

Designing a UPnP* AV
MediaServer

(Version 1.00, 7-31-2003)

THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED "AS
IS" WITH NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR
SAMPLE. INTEL ASSUMES NO RESPONSIBILITY FOR ANY ERRORS CONTAINED IN
THIS DOCUMENT AND HAS NO LIABILITIES OR OBLIGATIONS FOR ANY DAMAGES
ARISING FROM OR IN CONNECTION WITH THE USE OF THIS DOCUMENT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or
other intellectual property rights that relate to the presented subject matter. The furnishing of
documents and other materials and information does not provide any license, express or
implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other
intellectual property rights.

* UPnP is a certification mark of the UPnP Implementers Corp. Other names and brands may
be claimed as the property of others.

Copyright © 2003, Intel Corporation. All rights reserved.

ii

Designing a UPnP AV MediaServer
July 2003

iii

1 Introduction.. 1
1.1 MediaServer or MediaRenderer?..1
1.2 Basic Function...1
1.3 Primary Service ...1
1.4 Features ..1

2 DIDL-Lite Basics .. 2
2.1 Sample CDS Hierarchy ...3
2.2 Media Objects ...5
2.3 Media Classes...5
2.4 Title and Creator..6
2.5 ObjectID and Parent ID Attributes...6
2.6 Restricted Attribute and WriteStatus Element...6
2.7 Object Resources..7

2.7.1 ProtocolInfo...7
2.7.2 Resource URI ...7
2.7.3 ImportURI ...7
2.7.4 Multiple Resources ...7

3 Determine the Desired Feature Sets .. 8
3.1 Content Discovery and Distribution...8

3.1.1 Content Discovery ..8
3.1.2 Content Distribution ..8

3.2 Content Management..9
3.2.1 Creating Media Objects ..9

3.2.1.1 Support Specific Metadata; Reject Unsupported Metadata..............10
3.2.1.2 Modify Metadata Values Within Reason ...12
3.2.1.3 More Accurate Metadata is Good ...12

3.2.2 Reference Items ...13
3.2.3 Specifying the Actual Resource/Content ..13
3.2.4 Restricted Attribute Versus writeStatus Element..14

3.2.4.1 Restricted Containers and Creating Objects.....................................15
3.2.4.2 Read-only Resources..15

3.2.5 Modifying Metadata Entries ..16
3.2.5.1 Properly Interpret CSV Arguments..16
3.2.5.2 Enforce Completeness of XML Elements ...17
3.2.5.3 Changing Object-Level Attributes ...18
3.2.5.4 CDS:UpdateObject() Follows CDS:CreateObject() Rules19
3.2.5.5 Restricted Tag Conveys Modify Permissions19
3.2.5.6 CDS:UpdateObject() Not For Deleting Resources............................19
3.2.5.7 CDS:UpdateObject() and Read-Only Tags.......................................19

3.2.6 Destroying Media Objects ..20
3.2.6.1 Restricted Attribute Conveys Destroy Permissions20
3.2.6.2 Recursive Behavior for CDS:DestroyObject()...................................20
3.2.6.3 Deleting Resources...21

4 Advanced MediaServer Features ... 22
4.1 Out-of-Band Content Management ...22
4.2 Content Aggregation and Metadata Mirroring...22

4.2.1 Avoid Mirroring of Server-Side Controlled Content ..22
4.3 Content Bridging and Transcoding..23
4.4 Content Snippets...23

Designing a UPnP AV MediaServer
July 2003

iv

4.5 Autonomous User Agents ...24
5 Rules to Follow.. 24

5.1 DIDL-Lite Writing Rules...24
5.1.1 Properly Escape XML...25
5.1.2 Numerical Data Types are not String Data Types..26
5.1.3 Do not Forget ParentID and other Required Metadata26
5.1.4 Do not include the XML declaration and comments...26

5.2 Implement Proper UpdateID Support..26
5.3 Implement CDS.SystemUpdateID and CDS.ContainerUpdateIDs26
5.4 IP Address Rules for HTTP-GET Content...27
5.5 Build CDS DIDL-Lite Responses Dynamically..27
5.6 ObjectID Lifetime...27
5.7 Device-Friendly Resource URI Paths ...28
5.8 Device Friendly Object IDs..28
5.9 Additional Metadata Value Rules ..28

5.9.1 Max String Lengths: 255 Bytes/1KB/1MB+ ..28
5.9.2 Min String Lengths: 30 Bytes..29
5.9.3 Use 1 and 0 Instead of True and False ..29
5.9.4 Trim White Spaces From Metadata..29

5.10 More Metadata is Good...29
5.11 More Accuracy and More Clarity Please...29
5.12 Implement Metadata Filtering..29
5.13 HTTP Rules...31

5.13.1.1 Never Use HTTP 0.9...31
5.13.1.2 Closing Sockets After HTTP 1.0 Responses31
5.13.1.3 Always Respond Before Closing the Socket...................................31
5.13.1.4 Always Specify the Content-Length ..31
5.13.1.5 HTTP Header Rules..32

5.14 MediaServer Support for HTTP-GET Content ..32
5.14.1 No PrepareForConnection for HTTP-GET MediaServers32
5.14.2 HTTP-GET ProtocolInfo For All Content Types ...33
5.14.3 Mime-Types and File Extension Mappings...33
5.14.4 HTTP-HEAD ...35
5.14.5 HTTP-RANGE ..35
5.14.6 Content-Length ...35
5.14.7 Chunked Encoding ...36
5.14.8 Pipelining Support and Persistent Connections ...36

5.15 Internationalization ..36
5.16 Represent Media Collections with Container Objects...37
5.17 Advertise Fully Qualified, Non-Local URIs ..37
5.18 Playlist Files and Metadata ...37

5.18.1 Recommendations for M3U Metadata..38
6 Key Design Decisions ... 38

6.1 Information System’s Metadata Fields ..38
6.1.1 Thinking Ahead...39
6.1.2 Settings Limits on Search...39

6.2 Information System’s Infrastructure ..39
6.2.1 The Relational Database Approach..39
6.2.2 The File System (or Hierarchical Database) Approach40
6.2.3 Building an Efficient CDS ...40

