@@ -55,13 +55,17 @@ ifeq ($(CC),clang) | |||||
WARNFLAGS += -Wgcc-compat | WARNFLAGS += -Wgcc-compat | ||||
endif | endif | ||||
SAGE ?= sage | |||||
SAGES= $(shell ls test/*.sage) | |||||
BUILDPYS= $(SAGES:test/%.sage=build/%.py) | |||||
ARCHFLAGS += $(XARCHFLAGS) | ARCHFLAGS += $(XARCHFLAGS) | ||||
CFLAGS = $(LANGFLAGS) $(WARNFLAGS) $(INCFLAGS) $(OFLAGS) $(ARCHFLAGS) $(GENFLAGS) $(XCFLAGS) | CFLAGS = $(LANGFLAGS) $(WARNFLAGS) $(INCFLAGS) $(OFLAGS) $(ARCHFLAGS) $(GENFLAGS) $(XCFLAGS) | ||||
CXXFLAGS = $(LANGXXFLAGS) $(WARNFLAGS) $(INCFLAGS) $(OFLAGS) $(ARCHFLAGS) $(GENFLAGS) $(XCXXFLAGS) | CXXFLAGS = $(LANGXXFLAGS) $(WARNFLAGS) $(INCFLAGS) $(OFLAGS) $(ARCHFLAGS) $(GENFLAGS) $(XCXXFLAGS) | ||||
LDFLAGS = $(ARCHFLAGS) $(XLDFLAGS) | LDFLAGS = $(ARCHFLAGS) $(XLDFLAGS) | ||||
ASFLAGS = $(ARCHFLAGS) $(XASFLAGS) | ASFLAGS = $(ARCHFLAGS) $(XASFLAGS) | ||||
.PHONY: clean all test bench todo doc lib bat | |||||
.PHONY: clean all test bench todo doc lib bat sage sagetest | |||||
.PRECIOUS: build/%.s | .PRECIOUS: build/%.s | ||||
HEADERS= Makefile $(shell find src include test -name "*.h") $(shell find . -name "*.hxx") build/timestamp | HEADERS= Makefile $(shell find src include test -name "*.h") $(shell find . -name "*.hxx") build/timestamp | ||||
@@ -149,6 +153,21 @@ build/%.s: src/$(FIELD)/$(ARCH)/%.c $(HEADERS) | |||||
build/%.s: src/$(FIELD)/%.c $(HEADERS) | build/%.s: src/$(FIELD)/%.c $(HEADERS) | ||||
$(CC) $(CFLAGS) -S -c -o $@ $< | $(CC) $(CFLAGS) -S -c -o $@ $< | ||||
sage: $(BUILDPYS) | |||||
sagetest: sage lib | |||||
LD_LIBRARY_PATH=build sage build/test_decaf.sage | |||||
$(BUILDPYS): $(SAGES) build/timestamp | |||||
cp -f $(SAGES) build/ | |||||
$(SAGE) --preparse $(SAGES:test/%.sage=build/%.sage) | |||||
# some sage versions compile to .sage.py | |||||
for f in $(SAGES:test/%.sage=build/%); do \ | |||||
if [ -e $$f.sage.py ]; then \ | |||||
mv $$f.sage.py $$f.py; \ | |||||
fi; \ | |||||
done | |||||
doc/timestamp: | doc/timestamp: | ||||
mkdir -p doc | mkdir -p doc | ||||
@@ -0,0 +1,292 @@ | |||||
from idealized import Idealized | |||||
from collections import namedtuple | |||||
debugging = True | |||||
def debug_print(foo): | |||||
if debugging: print foo | |||||
checkGroupLaws = True | |||||
checkTorsion = True | |||||
checkIsogenies = True | |||||
def memoize(f): | |||||
# list cache because my __hash__ hack doesn't seem to work | |||||
cache = [] | |||||
def ff(*args, **kwargs): | |||||
key = (tuple(args),tuple(sorted(kwargs.iteritems()))) | |||||
for key_,value in cache: | |||||
if key == key_: return value | |||||
out = f(*args,**kwargs) | |||||
cache.append((key,out)) | |||||
return out | |||||
try: | |||||
ff.__name__ = f.__name__ | |||||
except AttributeError: pass | |||||
return ff | |||||
def EcBase(curvename,varnames,ad=()): | |||||
if isinstance(ad,str) or isinstance(ad[0],str): | |||||
ad = Idealized.vars(ad) | |||||
class Inner(namedtuple(curvename,(v for v in varnames))): | |||||
params = ad | |||||
torsion_points = {} | |||||
def __new__(cls,*xy): | |||||
