| @@ -55,13 +55,17 @@ ifeq ($(CC),clang) | |||
| WARNFLAGS += -Wgcc-compat | |||
| endif | |||
| SAGE ?= sage | |||
| SAGES= $(shell ls test/*.sage) | |||
| BUILDPYS= $(SAGES:test/%.sage=build/%.py) | |||
| ARCHFLAGS += $(XARCHFLAGS) | |||
| CFLAGS = $(LANGFLAGS) $(WARNFLAGS) $(INCFLAGS) $(OFLAGS) $(ARCHFLAGS) $(GENFLAGS) $(XCFLAGS) | |||
| CXXFLAGS = $(LANGXXFLAGS) $(WARNFLAGS) $(INCFLAGS) $(OFLAGS) $(ARCHFLAGS) $(GENFLAGS) $(XCXXFLAGS) | |||
| LDFLAGS = $(ARCHFLAGS) $(XLDFLAGS) | |||
| ASFLAGS = $(ARCHFLAGS) $(XASFLAGS) | |||
| .PHONY: clean all test bench todo doc lib bat | |||
| .PHONY: clean all test bench todo doc lib bat sage sagetest | |||
| .PRECIOUS: build/%.s | |||
| HEADERS= Makefile $(shell find src include test -name "*.h") $(shell find . -name "*.hxx") build/timestamp | |||
| @@ -149,6 +153,21 @@ build/%.s: src/$(FIELD)/$(ARCH)/%.c $(HEADERS) | |||
| build/%.s: src/$(FIELD)/%.c $(HEADERS) | |||
| $(CC) $(CFLAGS) -S -c -o $@ $< | |||
| sage: $(BUILDPYS) | |||
| sagetest: sage lib | |||
| LD_LIBRARY_PATH=build sage build/test_decaf.sage | |||
| $(BUILDPYS): $(SAGES) build/timestamp | |||
| cp -f $(SAGES) build/ | |||
| $(SAGE) --preparse $(SAGES:test/%.sage=build/%.sage) | |||
| # some sage versions compile to .sage.py | |||
| for f in $(SAGES:test/%.sage=build/%); do \ | |||
| if [ -e $$f.sage.py ]; then \ | |||
| mv $$f.sage.py $$f.py; \ | |||
| fi; \ | |||
| done | |||
| doc/timestamp: | |||
| mkdir -p doc | |||
| @@ -0,0 +1,292 @@ | |||
| from idealized import Idealized | |||
| from collections import namedtuple | |||
| debugging = True | |||
| def debug_print(foo): | |||
| if debugging: print foo | |||
| checkGroupLaws = True | |||
| checkTorsion = True | |||
| checkIsogenies = True | |||
| def memoize(f): | |||
| # list cache because my __hash__ hack doesn't seem to work | |||
| cache = [] | |||
| def ff(*args, **kwargs): | |||
| key = (tuple(args),tuple(sorted(kwargs.iteritems()))) | |||
| for key_,value in cache: | |||
| if key == key_: return value | |||
| out = f(*args,**kwargs) | |||
| cache.append((key,out)) | |||
| return out | |||
| try: | |||
| ff.__name__ = f.__name__ | |||
| except AttributeError: pass | |||
| return ff | |||
| def EcBase(curvename,varnames,ad=()): | |||
| if isinstance(ad,str) or isinstance(ad[0],str): | |||
| ad = Idealized.vars(ad) | |||
| class Inner(namedtuple(curvename,(v for v in varnames))): | |||
| params = ad | |||
| torsion_points = {} | |||
| def __new__(cls,*xy): | |||
| def apply_invariants(xy,x): | |||
| for inv in cls.invariants(*(ad+xy)): | |||
| x = x.assuming(inv) | |||
| return x | |||
| xy = tuple(xy) | |||
| if len(xy) == 0: | |||
| xy = Idealized.uvars(varnames) | |||
| xy = [apply_invariants(xy,x) for x in xy] | |||
| else: | |||
| for i,inv in enumerate(cls.invariants(*(ad + xy))): | |||
| if inv != 0: | |||
| raise Exception("Invariant inv[%d] not satisfied for %s: got \n%s" % | |||
| (i,curvename,str(inv))) | |||