Designing a UPnP AV MediaServer
July 2003

v

6.3 Multi-NIC or Single-NIC Systems..41
7 Summary .. 42

List of Figures
Figure 1: Sample Create Object Input ...10
Figure 2: Bad DIDL-Lite Output—Ignoring Metadata...11
Figure 3: Bad DIDL-Lite Output—Complete Truncation of Metadata Value..........................11
Figure 4: Adding/Correcting Metadata ...13
Figure 5: Sample ImportURI ..14
Figure 6: Item With Read-Only Metadata ..14
Figure 7: Restricted Container Allows New Child Objects...15
Figure 8: Indicates Permission to Delete and Overwrite Binary ..16
Figure 9: Indicates Permission to Delete Binary..16
Figure 10: Indicates No Permission to Delete or Overwrite...16
Figure 11: Media Item Indicating that One or More Fields may be Modifiable17
Figure 12: Valid CDS:UpdateObject() Request to Modify Metadata17
Figure 13: Metadata and Resource Field Has Multiple Attributes ...17
Figure 14: Invalid CDS:UpdateObject() Request, Incomplete Original XML18
Figure 15: CDS:UpdateObject() Changing MediaObject Attribute ..18
Figure 16: Bad CDS:UpdateObject() Request—Removes Resource19
Figure 17: XML Escaping Example With DIDL-Lite ...25
Figure 18: Metadata Filtering Example, Filter = “*” ..30
Figure 19: Metadata Filtering Example, Filter = “dc:title, dc:creator, res”..............................30
Figure 20: Metadata Filtering Example, Filter = "" ...30

List of Tables
Table 1: Mime-Types and File Extension Mappings..33

vi

Designing a UPnP AV MediaServer
July 2003

1

1 Introduction
This document offers a set of design guidelines, shares a number of Intel key learnings, and addresses many
important issues related to UPnP AV MediaServer design and implementation. While it is hoped that it will
reduce designer/implementer frustrations, and even time to market, its higher goal is to improve the
interoperation of MediaServer devices and control points. Achieving this will not only make devices and
control points work better together, but most importantly, it will improve the user’s experience with UPnP AV
devices.

After reading this document, implementers should:

� Understand the basic purpose of DIDL-Lite and its inherent flexibility
� Know the feature sets that MediaServers can exhibit
� Better understand some of the behaviors exhibited by MediaServers
� Be aware of common MediaServer implementation problems, and techniques to avoid and resolve such issues
� Know key questions to consider during the design phase of a MediaServer

1.1 MediaServer or MediaRenderer?
Whether a device is a MediaServer or a MediaRenderer (or both) is largely determined by the intended roles of
the device. Initial research by Intel indicates that a MediaServer often only performs half of the functions of
traditional consumer electronic (CE) Audio/Video (AV) devices. In practice, traditional AV devices are
frequently combination devices with both a MediaServer and a MediaRenderer in the overall device hierarchy.
For more information about building such a device, please refer to Intel’s Designing a UPnP AV
MediaRenderer document.

1.2 Basic Function
The basic function of a UPnP AV MediaServer is to implement the ContentDirectory and
ConnectionManager services as defined by the UPnP AV Working Committee. The ConnectionManager
service helps control points determine what type of content is on a MediaServer. The service may also provide
the actions needed to setup a server-side controlled stream. The ContentDirectory service helps control points
find content. The service may also allow control points to manage the advertised metadata hierarchy. In addition,
a UPnP AV MediaServer may provide server-side transport controls for playback of the content stream.

1.3 Primary Service
The ContentDirectory service provides the core ability of a MediaServer—advertising, and possibly
managing, content metadata. The ContentDirectory service can provide many optional actions. When
selected, these actions require that decisions be made early in the design process. These decisions can have a
dramatic impact on the implementation of a MediaServer, more so than on other UPnP devices.

1.4 Features
There are three broad categories of features for a MediaServer:

� Content discovery
� Content management
� Content distribution

Designing a UPnP AV MediaServer
July 2003

2

The first two categories directly impact the advertised actions, while the third affects the complexity of the
first two categories. From a UPnP AV perspective, a MediaServer is always a metadata server first, and
optionally a content server. Discovery and management of content is always in the context of discovery and
management of content metadata. Therefore, when discussing CDS hierarchies (a.k.a., CDS metadata
hierarchy or content hierarchy), it is essential to remember that the control points must always view the
exposed hierarchy as a logical representation of a metadata library and nothing more. Where and how the
metadata, or the content binaries, are stored is not standardized in UPnP AV.

2 DIDL-Lite Basics
Before beginning the design of a MediaServer, the device architect must have a basic grasp of DIDL-Lite
because the way DIDL-Lite is structured has a big impact on what it can and cannot do. Therefore, before
choosing the MediaServer’s features, the architect must understand and consider these factors.

The basic intent behind DIDL-Lite is to represent metadata for content. Metadata can be both brief and
verbose, and good metadata can come packaged in either form. Good metadata exhibits the following
characteristics.

1. Conforms to the DIDL-Lite syntax/schema
2. Avoids use of custom metadata fields
3. Describes the content
4. Describes where the content can be acquired

The first characteristic is very straightforward—XML fragments that look like DIDL-Lite may not be
DIDL-Lite. DIDL-Lite is always qualified via its schema, even if practical implementations cannot perform
run-time validation on their output1.

The second characteristic limits the use of vendor specific metadata. Although some information falls outside
the scope of DIDL-Lite, a lot of relevant metadata can be represented through DIDL-Lite. Implementers
should use custom metadata (in desc element nodes) to augment the existing capabilities of DIDL-Lite.
Implementers that heavily rely on custom metadata make it very difficult for others to interoperate with the
MediaServer.

The third characteristic is subjective, but the intent is straightforward. When a user reads metadata values on a
generic AV control point application, the user should be able to determine what the content is. This requires
that implementations rely on brief and human friendly descriptions in the <dc:title> and <dc:creator> metadata
fields. Implementers should avoid a convention that employs a Globally Unique Identifier (GUID) value for a
title, while requiring a control point to parse through a custom block of metadata to find the real title.

The last characteristic is simple in its implications. Content should rely on resource (a.k.a., <res>) elements to
describe where the content can be found. Proprietary techniques, such as those that would employ CDS
objects with no <res> elements, while using a specially formatted title or a piece of custom metadata to
instruct a proprietary control point, must be avoided.