def apply_invariants(xy,x): | |||||
for inv in cls.invariants(*(ad+xy)): | |||||
x = x.assuming(inv) | |||||
return x | |||||
xy = tuple(xy) | |||||
if len(xy) == 0: | |||||
xy = Idealized.uvars(varnames) | |||||
xy = [apply_invariants(xy,x) for x in xy] | |||||
else: | |||||
for i,inv in enumerate(cls.invariants(*(ad + xy))): | |||||
if inv != 0: | |||||
raise Exception("Invariant inv[%d] not satisfied for %s: got \n%s" % | |||||
(i,curvename,str(inv))) | |||||
return super(Inner,cls).__new__(cls,*xy) | |||||
varnames = "xy" | |||||
@classmethod | |||||
def invariants(self,*args): return [] | |||||
@classmethod | |||||
@memoize | |||||
def check_group(cls): | |||||
if checkGroupLaws: | |||||
debug_print("Checking group law for %s..." % cls.__name__) | |||||
a,b,c,z = cls(),cls(),cls(),cls.basepoint | |||||
if a+z != a: | |||||
raise Exception("Base point is not identity!") | |||||
if a-a != z: | |||||
raise Exception("Subtraction doesn't work!") | |||||
if a+b != b+a: | |||||
raise Exception("Addition is not commutative!") | |||||
#if a+(b+c) != (a+b)+c: | |||||
# raise Exception("Addition is not associative!") | |||||
for t,n in cls.torsion(): | |||||
if checkTorsion: | |||||
debug_print(" Checking %d-torsion..." % n) | |||||
cls.check_torsion(t,n) | |||||
#if n not in cls.torsion_points: | |||||
# cls.torsion_points[n] = set() | |||||
#cls.torsion_points[n].add(cls(*t(cls.basepoint))) | |||||
@classmethod | |||||
def check_torsion(cls,f,n): | |||||
P = Q = cls() | |||||
good = False | |||||
for i in xrange(1,n+1): | |||||
Q = cls(*f(Q)) | |||||
if Q == P: | |||||
if i==n: | |||||
good = True | |||||
break | |||||
raise Exception("Claimed %d-torsion, but is actually %d-torsion" % (n,i)) | |||||
if not good: raise Exception("Claimed %d-torsion, but isn't" % n) | |||||
if n*P+n*cls(*f(P)) == cls.basepoint: | |||||
raise Exception("Torsion operation inverts element") | |||||
@classmethod | |||||
def torsion(cls): | |||||
return [] | |||||
def __sub__(self,other): | |||||
return self + (-other) | |||||
def __mul__(self,other): | |||||
if other==0: return self.basepoint | |||||
if other < 0: return -(self*-other) | |||||
if other==1: return self | |||||
if is_even(other): return (self+self)*(other//2) | |||||
return (self+self)*(other//2) + self | |||||
def __rmul__(self,other): | |||||
return self*other | |||||
Inner.__name__ = curvename + "_base" | |||||
return Inner | |||||
class Isogeny(object): | |||||
isograph = DiGraph(weighted=True) | |||||
isomap = {} | |||||
@classmethod | |||||
def generate(cls, fro, to): | |||||
path = cls.isograph.shortest_path(fro,to,by_weight=True) | |||||
if len(path): | |||||
iso = cls.isomap[(path[0], path[1])] | |||||
for i in xrange(1,len(path)-1): | |||||
iso = cls.isomap[(path[i],path[i+1])].compose(iso) | |||||
return iso | |||||
else: | |||||
return None | |||||
def __init__(self,c1,c2,deg,fw,rv,check=True,dual=None,add=True): | |||||
self.c1 = c1 | |||||
self.c2 = c2 | |||||
self.fw = fw | |||||
self.rv = rv | |||||
self.deg = deg | |||||