| return super(Inner,cls).__new__(cls,*xy) | |||
| varnames = "xy" | |||
| @classmethod | |||
| def invariants(self,*args): return [] | |||
| @classmethod | |||
| @memoize | |||
| def check_group(cls): | |||
| if checkGroupLaws: | |||
| debug_print("Checking group law for %s..." % cls.__name__) | |||
| a,b,c,z = cls(),cls(),cls(),cls.basepoint | |||
| if a+z != a: | |||
| raise Exception("Base point is not identity!") | |||
| if a-a != z: | |||
| raise Exception("Subtraction doesn't work!") | |||
| if a+b != b+a: | |||
| raise Exception("Addition is not commutative!") | |||
| #if a+(b+c) != (a+b)+c: | |||
| # raise Exception("Addition is not associative!") | |||
| for t,n in cls.torsion(): | |||
| if checkTorsion: | |||
| debug_print(" Checking %d-torsion..." % n) | |||
| cls.check_torsion(t,n) | |||
| #if n not in cls.torsion_points: | |||
| # cls.torsion_points[n] = set() | |||
| #cls.torsion_points[n].add(cls(*t(cls.basepoint))) | |||
| @classmethod | |||
| def check_torsion(cls,f,n): | |||
| P = Q = cls() | |||
| good = False | |||
| for i in xrange(1,n+1): | |||
| Q = cls(*f(Q)) | |||
| if Q == P: | |||
| if i==n: | |||
| good = True | |||
| break | |||
| raise Exception("Claimed %d-torsion, but is actually %d-torsion" % (n,i)) | |||
| if not good: raise Exception("Claimed %d-torsion, but isn't" % n) | |||
| if n*P+n*cls(*f(P)) == cls.basepoint: | |||
| raise Exception("Torsion operation inverts element") | |||
| @classmethod | |||
| def torsion(cls): | |||
| return [] | |||
| def __sub__(self,other): | |||
| return self + (-other) | |||
| def __mul__(self,other): | |||
| if other==0: return self.basepoint | |||
| if other < 0: return -(self*-other) | |||
| if other==1: return self | |||
| if is_even(other): return (self+self)*(other//2) | |||
| return (self+self)*(other//2) + self | |||
| def __rmul__(self,other): | |||
| return self*other | |||
| Inner.__name__ = curvename + "_base" | |||
| return Inner | |||
| class Isogeny(object): | |||
| isograph = DiGraph(weighted=True) | |||
| isomap = {} | |||
| @classmethod | |||
| def generate(cls, fro, to): | |||
| path = cls.isograph.shortest_path(fro,to,by_weight=True) | |||
| if len(path): | |||
| iso = cls.isomap[(path[0], path[1])] | |||
| for i in xrange(1,len(path)-1): | |||
| iso = cls.isomap[(path[i],path[i+1])].compose(iso) | |||
| return iso | |||
| else: | |||
| return None | |||
| def __init__(self,c1,c2,deg,fw,rv,check=True,dual=None,add=True): | |||
| self.c1 = c1 | |||
| self.c2 = c2 | |||
| self.fw = fw | |||
| self.rv = rv | |||
| self.deg = deg | |||
| if add: | |||
| Isogeny.isomap[(c1,c2)] = self | |||
| Isogeny.isograph.add_edge(c1,c2,log(deg)/log(2) + 0.1) | |||
| if dual is not None: | |||
| self.dual = dual | |||
| else: | |||
| self.dual = Isogeny(c2,c1,deg,rv,fw,False,self,add) | |||
| if not check: return | |||
| if not checkIsogenies: return | |||
| debug_print("Checking isogeny %s <-%d-> %s..." % (c1.__name__,deg,c2.__name__)) | |||