The scope of the metadata associated with DIDL-Lite is very broad and defines at least 50 attributes and
elements. This section does not go through most of these, but it does explain the basic attributes and elements

1 Implementers have observed that the execution time for run-time validation of generated DIDL-Lite responses does not
make schema validation a feature that is feasible for most MediaServer implementations. As such, developers need to ensure
that the serialized DIDL-Lite properly matches the syntax allowed by the specification.

Designing a UPnP AV MediaServer
July 2003

3

that implementers should employ in their MediaServer. The rest of this section describes and dissects the basic
components of a CDS (ContentDirectory Service) metadata hierarchy (a.k.a., a CDS hierarchy).

2.1 Sample CDS Hierarchy
This section provides a sample CDS hierarchy that demonstrates some basic capabilities of DIDL-Lite. The
CDS hierarchy has a root container (@id=0) with three child containers: All Image Items (@id=1), Aerial
Photography (@id=18), and Sample Playlist (@id=28). The Aerial Photography container has a child item
photograph with title, A CityScape (@id=19). The All Image Items container has a child reference item that
points to the A CityScape photograph. The Sample Playlist has two audio items: The Metro (@id=100) and In
a Big Country (@id=101).

<DIDL-Lite xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp">2
 <container id="0" searchable="1" parentID="-1" restricted="1" childCount="7">
 <dc:title>Root</dc:title>
 <upnp:class>object.container</upnp:class>
 <upnp:writeStatus>UNKNOWN</upnp:writeStatus>

 <container id="1" searchable="0" parentID="0" restricted="1" childCount="1">
 <dc:title>All Image Items</dc:title>
 <upnp:class>object.container</upnp:class>
 <upnp:writeStatus>UNKNOWN</upnp:writeStatus>

 <item id="23" refID="19" parentID="1" restricted="1">
 <dc:title>A Cityscape</dc:title>
 <upnp:class>object.item.imageItem.photo</upnp:class>
 <upnp:storageMedium>UNKNOWN</upnp:storageMedium>
 <dc:date>2002-03-20</dc:date>
 <dc:creator>Aerial Photography</dc:creator>
 <upnp:writeStatus>UNKNOWN</upnp:writeStatus>
 <res protocolInfo="http-get:*:image/jpeg:*" colorDepth="24"
resolution="1012x0768" size="217276"
importUri="http://172.16.0.41:62052/MediaServerContent_0/7/19/">http://172.16.0.41:6
2052/MediaServerContent_0/7/19/Aerial%20Photography%20-
%20A%20Cityscape.jpg</res>

 <res protocolInfo="http-get:*:image/jpeg:*" colorDepth="24" resolution="0079x0060"
size="217276"
importUri="http://172.16.0.41:62052/MediaServerContent_0/8/19/">http://172.16.0.41:62
052/MediaServerContent_0/8/19/Aerial%20Photography%20-
%20A%20Cityscape.jpg</res>

 </item>
 </container>
 <container id="18" searchable="1" parentID="0" restricted="0" childCount="1">
 <dc:title>Aerial Photography</dc:title>
 <upnp:class>object.container.storageFolder</upnp:class>
 <upnp:storageUsed>2004484</upnp:storageUsed>

2 Future DIDL-Lite fragments should assume the presence of the appropriate namespaces.

Designing a UPnP AV MediaServer
July 2003

4

 <upnp:writeStatus>UNKNOWN</upnp:writeStatus>
<item id="19" parentID="18" restricted="1">
 <dc:title>A Cityscape</dc:title>
 <upnp:class>object.item.imageItem.photo</upnp:class>
 <upnp:storageMedium>UNKNOWN</upnp:storageMedium>
 <dc:date>2002-03-20</dc:date>
 <dc:creator>Aerial Photography</dc:creator>
 <upnp:writeStatus>UNKNOWN</upnp:writeStatus>
 <res protocolInfo="http-get:*:image/jpeg:*" colorDepth="24"
resolution="1012x0768" size="217276"
importUri="http://172.16.0.41:62052/MediaServerContent_0/7/19/">http://172.16.0.41:6
2052/MediaServerContent_0/7/19/Aerial%20Photography%20-
%20A%20Cityscape.jpg</res>
 <res protocolInfo="http-get:*:image/jpeg:*" colorDepth="24"
resolution="0079x0060" size="217276"
importUri="http://172.16.0.41:62052/MediaServerContent_0/8/19/">http://172.16.0.41:6
2052/MediaServerContent_0/8/19/Aerial%20Photography%20-
%20A%20Cityscape.jpg</res>
 </item>

 </container>
 <container id="28" searchable="0" parentID="0" restricted="1" childCount="2">
 <dc:title>Sample Playlist</dc:title>
 <upnp:class>object.container.playlistContainer</upnp:class>
 <upnp:storageMedium>UNKNOWN</upnp:storageMedium>
 <upnp:writeStatus>UNKNOWN</upnp:writeStatus>
 <res protocolInfo="http-
get:*:audio/mpegurl:*">http://172.16.0.41:62052/MediaServerContent_0/924/28/%20-
%20SamplePlaylist.m3u</res>

 <item id="100" parentID="28" restricted="1">
 <dc:title>The Metro</dc:title>
 <upnp:class>object.item.audioItem</upnp:class>
 <dc:creator>Berlin</dc:creator>
 <upnp:writeStatus>NOT_WRITABLE</upnp:writeStatus>
 <res protocolInfo="http-get:*:audio/mpeg:*" size="4019086"
importUri="http://172.16.0.41:62052/MediaServerContent_0/86/100/">http://172.16.0.41
:62052/MediaServerContent_0/86/100/Berlin%20-%20The%20Metro.mp3</res>
 </item>
 <item id="101" parentID="28" restricted="1">
 <dc:title>In a big country</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <upnp:storageMedium>UNKNOWN</upnp:storageMedium>
 <dc:date>2002-03-20</dc:date>
 <dc:creator>Big Country</dc:creator>
 <upnp:writeStatus>NOT_WRITABLE</upnp:writeStatus>
 <res protocolInfo="http-get:*:audio/mpeg:*" size="3754112"
importUri="http://172.16.0.41:62052/MediaServerContent_0/87/101/">http://172.16.0.41

Designing a UPnP AV MediaServer
July 2003

5

:62052/MediaServerContent_0/87/101/Big%20Country%20-
%20In%20a%20big%20country.mp3</res>
 </item>

 </container>
 </container>
</DIDL-Lite>

This CDS hierarchy is only a logical representation of the entire metadata hierarchy; the back-end information
system may not even use an XML database. Given the behavior of the ContentDirectory’s CDS:Browse()
and CDS:Search() actions, the CDS implementation’s responses will never return the entire hierarchy, as the
methods only return flat listings of media objects.