if add: | |||||
Isogeny.isomap[(c1,c2)] = self | |||||
Isogeny.isograph.add_edge(c1,c2,log(deg)/log(2) + 0.1) | |||||
if dual is not None: | |||||
self.dual = dual | |||||
else: | |||||
self.dual = Isogeny(c2,c1,deg,rv,fw,False,self,add) | |||||
if not check: return | |||||
if not checkIsogenies: return | |||||
debug_print("Checking isogeny %s <-%d-> %s..." % (c1.__name__,deg,c2.__name__)) | |||||
if c2(*fw(*c1.basepoint)) != c2.basepoint: | |||||
raise Exception("Isogeny doesn't preserve basepoints") | |||||
if c1(*fw(*c2.basepoint)) != c1.basepoint: | |||||
raise Exception("Isogeny dual doesn't preserve basepoints") | |||||
foo = c1() | |||||
bar = c2() | |||||
c2(*fw(*foo)) | |||||
c1(*rv(*bar)) | |||||
if c1(*rv(*c2(*fw(*foo)))) != deg*foo: | |||||
raise Exception("Isogeny degree is wrong") | |||||
if c2(*fw(*c1(*rv(*bar)))) != deg*bar: | |||||
raise Exception("Isogeny degree is wrong") | |||||
if -c2(*fw(*foo)) != c2(*fw(*(-foo))): | |||||
raise Exception("Isogeny uses wrong negmap") | |||||
if -c1(*rv(*bar)) != c1(*rv(*(-bar))): | |||||
raise Exception("Isogeny uses wrong negmap") | |||||
def __call__(self,ipt,**kwargs): | |||||
return self.c2(*self.fw(*ipt,**kwargs)) | |||||
def __repr__(self): return str(self) | |||||
def __str__(self): | |||||
out = "Isogeny %s%s <-%d-> %s%s..." %\ | |||||
(self.c1.__name__,str(self.c1.params),self.deg, | |||||
self.c2.__name__,self.c2.params) | |||||
out += "\n fw: %s" % str(self(self.c1())) | |||||
out += "\n rv: %s" % str(self.dual(self.c2())) | |||||
return out | |||||
def compose(self,other): | |||||
def fw(*args): return self.fw(*other.fw(*args)) | |||||
def rv(*args): return other.rv(*self.rv(*args)) | |||||
return Isogeny(other.c1,self.c2,self.deg*other.deg,fw,rv,False,None,False) | |||||
def ec_family(defs,vars): | |||||
def inner1(CLS): | |||||
@memoize | |||||
def inner2(*args,**kwargs): | |||||
if len(args)==0 and len(kwargs)==0: | |||||
args = tuple(defs) | |||||
chk = True | |||||
else: | |||||
chk = False | |||||
class ret(CLS,EcBase(CLS.__name__,vars,args)): | |||||
def __new__(cls,*args,**kwargs): | |||||
return super(ret,cls).__new__(cls,*args,**kwargs) | |||||
ret.__name__ = CLS.__name__ | |||||
ret.basepoint = ret(*ret.get_basepoint()) | |||||
if chk: ret.check_group() | |||||
return ret | |||||
inner2.__name__ = CLS.__name__ + "_family" | |||||
inner2() | |||||
return inner2 | |||||
return inner1 | |||||
#checkGroupLaws = checkTorsion = False | |||||
@ec_family("ad","xy") | |||||
class Edwards: | |||||
@classmethod | |||||
def invariants(cls,a,d,x,y): | |||||
return [y^2 + a*x^2 - 1 - d*x^2*y^2] | |||||
def __neg__(self): | |||||
return self.__class__(-self.x,self.y) | |||||
def __add__(self,other): | |||||
(x,y) = self | |||||
(X,Y) = other | |||||
a,d = self.params | |||||
dd = d*x*X*y*Y | |||||
return self.__class__((x*Y+X*y)/(1+dd),(y*Y-a*x*X)/(1-dd)) | |||||
@classmethod | |||||
def get_basepoint(cls): return (0,1) | |||||
@classmethod | |||||
@memoize | |||||
def torsion(cls): | |||||
a,d = cls.params | |||||
