, xd, zd); | |||
| @@ -884,7 +899,9 @@ decaf_bool_t decaf_448_direct_scalarmul ( | |||
| zcase = output_zero | gf_eq(xz_a, ZERO); | |||
| za_zero = gf_eq(za, ZERO); | |||
| /* Curve test in zcase */ | |||
| /* Curve test in zcase, compute x0^2 + (2d-4)x0 + 1 | |||
| * (we know that x0 = s0^2 is square). | |||
| */ | |||
| gf_add(L0,x0,ONE); | |||
| gf_sqr(L1,L0); | |||
| gf_mlw(L0,x0,-4*EDWARDS_D); | |||
| @@ -896,14 +913,14 @@ decaf_bool_t decaf_448_direct_scalarmul ( | |||
| gf_mul(L1, L0, xz_d); | |||
| gf_isqrt(den, L1); | |||
| /* Check squareness */ | |||
| /* Check that the square root came out OK. */ | |||
| gf_sqr(L2, den); | |||
| gf_mul(L3, L0, L2); /* x0 xa za den^2 = 1/xz_d, for later */ | |||
| gf_mul(L0, L1, L2); | |||
| gf_add(L0, L0, ONE); | |||
| succ &= ~hibit(s0) & ~gf_eq(L0, ZERO); | |||
| /* Compute y/x */ | |||
| /* Compute y/x for input and output point. */ | |||
| gf_mul(L1, x0, xd); | |||
| gf_sub(L1, zd, L1); | |||
| gf_mul(L0, za, L1); /* L0 = "opq" */ | |||
| @@ -917,30 +934,22 @@ decaf_bool_t decaf_448_direct_scalarmul ( | |||
| sflip = (lobit(L1) ^ lobit(L2)) | za_zero; | |||
| /* OK, done with y-coordinates */ | |||
| /* If xa==0 or za ==0: | |||
| * return 0 | |||
| * Else if za == 0: | |||
| * return s0 * (sflip ? zd : xd)^2 * L3 | |||
| * Else if zd == 0: | |||
| * return s0 * (sflip ? zd : xd)^2 * L3 | |||
| * Else if pflip: | |||
| * return xs * zs * (sflip ? zd : xd) * L3 | |||
| * Else: | |||
| * return s0 * xs * zs * (sflip ? zd : xd) * den | |||
| /* If xa==0 or za ==0: return 0 | |||
| * Else if za == 0: return s0 * (sflip ? zd : xd)^2 * L3 | |||
| * Else if zd == 0: return s0 * (sflip ? zd : xd)^2 * L3 | |||
| * Else if pflip: return xs * zs * (sflip ? zd : xd) * L3 | |||
| * Else: return s0 * xs * zs * (sflip ? zd : xd) * den | |||
| */ | |||
| cond_sel(xd, xd, zd, sflip); /* xd = actual xd we care about */ | |||
| cond_sel(den,den,L3,pflip|zcase); | |||
| cond_sel(xz_s,xz_s,xd,zcase); | |||
| cond_sel(s0,s0,ONE,pflip&~zcase); | |||
| cond_sel(s0,s0,ZERO,output_zero); | |||
| /* compute the output xd*den*xs*zs or | |||
| * den*xd^2*s0 = (oden*s0*xd)^2 * xa * za * s0 | |||
| * in zcase */ | |||
| gf_mul(L0,xd,den); | |||
| gf_mul(L1,L0,s0); | |||
| gf_mul(L0,L1,xz_s); | |||
| cond_neg(L0,hibit(L0)); | |||
| gf_encode(scaled, L0); | |||