2.2 Media Objects
A media object is an abstract concept used to refer to either a container or an item object. Intuitively,
container and item elements represent media objects by the same name.

The purpose of a container is to be a logical parent to other media objects. Child objects can be other
containers or media items. A container can also represent forms of content that involve multiple files, such
as a playlist (@id=28).

The purpose of an item is to represent a single piece of consumable content. Individual songs, movie clips, and
images are examples of media items (@id=19, @id=23, @id=100, @id=101).

Certain items have the unique ability to refer to other items and are known as reference items. Analogies for
reference items include file shortcuts or symbolic links. A CDS uses a reference item to indicate that an item
in a particular container is the same content as another item (often referred to as the referenced item). In the
CDS hierarchy above, the reference item is the object with @id=23 and the referenced item is the object
with @id=19. As a basic rule, in its responses to a CDS:Browse() or CDS:Search() action, a reference item
must exhibit the same set as, or a superset of, the referenced item’s metadata.

2.3 Media Classes
Although the <container> and <item> XML element names indicate the basic type of media object, the XML
element name only provides a convenient way to specify rules for the DIDL-Lite schema. The specification
authors wisely provided the concept of a media class. The class of a media object is identified through the
<upnp:class> element; each media object can only have one media class.

Examining the CDS hierarchy reveals a few of the standardized media classes, including basic containers
(object.container, @id=0, @id=1), photographs (object.item.imageItem.photo, @id=19, @id=23), a
storage folder (object.container.storageFolder, @id=18), a playlist (object.container.playlistContainer,
@id=28), an audio track (object.item.audioItem, @id=100), and a music track
(object.item.audioItem.musicTrack, @id=101).

The complete list of standardized media classes can be found in the ContentDirectory Specification 1.0, but a
brief analysis of the values shows an extremely extensible pattern. Every item or container object has a
<upnp:class> value that begins with object.item or object.container, respectively. From there, additional
modifiers can be appended to further describe the item. A modifier implies support for additional metadata
fields, although in most cases the fields remain optional.

Designing a UPnP AV MediaServer
July 2003

6

In addition to standard types, the framework for media classes allows implementers to define their own types
in an intuitive manner. Additional information on vendor-extended classes can be found in section 7, Appendix
C: AV Working Committee Class Definitions of the ContentDirectory Specification 1.0.

As a rule, CDS implementations should aspire to be as specific as possible when assigning the <upnp:class>
value for a media object. In the CDS hierarchy above, two objects exist with media classes of
object.item.audioItem.musicTrack and object.item.audioItem in the same parent playlist container. In this
case the CDS implementation could not conclusively determine that the audio item was actually a music track.
However, the CDS implementation was able to determine that the file was an audio item of some sort, so it
assigned the object.item.audioItem class instead of using the object.item class. The latter would have been a
legal assignment, but it would be less useful in the end.

2.4 Title and Creator
The <dc:title> and <dc:creator> properties are generally useful, and both can apply to any type of content. Of
these, only <dc:title> is required, but <dc:creator>3 information is a useful supplement. A media object can
only have a maximum of one <dc:title> and one <dc:creator>. The values of these fields should be intuitive
and useful. Implementers should not attempt to obfuscate metadata by encrypting the values so that only a
proprietary control point can view the metadata.

CDS implementations should employ <dc:title> information that is concise and useful. If the MediaServer is
lightweight and mirrors a file system, the <dc:title> value may simply be a filename. A more advanced
MediaServer may actually describe the title of the content (such as a movie or song title). The <dc:creator>
information should also be intuitive, although some MediaServer implementations may lack the capabilities
for providing such metadata.

2.5 ObjectID and Parent ID Attributes
Every media object has an objectID, represented through the @id attribute in the <container> or <item>
element declaration. The objectID is not intended as a user-friendly field, rather it is a way for control points
and the MediaServer to refer to individual media objects in an unambiguous way. That being said, a media
object’s objectID, which is merely a string, has to be unique relative to the rest of the CDS hierarchy.
Implementations that use a numerical counter or derivatives of a local file name already exist. One could even
use something like a GUID string value.

A mistake observed by many at UPnP AV plugfests is a CDS implementation that does not provide an
@parentID attribute for the root container. Even though a root container has no parent, the DIDL-Lite
schema requires that it be given an @parentID attribute. The objectID value of “-1” has been reserved to
represent a root container’s parent non-existent object.

2.6 Restricted Attribute and WriteStatus Element
The @restricted attribute indicates that the media object’s state is not intended to be managed by a control
point, even if the ContentDirectory exposes actions that target metadata management. For item objects, the
object’s state is considered changed if the metadata of the object has changed. For container objects, object
state is considered changed if the metadata or list of immediate child objects changes.

3 Creator information should represent the party most responsible for authoring the content. Generally this is the musical
artist or band that composed the music, the director or publishing company of a movie, or the author of a book.

Designing a UPnP AV MediaServer
July 2003

7

While the value of the @restricted attribute conveys permissions for CDS:CreateObject(),
CDS:DestroyObject(), and CDS:UpdateObject(), the <upnp:writeStatus> element reflects the permissions of
changing the underlying binary content of individual <res> elements through CDS:ImportResource() and
CDS:ExportResource().

Ultimately, the @restricted attribute’s role is simply that of an advisory metadata for a control point.
Ultimately, it will be left to the MediaServer device to enforce any rules implied through the @restricted
attribute’s value.

A more in-depth discussion on using the element and attribute can be found in section 3.2.4, Restricted
Attribute Versus writeStatus Element.

2.7 Object Resources
A media object represents metadata about content, but an object resource is object metadata that explains
where the content can be found. Transport protocol, network, mime-type, encoding format, bit rate, image
resolution, and other information specific to the content’s binary representation is stored with a resource (a.k.a,
<res>) element. Both containers and items can own zero or more resources, allowing DIDL-Lite a broad
range of ways to represent different forms of content.