sa = a.sqrt() | |||||
sd = d.sqrt() | |||||
sad = (a*d).sqrt() | |||||
def tor2_1((x,y)): return (-x,-y) | |||||
def tor4_1((x,y)): return (y/sa,-x*sa) | |||||
def tor4_2((x,y)): return (1/(sd*y),-1/(sd*x)) | |||||
def tor2_2((x,y)): return (-1/(sad*x),-a/(sad*y)) | |||||
return [(tor2_1,2),(tor2_2,2),(tor4_1,4),(tor4_2,4)] | |||||
@ec_family("eA","st") | |||||
class JacobiQuartic: | |||||
@classmethod | |||||
def invariants(cls,e,A,s,t): | |||||
return [-t^2 + e*s^4 + 2*A*s^2 + 1] | |||||
def __neg__(self): | |||||
return self.__class__(-self.s,self.t) | |||||
def __add__(self,other): | |||||
(x,y) = self | |||||
(X,Y) = other | |||||
e,A = self.params | |||||
dd = e*(x*X)^2 | |||||
YY = (1+dd)*(y*Y+2*A*x*X) + 2*e*x*X*(x^2+X^2) | |||||
return self.__class__((x*Y+X*y)/(1-dd),YY/(1-dd)^2) | |||||
@classmethod | |||||
def get_basepoint(cls): return (0,1) | |||||
@classmethod | |||||
@memoize | |||||
def torsion(cls): | |||||
e,A = cls.params | |||||
se = e.sqrt() | |||||
def tor2_1((s,t)): return (-s,-t) | |||||
def tor2_2((s,t)): return (1/(se*s),-t/(se*s^2)) | |||||
return [(tor2_1,2),(tor2_2,2)] | |||||
a,d = Idealized.vars("ad") | |||||
def phi_iso(a,d): | |||||
return Isogeny(Edwards(a,d),JacobiQuartic(a^2,a-2*d), | |||||
2, | |||||
lambda x,y: (x/y, (2-y^2-a*x^2)/y^2), | |||||
lambda s,t: (2*s/(1+a*s^2), (1-a*s^2)/t) | |||||
) | |||||
print phi_iso(a,d) | |||||
print phi_iso(-a,d-a) | |||||
print Isogeny.generate(Edwards(a,d),Edwards(-a,d-a)) |
@@ -0,0 +1,273 @@ | |||||
class Unique(object): | |||||
def __init__(self,name): | |||||
self.name = name | |||||
def __str__(self): | |||||
return self.name | |||||
def __repr__(self): | |||||
return "Unique(\"%s\")" % self.name | |||||
class Idealized(object): | |||||
UNION = ["UNION"] | |||||
def __init__(self, R, idealMap = 0, vars = {}): | |||||
self.varnames = vars | |||||
if not isinstance(idealMap,dict): | |||||
idealMap = {()*R:idealMap} | |||||
self.idealMap = idealMap | |||||
self.R = R | |||||
self._sqrt = None | |||||
self._isqrt = None | |||||
@staticmethod | |||||
def uvar(x): | |||||
return Idealized.var(Unique(x)) | |||||
@staticmethod | |||||
def var(x): | |||||
name = str(x) | |||||
R = PolynomialRing(QQ,[name]) | |||||
rx = R.gens()[0] | |||||
return Idealized(R,rx,{x:(name,rx)}) | |||||
@staticmethod | |||||
def vars(xs): | |||||
return tuple((Idealized.var(x) for x in xs)) | |||||
@staticmethod | |||||
def uvars(xs): | |||||
return tuple((Idealized.uvar(x) for x in xs)) | |||||
def __str__(self): | |||||
def rep(I,x): | |||||
x = str(x) | |||||
gs = I.gens() | |||||
gs = [g for g in gs if g != 0] | |||||
if len(gs) == 0: return x | |||||
else: | |||||
g = ", ".join(["(%s)" % str(gen) for gen in gs]) | |||||
return g + ": " + x | |||||
return "\n".join([rep(I,self.idealMap[I]) for I in self.idealMap]) | |||||
def __repr__(self): | |||||
# HACK! | |||||
if len(self.idealMap) == 0: | |||||
return "undef" | |||||
if len(self.idealMap) > 1: | |||||
return str(self) | |||||
for _,v in self.idealMap.iteritems(): | |||||