| if c2(*fw(*c1.basepoint)) != c2.basepoint: | |||
| raise Exception("Isogeny doesn't preserve basepoints") | |||
| if c1(*fw(*c2.basepoint)) != c1.basepoint: | |||
| raise Exception("Isogeny dual doesn't preserve basepoints") | |||
| foo = c1() | |||
| bar = c2() | |||
| c2(*fw(*foo)) | |||
| c1(*rv(*bar)) | |||
| if c1(*rv(*c2(*fw(*foo)))) != deg*foo: | |||
| raise Exception("Isogeny degree is wrong") | |||
| if c2(*fw(*c1(*rv(*bar)))) != deg*bar: | |||
| raise Exception("Isogeny degree is wrong") | |||
| if -c2(*fw(*foo)) != c2(*fw(*(-foo))): | |||
| raise Exception("Isogeny uses wrong negmap") | |||
| if -c1(*rv(*bar)) != c1(*rv(*(-bar))): | |||
| raise Exception("Isogeny uses wrong negmap") | |||
| def __call__(self,ipt,**kwargs): | |||
| return self.c2(*self.fw(*ipt,**kwargs)) | |||
| def __repr__(self): return str(self) | |||
| def __str__(self): | |||
| out = "Isogeny %s%s <-%d-> %s%s..." %\ | |||
| (self.c1.__name__,str(self.c1.params),self.deg, | |||
| self.c2.__name__,self.c2.params) | |||
| out += "\n fw: %s" % str(self(self.c1())) | |||
| out += "\n rv: %s" % str(self.dual(self.c2())) | |||
| return out | |||
| def compose(self,other): | |||
| def fw(*args): return self.fw(*other.fw(*args)) | |||
| def rv(*args): return other.rv(*self.rv(*args)) | |||
| return Isogeny(other.c1,self.c2,self.deg*other.deg,fw,rv,False,None,False) | |||
| def ec_family(defs,vars): | |||
| def inner1(CLS): | |||
| @memoize | |||
| def inner2(*args,**kwargs): | |||
| if len(args)==0 and len(kwargs)==0: | |||
| args = tuple(defs) | |||
| chk = True | |||
| else: | |||
| chk = False | |||
| class ret(CLS,EcBase(CLS.__name__,vars,args)): | |||
| def __new__(cls,*args,**kwargs): | |||
| return super(ret,cls).__new__(cls,*args,**kwargs) | |||
| ret.__name__ = CLS.__name__ | |||
| ret.basepoint = ret(*ret.get_basepoint()) | |||
| if chk: ret.check_group() | |||
| return ret | |||
| inner2.__name__ = CLS.__name__ + "_family" | |||
| inner2() | |||
| return inner2 | |||
| return inner1 | |||
| #checkGroupLaws = checkTorsion = False | |||
| @ec_family("ad","xy") | |||
| class Edwards: | |||
| @classmethod | |||
| def invariants(cls,a,d,x,y): | |||
| return [y^2 + a*x^2 - 1 - d*x^2*y^2] | |||
| def __neg__(self): | |||
| return self.__class__(-self.x,self.y) | |||
| def __add__(self,other): | |||
| (x,y) = self | |||
| (X,Y) = other | |||
| a,d = self.params | |||
| dd = d*x*X*y*Y | |||
| return self.__class__((x*Y+X*y)/(1+dd),(y*Y-a*x*X)/(1-dd)) | |||
| @classmethod | |||
| def get_basepoint(cls): return (0,1) | |||
| @classmethod | |||
| @memoize | |||
| def torsion(cls): | |||
| a,d = cls.params | |||
| sa = a.sqrt() | |||
| sd = d.sqrt() | |||
| sad = (a*d).sqrt() | |||
| def tor2_1((x,y)): return (-x,-y) | |||
| def tor4_1((x,y)): return (y/sa,-x*sa) | |||
| def tor4_2((x,y)): return (1/(sd*y),-1/(sd*x)) | |||
| def tor2_2((x,y)): return (-1/(sad*x),-a/(sad*y)) | |||