2.7.1 ProtocolInfo
A required attribute of a resource element is the protocolInfo string. The protocolInfo specifies the protocol,
network, mime-type, and miscellaneous information about the content. In the sample CDS hierarchy, all of the
content is available through the HTTP-GET protocol. HTTP-GET also requires that the network and
miscellaneous fields be marked with a * value.

2.7.2 Resource URI
A resource element’s value is often referred to as the resource URI, to indicate where the content can actually
be acquired. If a resource’s content is not available, the resource URI may be an empty string.

In the sample CDS hierarchy, the URI must be XML-escaped and HTTP-escaped, and the XML documents
must not have the typical <?xml…> tag (which also specifies the text encoding) before the DIDL-Lite element.
Please see section 5.15, Internationalization for a discussion on URI escaping and text encoding.

2.7.3 ImportURI
One important attribute of a resource element is the res@importURI attribute of the <res> element. It
provides control points with information on how the underlying content can be modified with new binary
information. The CDS specification mandates the value of res@importURI to be a HTTP URL to be used
with the CDS:ExportResource() or CDS:ImportResource() actions4.

2.7.4 Multiple Resources
A very interesting (and powerful) capability of DIDL-Lite is its ability to use the same metadata to represent
multiple binary files that essentially have the same content. For example, the sample CDS hierarchy has two
objects (@id=19 and @id=23) that specify two resources. The first resource in each object specifies the

4 This URL can be used with the DestinationURI argument of the CDS:ExportResource() or the CDS:ImportResource().

Designing a UPnP AV MediaServer
July 2003

8

normal resolution of the image, but the second resource specifies a thumbnail version of the same image. This
idea can easily be extended to a media object of a particular audio item having additional resources for
different transcodings, protocols, or networks.

For information on how to use multiple resources to represent HTTP-GET content available on multiple IP
addresses, please see section 5.4, IP Address Rules for HTTP-GET Content and section 6.3, Multi-NIC or
Single-NIC Systems.

3 Determine the Desired Feature Sets
Like all development processes, determining the product’s requirements is always the first step and this is
especially important when designing a MediaServer. Experience has shown that designing for a minimal
feature set, with the intent to add more features later by building upon the earlier code, can translate into
implementation problems.

As a general rule, the design should reflect an expansive vision of the product’s features, and implementation
should include the back-end database or information system to support this vision. This allows features to be
exposed incrementally as application logic matures throughout the development process. The key areas that
can become problematic if not addressed early in the development cycle are discussed in section 5, Rules to
Follow and section 6, Key Design Decisions.

3.1 Content Discovery and Distribution
The most important function a ContentDirectory service (CDS) provides is the means for a control point to
find content. The authors of the CDS specification have been very insistent that a CDS is not a content store—
it is a metadata store. As such, the primary job of a CDS is to provide users and control points with
descriptions of content and instructions on where it can be found.

3.1.1 Content Discovery
A minimal CDS must implement little more than the CDS:Browse() action. This action allows a control point
to enumerate the metadata hierarchy that is advertised by the MediaServer. Every response to a CDS:Browse()
request is a list of media objects.

Unfortunately, the UPnP specification makes no accommodations for ease-of-use in finding the content of interest
to a user. Using CDS:Browse() to find content amounts to a brute-force enumeration through a MediaServer’s
metadata hierarchy. To address this problem, the CDS specification also defines the optional CDS:Search() action,
which can dramatically speed up the process of finding content through the means of a query.

Although the ContentDirectory specification does not make any requirements regarding the hierarchy
represented by a CDS, vendors should always aspire to provide some form of hierarchical organization. Most
CDS implementations ought to make it easy for users to find content by means of a container-based hierarchy.
For example, a CDS that exposes audio content may have container objects for each artist and album. CDS
implementations should avoid the practice of root container dumping, a practice typified by the root container
being parent to all objects in the CDS hierarchy.

3.1.2 Content Distribution
As stated previously, a CDS is generally regarded as a metadata store. This distinction is important because a
CDS makes no claim or guarantee that content discovered through the CDS is content that is locally stored on

Designing a UPnP AV MediaServer
July 2003

9

the MediaServer. The following are examples of how a CDS metadata hierarchy may relate to the actual
content.

� The metadata hierarchy mirrors the content of a portion of the local file system or a hierarchical database.
� The metadata hierarchy is an aggregation of other content hierarchies found on the UPnP network.
� The metadata hierarchy reflects the available content from a premium subscription service, where the

content physically resides somewhere across the Internet.

In addition to not making claims about the locality, CDS does not dictate the formats and protocols used to
encode and transfer the data. In theory this means that a CDS implementation can advertise content with any
permutation of format and transport protocol. Fortunately, a number of UPnP Forum member companies are
relying on proliferated formats and protocols, instead of proprietary solutions.

A complete discussion of how content is actually acquired by a UPnP AV MediaRenderer falls outside the
scope of this document. That being said, a brief analysis of current implementations indicates that HTTP–GET
is the most common transport protocol seen at UPnP plugfests. Companies have also implemented
IEEE 1394-based transport solutions. Typically, media formats have centered on various MPEG formats for
audio and video, and the still-image formats employed by off-the-shelf digital cameras.

3.2 Content Management
This CDS feature set allows a control point to make changes to the advertised metadata hierarchy. The extent
to which the metadata hierarchy can be changed is greatly influenced by the implementation.

For example, a CDS that exposes a metadata hierarchy that mirrors the content on a local file system may
acquire its content descriptions from the actual files on the storage device. Such a CDS may not allow a
control point to affect the descriptions of advertised content, but it might allow a control point to add and
delete media objects that result in changes on the local file system.

The most important question to ask when considering content management is whether or not the product really
needs it. Given the lack of security on a UPnP network, a lot of MediaServer implementers have already
expressed concerns with allowing control points to manage a MediaServer’s content and metadata. Allowing a
control point that has not been authenticated to delete all of a person’s personal content from a PC’s hard disk
is more of a liability than a feature. Yet, a mobile MediaServer (in the form of a PDA or mobile MP3 player)
may want to allow control points to do exactly that. As such, the scope of MediaServer products that will want
to allow control points to manage content will be few. Even so, the few that do want to enable the usage model
should still follow some design guidelines.