return str(v) | |||||
def prune(self): | |||||
self.idealMap = {I:v for I,v in self.idealMap.iteritems() if not (I*self.R).is_one()} | |||||
return self | |||||
def __add__(self,other): | |||||
def f(x,y): return x+y | |||||
return self.op(other,f) | |||||
def __radd__(self,other): | |||||
def f(x,y): return y+x | |||||
return self.op(other,f) | |||||
def __rsub__(self,other): | |||||
def f(x,y): return y-x | |||||
return self.op(other,f) | |||||
def __neg__(self): | |||||
def f(x,y): return y-x | |||||
return self.op(0,f) | |||||
def __sub__(self,other): | |||||
def f(x,y): return x-y | |||||
return self.op(other,f) | |||||
def is_square(self): | |||||
for _,v in self.idealMap.iteritems(): | |||||
if not is_square(v): return False | |||||
return True | |||||
def sqrt(self): | |||||
if self._sqrt is None: | |||||
s = Idealized.uvar("s") | |||||
self._sqrt = s.assuming(s^2 - self) | |||||
return self._sqrt | |||||
def isqrt(self): | |||||
if self._isqrt is None: | |||||
s = Idealized.uvar("s") | |||||
z = Idealized(0).assuming(Self) | |||||
self._isqrt = s.assuming(s^2*self-1).union(z) | |||||
return self._isqrt | |||||
def __mul__(self,other): | |||||
def f(x,y): return x*y | |||||
return self.op(other,f) | |||||
def __rmul__(self,other): | |||||
def f(x,y): return y*x | |||||
return self.op(other,f) | |||||
def __pow__(self,n): | |||||
if n < 0: return 1/self^(-n) | |||||
if n == 0: return 1 | |||||
if n == 1: return self | |||||
if is_even(n): return (self*self)^(n//2) | |||||
if is_odd(n): return (self*self)^(n//2) * self | |||||
def __div__(self,other): | |||||
def f(x,y): return x/y | |||||
return self.op(other,f) | |||||
def __rdiv__(self,other): | |||||
def f(x,y): return y/x | |||||
return self.op(other,f) | |||||
def union(self,other): | |||||
return self.op(other,Idealized.UNION) | |||||
def __eq__(self,other): | |||||
return (self - other).is_zero() | |||||
def __ne__(self,other): | |||||
return not (self==other) | |||||
def __hash__(self): | |||||
return 0 | |||||
def assume_zero(self): | |||||
out = {} | |||||
for I,J in self.idealMap.iteritems(): | |||||
IJ = I+J.numerator() | |||||
if IJ.is_one(): continue | |||||
out[IJ] = self.R(0) | |||||
if len(out) == 0: | |||||
raise Exception("Inconsistent assumption") | |||||
return Idealized(self.R,out,self.varnames) | |||||
def assuming(self,other): | |||||
return self + other.assume_zero() | |||||
def is_zero(self): | |||||
for I,v in self.idealMap.iteritems(): | |||||
if v.denominator() in I: return False | |||||
if v.numerator() not in I: return False | |||||
return True | |||||
def op(self,other,f): | |||||
if not isinstance(other,Idealized): | |||||
other = Idealized(self.R,other,self.varnames) | |||||
bad = False | |||||
for v in self.varnames: | |||||
if v not in other.varnames or self.varnames[v] != other.varnames[v]: | |||||
bad = True | |||||
break | |||||
for v in other.varnames: | |||||
if v not in self.varnames or self.varnames[v] != other.varnames[v]: | |||||
bad = True | |||||
break | |||||
if bad: | |||||