| return [(tor2_1,2),(tor2_2,2),(tor4_1,4),(tor4_2,4)] | |||
| @ec_family("eA","st") | |||
| class JacobiQuartic: | |||
| @classmethod | |||
| def invariants(cls,e,A,s,t): | |||
| return [-t^2 + e*s^4 + 2*A*s^2 + 1] | |||
| def __neg__(self): | |||
| return self.__class__(-self.s,self.t) | |||
| def __add__(self,other): | |||
| (x,y) = self | |||
| (X,Y) = other | |||
| e,A = self.params | |||
| dd = e*(x*X)^2 | |||
| YY = (1+dd)*(y*Y+2*A*x*X) + 2*e*x*X*(x^2+X^2) | |||
| return self.__class__((x*Y+X*y)/(1-dd),YY/(1-dd)^2) | |||
| @classmethod | |||
| def get_basepoint(cls): return (0,1) | |||
| @classmethod | |||
| @memoize | |||
| def torsion(cls): | |||
| e,A = cls.params | |||
| se = e.sqrt() | |||
| def tor2_1((s,t)): return (-s,-t) | |||
| def tor2_2((s,t)): return (1/(se*s),-t/(se*s^2)) | |||
| return [(tor2_1,2),(tor2_2,2)] | |||
| a,d = Idealized.vars("ad") | |||
| def phi_iso(a,d): | |||
| return Isogeny(Edwards(a,d),JacobiQuartic(a^2,a-2*d), | |||
| 2, | |||
| lambda x,y: (x/y, (2-y^2-a*x^2)/y^2), | |||
| lambda s,t: (2*s/(1+a*s^2), (1-a*s^2)/t) | |||
| ) | |||
| print phi_iso(a,d) | |||
| print phi_iso(-a,d-a) | |||
| print Isogeny.generate(Edwards(a,d),Edwards(-a,d-a)) | |||
| @@ -0,0 +1,273 @@ | |||
| class Unique(object): | |||
| def __init__(self,name): | |||
| self.name = name | |||
| def __str__(self): | |||
| return self.name | |||
| def __repr__(self): | |||
| return "Unique(\"%s\")" % self.name | |||
| class Idealized(object): | |||
| UNION = ["UNION"] | |||
| def __init__(self, R, idealMap = 0, vars = {}): | |||
| self.varnames = vars | |||
| if not isinstance(idealMap,dict): | |||
| idealMap = {()*R:idealMap} | |||
| self.idealMap = idealMap | |||
| self.R = R | |||
| self._sqrt = None | |||
| self._isqrt = None | |||
| @staticmethod | |||
| def uvar(x): | |||
| return Idealized.var(Unique(x)) | |||
| @staticmethod | |||
| def var(x): | |||
| name = str(x) | |||
| R = PolynomialRing(QQ,[name]) | |||
| rx = R.gens()[0] | |||
| return Idealized(R,rx,{x:(name,rx)}) | |||
| @staticmethod | |||
| def vars(xs): | |||
| return tuple((Idealized.var(x) for x in xs)) | |||
| @staticmethod | |||
| def uvars(xs): | |||
| return tuple((Idealized.uvar(x) for x in xs)) | |||
| def __str__(self): | |||
| def rep(I,x): | |||
| x = str(x) | |||
| gs = I.gens() | |||
| gs = [g for g in gs if g != 0] | |||
| if len(gs) == 0: return x | |||
| else: | |||
| g = ", ".join(["(%s)" % str(gen) for gen in gs]) | |||
| return g + ": " + x | |||
| return "\n".join([rep(I,self.idealMap[I]) for I in self.idealMap]) | |||
| def __repr__(self): | |||
| # HACK! | |||
| if len(self.idealMap) == 0: | |||
| return "undef" | |||
| if len(self.idealMap) > 1: | |||
| return str(self) | |||
| for _,v in self.idealMap.iteritems(): | |||
| return str(v) | |||
| def prune(self): | |||
| self.idealMap = {I:v for I,v in self.idealMap.iteritems() if not (I*self.R).is_one()} | |||
| return self | |||
| def __add__(self,other): | |||