There are innumerable ways to implement a CDS—unfortunately, the subtleties of the resulting behavior are
also innumerable and at times this can be overwhelming. In the following subsections, various content
management actions are discussed along with the types of tasks they can accomplish, and some observations
are made on how they should behave.

3.2.1 Creating Media Objects
Creating a new media object (a.k.a., a metadata entry) begins with the CDS:CreateObject() action. A CDS
can have varying levels of agent intelligence for accepting, rejecting, or even modifying the specified
metadata. Generally, a polite implementation is one that will adhere to the rules in this section. Examples
assume CDS:CreateObject() has sent the following DIDL-Lite metadata.

Designing a UPnP AV MediaServer
July 2003

10

<DIDL-Lite xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:upnp=”urn:schemas-upnp-org:metadata-1-0/upnp/” xmlns=”urn:schemas-upnp-org:metadata-1-
0/DIDL-Lite”>

<item id="" restricted="0" parentID=”parentContainerId”>
<dc:title>New Track</dc:title>
<dc:creator>Some Artist</dc:creator>
<upnp:class>object.item.audioItem.musicTrack</upnp:class>
<res protocolInfo=”http-get:*:audio/mpeg:*”/>

</item>
</DIDL-Lite>

Figure 1: Sample Create Object Input

3.2.1.1 Support Specific Metadata; Reject Unsupported Metadata
Ideally, a MediaServer that employs content management abilities should support the full set of DIDL-Lite
metadata elements and attributes defined in the CDS specification. Of course, this is not always possible and
practical limitations may prevent this from becoming a widespread practice. Nevertheless, it is still important
to balance the needs of devices and control points, therefore completely arbitrary behavior should not be
employed.

As a rule, MediaServers should allow control points to manage the following non-mandatory metadata
properties5: <dc:creator>, <res>, and all <res> attributes that are applicable to the content. As a rule, control
points should provide accurate <dc:title>, <dc:creator>, and <res> information when creating and updating
objects that depend on resource URIs that are not local to the MediaServer. If a control point is creating or
updating an object that will have the content locally stored on the MediaServer, then <dc:title> and
<dc:creator> info should be provided by the control point and the MediaServer should populate the <res>
attributes and value after acquiring the content.

Undoubtedly, MediaServer implementations will encounter a scenario where a control point attempts to use
metadata that is not supported. In such a scenario, the suggested course of action is to fail the request with
error code 712 and use the error reason as a means to provide the control point with error-recovery
information6. See section 3.2.1.1.1, CDS:CreateObject() and Error Code 712 for specifics on error recovery.

Returning a response indicating success while ignoring or removing metadata properties (e.g., not actually
including the metadata fields in the DIDL-Lite response or subsequent CDS:Browse()/CDS:Search()
requests) can be extremely troublesome if the control point that created the object is expecting the presence of
those fields.

Two non-recommended responses to a CDS:CreateObject() request are shown below, both using the sample
metadata in Figure 1: Sample Create Object Input. These improper responses would have been generated by a
CDS implementation that did not support the <dc:creator> field.

In Figure 2: Bad DIDL-Lite Output—Ignoring Metadata, the <dc:creator> element has been completely
removed. In Figure 3: Bad DIDL-Lite Output—Complete Truncation of Metadata Value, the <dc:creator> tag

5 These metadata properties are standardized in the CDS specification but are not mandatory for the DIDL-Lite schema.
6 This technique is not described or mentioned in the CDS specification, but it is certainly a viable and compatible measure to
employ.

http://purl.org/dc/elements/1.1/

Designing a UPnP AV MediaServer
July 2003

11

has been kept, but all of the creator data has been stripped out of it. This latter practice, although it follows the
wording of the suggested rule, is not a recommended practice.

It is important to note that the res@importURI values use IP addresses instead of a host name. For
information on IP addresses and HTTP related content, see section 5.4, IP Address Rules for HTTP-GET
Content.

<DIDL-Lite xmlns:dc=http://purl.org/dc/elements/1.1/ xmlns:upnp=”urn:schemas-upnp-org:metadata-1-
0/upnp/” xmlns=”urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/”>

<item id="12" parentID="10" restricted="0">
<dc:title>New Track</dc:title>
<res importUri=“ http:/172.16.0.43:4000/item?id=12”
protocolInfo=”*:*:audio/mpeg:*”/>
<upnp:class>object.item.audioItem.musicTrack</upnp:class>

</item>
</DIDL-Lite>

Figure 2: Bad DIDL-Lite Output—Ignoring Metadata

<DIDL-Lite xmlns:dc=http://purl.org/dc/elements/1.1/ xmlns:upnp=”urn:schemas-upnp-org:metadata-1-
0/upnp/” xmlns=”urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/”>

<item id="12" parentID="10" restricted="0">
<dc:title>New Track</dc:title>
<dc:creator></dc:creator>
<res importUri=“http:/172.16.0.43:4000/item?id=12”
protocolInfo=”*:*:audio/mpeg:*”/>
<upnp:class>object.item.audioItem.musicTrack</upnp:class>

</item>
</DIDL-Lite>

Figure 3: Bad DIDL-Lite Output—Complete Truncation of Metadata Value

3.2.1.1.1 CDS:CreateObject() and Error Code 712
In order to allow a control point to differentiate between a DIDL-Lite syntax error and an unsupported
metadata error, CDS implementations need to have a way to inform a control point of the type of error.
Unfortunately, the CDS specification only specifies error code 712 without much instruction as to how it
should be used to accommodate both error scenarios. Intel has two suggestions for enabling robust feedback to
a control point.

The first technique is to provide two different error reasons when using error code 712.

� DIDL-Lite Syntax Error: An error message that indicates the error is syntax related, such as malformed
XML, or the XML does not conform to the DIDL-Lite schema.
� [CSV of allowed tags]: A comma-separated value list of supported metadata tags that provides a control

point an opportunity to retry the request with an appropriate set of metadata.

http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/

Designing a UPnP AV MediaServer
July 2003

12

For example, if a CDS implementation does not support the <dc:creator> element and it receives the sample
metadata in Figure 1, it could return error code 712 with an error reason of:

dc:title,upnp:class,res,res@protocolInfo,res@bitrate

If the CDS XML syntax error was encountered, a generic XML error message could take its place.