def incrVar(v): | |||||
if v[-1] not in "0123456789": return v + "1" | |||||
elif v[-1] == 9: return incrVar(v[:-1]) + "0" | |||||
else: return v[:-1] + str(int(v[-1])+1) | |||||
vars = {} | |||||
names = set() | |||||
for v,(name,_) in self.varnames.iteritems(): | |||||
assert(name not in names) | |||||
names.add(name) | |||||
vars[v] = name | |||||
subMe = {n:n for n in names} | |||||
subThem = {} | |||||
for v,(name,_) in other.varnames.iteritems(): | |||||
if v in self.varnames: | |||||
subThem[name] = self.varnames[v][0] | |||||
else: | |||||
oname = name | |||||
while name in names: | |||||
name = incrVar(name) | |||||
names.add(name) | |||||
subThem[oname] = name | |||||
vars[v] = name | |||||
R = PolynomialRing(QQ,sorted(list(names)),order="degrevlex") | |||||
gd = R.gens_dict() | |||||
subMe = {m:gd[n] for m,n in subMe.iteritems()} | |||||
subThem = {m:gd[n] for m,n in subThem.iteritems()} | |||||
vars = {v:(n,gd[n]) for v,n in vars.iteritems()} | |||||
def subIdeal(I,sub): | |||||
return [g(**sub) for g in I.gens()]*R | |||||
idealMe = {subIdeal(I,subMe):v(**subMe) for I,v in self.idealMap.iteritems()} | |||||
idealThem = {subIdeal(I,subThem):v(**subThem) for I,v in other.idealMap.iteritems()} | |||||
else: | |||||
R = self.R | |||||
idealMe = self.idealMap | |||||
idealThem = other.idealMap | |||||
vars = self.varnames | |||||
def consist(I,x,y): | |||||
if (x-y).numerator() not in I: | |||||
raise Exception("Inconsistent: %s != %s in ideal %s" % | |||||
(str(x),str(y),str(I))) | |||||
out = {} | |||||
if f is Idealized.UNION: | |||||
for I,v in idealMe.iteritems(): | |||||
if I in idealThem: | |||||
consist(I,v,idealThem[I]) | |||||
out[I] = v | |||||
for I,v in idealThem.iteritems(): | |||||
if I in idealMe: | |||||
consist(I,v,idealMe[I]) | |||||
out[I] = v | |||||
else: | |||||
for I,v in idealMe.iteritems(): | |||||
if I in idealThem: | |||||
x = f(v,idealThem[I]) | |||||
if I in out: | |||||
consist(I,x,out[I]) | |||||
else: out[I] = x | |||||
else: | |||||
for J,w in idealThem.iteritems(): | |||||
IJ = I+J | |||||
if not IJ.is_one(): | |||||
x = f(v,w) | |||||
if IJ in out: | |||||
consist(IJ,x,out[IJ]) | |||||
else: | |||||
out[IJ] = x | |||||
def gb(I): | |||||
II = [0]*R | |||||
for g in I.gens(): | |||||
if g not in II: II = II+[g]*R | |||||
return II | |||||
def red(I,v): | |||||
if I.is_zero(): return v | |||||
return I.reduce(R(v.numerator())) / I.reduce(R(v.denominator())) | |||||
out = {gb(I):v for I,v in out.iteritems()} | |||||
out = {I:red(I,v) for I,v in out.iteritems()} | |||||
return Idealized(R,out,vars) | |||||
def reduce(self): | |||||
def red(I,v): | |||||
if I.is_zero(): return v | |||||
return I.reduce(R(v.numerator())) / I.reduce(R(v.denominator())) | |||||
out = {I:red(I,v) for I,v in self.idealMap.iteritems()} | |||||
return Idealized(self.R,out,self.vars) | |||||
Idealized.INF = Idealized.uvar("inf") | |||||
Idealized.ZOZ = Idealized.uvar("zoz") | |||||
@@ -0,0 +1,4 @@ | |||||
from ctypes import * | |||||
decaf = CDLL("libdecaf.so") | |||||