| def f(x,y): return x+y | |||
| return self.op(other,f) | |||
| def __radd__(self,other): | |||
| def f(x,y): return y+x | |||
| return self.op(other,f) | |||
| def __rsub__(self,other): | |||
| def f(x,y): return y-x | |||
| return self.op(other,f) | |||
| def __neg__(self): | |||
| def f(x,y): return y-x | |||
| return self.op(0,f) | |||
| def __sub__(self,other): | |||
| def f(x,y): return x-y | |||
| return self.op(other,f) | |||
| def is_square(self): | |||
| for _,v in self.idealMap.iteritems(): | |||
| if not is_square(v): return False | |||
| return True | |||
| def sqrt(self): | |||
| if self._sqrt is None: | |||
| s = Idealized.uvar("s") | |||
| self._sqrt = s.assuming(s^2 - self) | |||
| return self._sqrt | |||
| def isqrt(self): | |||
| if self._isqrt is None: | |||
| s = Idealized.uvar("s") | |||
| z = Idealized(0).assuming(Self) | |||
| self._isqrt = s.assuming(s^2*self-1).union(z) | |||
| return self._isqrt | |||
| def __mul__(self,other): | |||
| def f(x,y): return x*y | |||
| return self.op(other,f) | |||
| def __rmul__(self,other): | |||
| def f(x,y): return y*x | |||
| return self.op(other,f) | |||
| def __pow__(self,n): | |||
| if n < 0: return 1/self^(-n) | |||
| if n == 0: return 1 | |||
| if n == 1: return self | |||
| if is_even(n): return (self*self)^(n//2) | |||
| if is_odd(n): return (self*self)^(n//2) * self | |||
| def __div__(self,other): | |||
| def f(x,y): return x/y | |||
| return self.op(other,f) | |||
| def __rdiv__(self,other): | |||
| def f(x,y): return y/x | |||
| return self.op(other,f) | |||
| def union(self,other): | |||
| return self.op(other,Idealized.UNION) | |||
| def __eq__(self,other): | |||
| return (self - other).is_zero() | |||
| def __ne__(self,other): | |||
| return not (self==other) | |||
| def __hash__(self): | |||
| return 0 | |||
| def assume_zero(self): | |||
| out = {} | |||
| for I,J in self.idealMap.iteritems(): | |||
| IJ = I+J.numerator() | |||
| if IJ.is_one(): continue | |||
| out[IJ] = self.R(0) | |||
| if len(out) == 0: | |||
| raise Exception("Inconsistent assumption") | |||
| return Idealized(self.R,out,self.varnames) | |||
| def assuming(self,other): | |||
| return self + other.assume_zero() | |||
| def is_zero(self): | |||
| for I,v in self.idealMap.iteritems(): | |||
| if v.denominator() in I: return False | |||
| if v.numerator() not in I: return False | |||
| return True | |||
| def op(self,other,f): | |||
| if not isinstance(other,Idealized): | |||
| other = Idealized(self.R,other,self.varnames) | |||
| bad = False | |||
| for v in self.varnames: | |||
| if v not in other.varnames or self.varnames[v] != other.varnames[v]: | |||
| bad = True | |||
| break | |||
| for v in other.varnames: | |||
| if v not in self.varnames or self.varnames[v] != other.varnames[v]: | |||
| bad = True | |||
| break | |||
| if bad: | |||
| def incrVar(v): | |||
| if v[-1] not in "0123456789": return v + "1" | |||