Another alternative is to split the usage for error-code 712 and use a proprietary code (code=899) to report the
metadata properties of the [CSV of allowed tags]. This method provides control points with the ability to
easily distinguish between the different errors. The drawback is it uses a proprietary error code value which
may be used by other vendors. Using error-code 712 at least provides a normative error code to examine
between vendors, although, in either case, control points that want to recover from the error need to have logic
for retrying with the appropriate metadata set.

3.2.1.2 Modify Metadata Values Within Reason
Modifying the request’s metadata field values is sometimes acceptable. For example, truncating a long
<dc:title> value to a length supported by the CDS is generally considered acceptable. In another example, if a
control point creates a container object resulting in the creation of a local file system folder, then the
associated <upnp:class> value of the object could be changed from the control point’s original
object.container value to ‘object.container.storageFolder’ because the latter provides more accurate
information.
An example of bad metadata value truncation is found in Figure 3: Bad DIDL-Lite Output—Complete
Truncation of Metadata Value. As a general rule, MediaServer implementations that allow
content-management should not be truncating short string values that are already less than 30 bytes7. For more
information on string lengths, see section 5.9.1, Max String Lengths: 255 Bytes/1KB/1MB+ and section 5.9.2,
Min String Lengths: 30 Bytes.

3.2.1.3 More Accurate Metadata is Good
Adding metadata fields is also acceptable8. For example, a CDS adds a date metadata field to indicate the time
when the entry was created. In another example, a CDS acquires the actual binary content, analyzes the file for
its characteristics, and updates its metadata to reflect the new information. Fields such as image resolution,
movie or audio bit rate, and file size are all metadata fields that could be added to metadata entry without the
control point’s knowledge.

As an example, an object created with the sample metadata in Figure 1 could have the following form after the
actual binary was acquired by the CDS.

7 UTF-8 encoded characters can be 3-bytes for one character. Assuming short string value is about 10 characters, this
amounts to 30 bytes. Admittedly, the minimum number of 10 is somewhat an arbitrary value (in case implementers want to
enforce a size less than 255 bytes for a short string).
8 Some argue that fields should never be added. Instead, a control point should always create a reference to the original
metadata and then modify the reference item. A reasonable conclusion is that original metadata should never be touched.
Unfortunately, this can result in littering of a container with duplicate media objects.

Designing a UPnP AV MediaServer
July 2003

13

<DIDL-Lite xmlns:dc=http://purl.org/dc/elements/1.1/ xmlns:upnp=”urn:schemas-upnp-org:metadata-1-
0/upnp/” xmlns=”urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/”>

<item id="12" parentID="10" restricted="0">
<dc:title>Run Out of Tunes</dc:title>
<dc:creator>Some Garage Band</dc:creator>
<res protocolInfo=”http-get:*:audio/mpeg:*”
bitrate=”16384”>http://172.16.0.43:4000/12/Some%20Garage%20Band%20-
%20Run%20Out%20of%20Tunes.mp3</res>
<upnp:class>object.item.audioItem.musicTrack</upnp:class>

</item>
</DIDL-Lite>

Figure 4: Adding/Correcting Metadata

Note the following changes from the original input metadata.

� <dc:title> and <dc:creator> information is more specific.
� res@importURI has been removed to indicate the CDS will not allow the content to be overwritten (after

acquisition).
� Resource URI has a fully qualified, non-relative URI, with the URI already escaped, and ending with a

friendly file name. See section 5.7, Device-Friendly Resource URI Paths, for more information.
� The protocolInfo attribute has changed its first field to include http-get.
� The res@bitrate attribute has been set to indicate 128 kbps. Note that the res@bitrate attribute value is

in kilobytes per second. (128 * 1024 / 8 = 16384)

3.2.2 Reference Items
Another way to create an object is to use the CDS:AddReference() action. This action is a convenient way to
have one container list an item in another container. (A container cannot refer to another container.) A good
analogy for a reference item is that of a Windows* file system shortcut, or symbolic links in Linux.

A good use of reference items is demonstrated by the .NET AV MediaServer included with Intel® Tools for
UPnP Technologies. The CDS has 4 containers that aggregate content advertised by the CDS: All Music, All
Movies, All Images, and All Playlists. The descendent items in those folders are all reference items that point
to other items found throughout the entire CDS hierarchy. This makes it easier for control points that rely on
CDS:Browse() to find content of a particular type.
The presence of reference items in the CDS hierarchy does not necessarily mean that the CDS grants a control
point the ability to add or destroy reference items.

3.2.3 Specifying the Actual Resource/Content
There are two primary ways to specify the actual resource/content. The first approach is to declare a complete
resource metadata element (a.k.a., a <res> element) which includes a valid URI. This is most often applicable
when MediaRenderers and other sinks will acquire the content directly from another (Internet) web server.

The second approach is to declare an empty <res> element and allow the CDS to populate the resource
element’s values automatically. This method requires the control point to get the content to the MediaServer.
Depending on the supported transports, the control point will either call CDS:ImportResource() (on a CDS
that needs to acquire the content) or CDS:ExportResource() (on a CDS that has the content already).

http://purl.org/dc/elements/1.1/

Designing a UPnP AV MediaServer
July 2003

14

Although UPnP AV does not generally specify how devices use out-of-band streaming protocols, UPnP AV
does explicitly state the mechanism for asynchronous content transfers between MediaServers to be
HTTP-GET and HTTP-POST9. To transfer the content asynchronously from one MediaServer to another using
HTTP-POST, control points can invoke CDS:ExportResource() on the MediaServer that has the content.
Similarly, control points can use CDS:ImportResource() to instruct a MediaServer to acquire content from a
known HTTP URL using HTTP-GET. A sample res@importURI for this is shown below.

<res importUri=“http:/172.16.0.43:4000/item?id=12” protocolInfo=”*:*:audio:*”/>

Figure 5: Sample ImportURI

After the binary is acquired, the protocolInfo string is updated to match the information in the binary. For an
example, see Figure 4: Adding/Correcting Metadata.

3.2.4 Restricted Attribute Versus writeStatus Element
The ContentDirectory specification provides two properties for conveying read-only behavior on a CDS
object: @restricted and <upnp:writeStatus>. The former conveys permissions for calling
CDS:CreateObject(), CDS:DestroyObject(), CDS:UpdateObject(), and CDS:AddReference(). The latter
conveys permissions for CDS:ImportResource() and CDS:ExportResource().

