diff --git a/src/decaf_fast.c b/src/decaf_fast.c index 6d9adb3..95249f8 100644 --- a/src/decaf_fast.c +++ b/src/decaf_fast.c @@ -13,8 +13,6 @@ #include #include "field.h" -#include "ec_point.h" // REMOVE! - #define WBITS DECAF_WORD_BITS #if WBITS == 64 @@ -833,11 +831,16 @@ decaf_bool_t decaf_448_direct_scalarmul ( decaf_bool_t allow_identity, decaf_bool_t short_circuit ) { + /* The Montgomery ladder does not short-circuit return on invalid points, + * since it detects them during recompress. + */ (void)short_circuit; - gf s0, x0, xa, za, xd, zd, xs, zs; + + gf s0, x0, xa, za, xd, zd, xs, zs, L0, L1; decaf_bool_t succ = gf_deser ( s0, base ); succ &= allow_identity |~ gf_eq( s0, ZERO); + /* Prepare the Montgomery ladder: Q = 1:0, P+Q = P */ gf_sqr ( xa, s0 ); gf_cpy ( x0, xa ); gf_cpy ( za, ONE ); @@ -846,26 +849,38 @@ decaf_bool_t decaf_448_direct_scalarmul ( int j; decaf_bool_t pflip = 0; - for (j=448-1; j>=0; j--) { /* TODO: DECAF_SCALAR_BITS */ - decaf_bool_t flip = -((scalar->limb[j/WORD_BITS]>>(j%WORD_BITS))&1);; - cond_swap(xa,xd,flip^pflip); - cond_swap(za,zd,flip^pflip); + for (j=DECAF_448_SCALAR_BITS+1; j>=0; j--) { + /* FIXME: -1, but the test cases use too many bits */ + /* TODO PERF: consider a selection-based ladder. It uses more memory but is probably faster. */ + + /* Augmented Montgomery ladder */ + decaf_bool_t flip = -((scalar->limb[j/WORD_BITS]>>(j%WORD_BITS))&1); + + /* Differential add first... */ gf_add_nr ( xs, xa, za ); gf_sub_nr ( zs, xa, za ); gf_add_nr ( xa, xd, zd ); gf_sub_nr ( za, xd, zd ); + + cond_sel(L0,xa,xs,flip^pflip); + cond_sel(L1,za,zs,flip^pflip); + gf_mul ( xd, xa, zs ); gf_mul ( zd, xs, za ); gf_add_nr ( xs, xd, zd ); gf_sub_nr ( zd, xd, zd ); gf_mul ( zs, zd, s0 ); - gf_sqr ( zd, xa ); - gf_sqr ( xa, za ); + + /* ... and then double */ + gf_sqr ( zd, L0 ); + gf_sqr ( xa, L1 ); gf_sub_nr ( za, zd, xa ); gf_mul ( xd, xa, zd ); gf_mlw ( zd, za, 1-EDWARDS_D ); gf_add_nr ( xa, xa, zd ); gf_mul ( zd, xa, za ); + + /* OK, finish the dadd */ gf_sqr ( xa, xs ); gf_sqr ( za, zs ); pflip = flip; @@ -874,7 +889,7 @@ decaf_bool_t decaf_448_direct_scalarmul ( cond_swap(za,zd,pflip); /* OK, time to reserialize! Should be easy (heh, but seriously, TODO: simplify) */ - gf xz_d, xz_a, xz_s, den, L0, L1, L2, L3; + gf xz_d, xz_a, xz_s, den, L2, L3; mask_t zcase, output_zero, sflip, za_zero; gf_mul(xz_s, xs, zs); gf_mul(xz_d, xd, zd); @@ -884,7 +899,9 @@ decaf_bool_t decaf_448_direct_scalarmul ( zcase = output_zero | gf_eq(xz_a, ZERO); za_zero = gf_eq(za, ZERO); - /* Curve test in zcase */ + /* Curve test in zcase, compute x0^2 + (2d-4)x0 + 1 + * (we know that x0 = s0^2 is square). + */ gf_add(L0,x0,ONE); gf_sqr(L1,L0); gf_mlw(L0,x0,-4*EDWARDS_D); @@ -896,14 +913,14 @@ decaf_bool_t decaf_448_direct_scalarmul ( gf_mul(L1, L0, xz_d); gf_isqrt(den, L1); - /* Check squareness */ + /* Check that the square root came out OK. */ gf_sqr(L2, den); gf_mul(L3, L0, L2); /* x0 xa za den^2 = 1/xz_d, for later */ gf_mul(L0, L1, L2); gf_add(L0, L0, ONE); succ &= ~hibit(s0) & ~gf_eq(L0, ZERO); - /* Compute y/x */ + /* Compute y/x for input and output point. */ gf_mul(L1, x0, xd); gf_sub(L1, zd, L1); gf_mul(L0, za, L1); /* L0 = "opq" */ @@ -917,30 +934,22 @@ decaf_bool_t decaf_448_direct_scalarmul ( sflip = (lobit(L1) ^ lobit(L2)) | za_zero; /* OK, done with y-coordinates */ - - /* If xa==0 or za ==0: - * return 0 - * Else if za == 0: - * return s0 * (sflip ? zd : xd)^2 * L3 - * Else if zd == 0: - * return s0 * (sflip ? zd : xd)^2 * L3 - * Else if pflip: - * return xs * zs * (sflip ? zd : xd) * L3 - * Else: - * return s0 * xs * zs * (sflip ? zd : xd) * den + /* If xa==0 or za ==0: return 0 + * Else if za == 0: return s0 * (sflip ? zd : xd)^2 * L3 + * Else if zd == 0: return s0 * (sflip ? zd : xd)^2 * L3 + * Else if pflip: return xs * zs * (sflip ? zd : xd) * L3 + * Else: return s0 * xs * zs * (sflip ? zd : xd) * den */ cond_sel(xd, xd, zd, sflip); /* xd = actual xd we care about */ cond_sel(den,den,L3,pflip|zcase); cond_sel(xz_s,xz_s,xd,zcase); cond_sel(s0,s0,ONE,pflip&~zcase); cond_sel(s0,s0,ZERO,output_zero); - - /* compute the output xd*den*xs*zs or - * den*xd^2*s0 = (oden*s0*xd)^2 * xa * za * s0 - * in zcase */ + gf_mul(L0,xd,den); gf_mul(L1,L0,s0); gf_mul(L0,L1,xz_s); + cond_neg(L0,hibit(L0)); gf_encode(scaled, L0);