| elif v[-1] == 9: return incrVar(v[:-1]) + "0" | |||
| else: return v[:-1] + str(int(v[-1])+1) | |||
| vars = {} | |||
| names = set() | |||
| for v,(name,_) in self.varnames.iteritems(): | |||
| assert(name not in names) | |||
| names.add(name) | |||
| vars[v] = name | |||
| subMe = {n:n for n in names} | |||
| subThem = {} | |||
| for v,(name,_) in other.varnames.iteritems(): | |||
| if v in self.varnames: | |||
| subThem[name] = self.varnames[v][0] | |||
| else: | |||
| oname = name | |||
| while name in names: | |||
| name = incrVar(name) | |||
| names.add(name) | |||
| subThem[oname] = name | |||
| vars[v] = name | |||
| R = PolynomialRing(QQ,sorted(list(names)),order="degrevlex") | |||
| gd = R.gens_dict() | |||
| subMe = {m:gd[n] for m,n in subMe.iteritems()} | |||
| subThem = {m:gd[n] for m,n in subThem.iteritems()} | |||
| vars = {v:(n,gd[n]) for v,n in vars.iteritems()} | |||
| def subIdeal(I,sub): | |||
| return [g(**sub) for g in I.gens()]*R | |||
| idealMe = {subIdeal(I,subMe):v(**subMe) for I,v in self.idealMap.iteritems()} | |||
| idealThem = {subIdeal(I,subThem):v(**subThem) for I,v in other.idealMap.iteritems()} | |||
| else: | |||
| R = self.R | |||
| idealMe = self.idealMap | |||
| idealThem = other.idealMap | |||
| vars = self.varnames | |||
| def consist(I,x,y): | |||
| if (x-y).numerator() not in I: | |||
| raise Exception("Inconsistent: %s != %s in ideal %s" % | |||
| (str(x),str(y),str(I))) | |||
| out = {} | |||
| if f is Idealized.UNION: | |||
| for I,v in idealMe.iteritems(): | |||
| if I in idealThem: | |||
| consist(I,v,idealThem[I]) | |||
| out[I] = v | |||
| for I,v in idealThem.iteritems(): | |||
| if I in idealMe: | |||
| consist(I,v,idealMe[I]) | |||
| out[I] = v | |||
| else: | |||
| for I,v in idealMe.iteritems(): | |||
| if I in idealThem: | |||
| x = f(v,idealThem[I]) | |||
| if I in out: | |||
| consist(I,x,out[I]) | |||
| else: out[I] = x | |||
| else: | |||
| for J,w in idealThem.iteritems(): | |||
| IJ = I+J | |||
| if not IJ.is_one(): | |||
| x = f(v,w) | |||
| if IJ in out: | |||
| consist(IJ,x,out[IJ]) | |||
| else: | |||
| out[IJ] = x | |||
| def gb(I): | |||
| II = [0]*R | |||
| for g in I.gens(): | |||
| if g not in II: II = II+[g]*R | |||
| return II | |||
| def red(I,v): | |||
| if I.is_zero(): return v | |||
| return I.reduce(R(v.numerator())) / I.reduce(R(v.denominator())) | |||
| out = {gb(I):v for I,v in out.iteritems()} | |||
| out = {I:red(I,v) for I,v in out.iteritems()} | |||
| return Idealized(R,out,vars) | |||
| def reduce(self): | |||
| def red(I,v): | |||
| if I.is_zero(): return v | |||
| return I.reduce(R(v.numerator())) / I.reduce(R(v.denominator())) | |||
| out = {I:red(I,v) for I,v in self.idealMap.iteritems()} | |||
| return Idealized(self.R,out,self.vars) | |||
| Idealized.INF = Idealized.uvar("inf") | |||
| Idealized.ZOZ = Idealized.uvar("zoz") | |||
| @@ -0,0 +1,4 @@ | |||
| from ctypes import * | |||
| decaf = CDLL("libdecaf.so") | |||