Just as each object only has a single @restricted, an object can only have one <upnp:writeStatus> element.
This is somewhat problematic because objects can have multiple <res> elements, which means that the value
of <upnp:writeStatus> is effective for all <res> elements. When the <upnp:writeStatus> element is not present,
a control point should assume that the associated <res> elements cannot be modified10.

<item id="12" parentID="10" restricted="1">

<dc:title>Run Out of Tunes</dc:title>
<dc:creator>Some Garage Band</dc:creator>
<res importUri=“http:/172.16.0.43:4000/item?id=12” protocolInfo=”http-get:*:audio/mpeg:*”
bitrate=”16384”>http://172.16.0.43:4000/12/Some%20Garage%20Band%20-
%20Run%20Out%20of%20Tunes.mp3</res>
<upnp:class>object.item.audioItem.musicTrack</upnp:class>

</item>
Figure 6: Item With Read-Only Metadata

In the sample above, the item’s metadata and resources are read-only, which prevents a control point from
affecting the metadata or resource binaries through CDS:DestroyObject(), CDS:UpdateObject(),
CDS:DeleteResource(), or CDS:ImportResource(), or by sending an HTTP-POST to the specified
res@importUri value.

9 There is some irony in this decision, given the mantra of UPnP AV not specifying the out-of-band protocols, but the
motivation to standardize the asynchronous transfer model between MediaServers does have some merits. Arguably, some
could say that the transfer protocol should have been left unspecified too.
10 Admittedly, <upnp:writeStatus> is metadata with little or no impact on the permissions. A strict interpretation of the CDS
specification (with the v1.01 clarifications) indicates that the @restricted conveys permissions for control points to affect
state changes on an object.

Designing a UPnP AV MediaServer
July 2003

15

If a CDS implementation exposes a CDS object that is not restricted but cannot fulfill a
CDS:DestroyObject(), CDS:CreateObject(), or CDS:UpdateObject() request, then the MediaServer should
return error code 720 to indicate the request could not be processed.

3.2.4.1 Restricted Containers and Creating Objects
MediaServer implementations that want to allow control points to create new CDS objects in an existing
container must ensure that the existing container is not restricted. This is unfortunately a limitation in the
CDS specification11.

If a container object has an @restricted value of false, then MediaServer implementations can also use zero
or more <upnp:createClass> elements to specify what types of objects can be created in the container. If a
container does not specify any <upnp:createClass> elements, then control points must be able to create any
type of item or container in the existing container object. Otherwise, control points must limit their object
creation to those specified in the <upnp:createClass> elements.

MediaServer implementations should always specify the @includeDerived value for a <upnp:createClass>
element. Control points will likely assume an @includeDerived value of true if a <upnp:createClass> does not
specify a value.

The presence of <upnp:createClass> elements does not guarantee success for a CDS:CreateObject() or
CDS:AddReference() request. A CDS implementation may have a number of other reasons for rejecting a
request to create a new object beyond a determination of control point permissions.

<container id="12" parentID="10" restricted="0">

<dc:title>Stuff</dc:title>
<upnp:class>object.container</upnp:class>
<upnp:createClass includeDerived=”1”>object.item.audioItem</upnp:createClass>
<upnp:createClass includeDerived=”0”>object.container.playlistContainer</upnp:createClass>

</container>
Figure 7: Restricted Container Allows New Child Objects

 Figure 7 demonstrates the DIDL-Lite metadata for a container that allows control points to create any
object.item.audioItem-derived object or any object.container.playlistContainer object.

3.2.4.2 Read-only Resources
If a CDS object has multiple <res> elements, then each <res> element should also employ the
res@importURI attribute to indicate if a resource binary can be updated through CDS:ExportResource() or
CDS:ImportResource(), or deleted through CDS:DestroyObject().

The res@importURI attribute is useful because each CDS object is entitled to only one <upnp:writeStatus>
element. However the res@importURI attribute can have a 1:1 relation to individual <res> elements.

11 There are many other ways the specifications can be interpreted, but the UPnP AV 1.01 clarifications to the specifications
restrict implementations to a particular interpretation of the @restricted attribute. Implementers should keep in mind that
they are always entitled to expose a non-restricted object and fail the request with an error 720. Ultimately, AV Charter 2
needs to define a finer granularity for object and <res> permissions.

Designing a UPnP AV MediaServer
July 2003

16

Although the presence of a res@importURI attribute can convey write permissions for a resource (both its
XML attributes and underlying content), its presence does not convey any permissions for modifying metadata
of the actual object.

<res importUri=“http:/172.16.0.43:4000/item?id=12” protocolInfo=”*:*:audio/mpeg:*”/>

Figure 8: Indicates Permission to Delete and Overwrite Binary

<res importUri=“” protocolInfo=”*:*:audio/mpeg:*”/>
Figure 9: Indicates Permission to Delete Binary

<res importUri=“http:/172.16.0.43:4000/item?id=12” protocolInfo=”*:*:audio/mpeg:*”/>

Figure 10: Indicates No Permission to Delete or Overwrite

It should be noted that the CDS specification requires that object state cannot be changed by a control point.
Therefore, a control point should not attempt to modify (in any way) the resources of a restricted CDS
object12.

3.2.5 Modifying Metadata Entries
After a CDS creates a media object (and completes any additional work related to acquiring locally stored
content), a CDS may allow a control point to modify the metadata throughout the course of the object’s
lifetime. There may be any number of reasons for this, including:

� The CDS allows media objects to have multiple resources, thus allowing a control point to add new
resources.
� The CDS allows control points to provide extended user-provided descriptions of content or allows the

user to rate content after it has been consumed through custom metadata.

Whatever the reason, the CDS specification provides the CDS:UpdateObject() action for achieving this task.
The semantics stated in the specification are intuitive, but there are a couple of things to keep in mind.

3.2.5.1 Properly Interpret CSV Arguments
The comma-separated value lists in the CDS:UpdateObject() arguments need to match each other. The first
element in the CurrentTagValue argument/list corresponds to the first element in the NewTagValue
argument/list. MediaServer implementations need to interpret the orderings of the list to properly interpret the
control point’s request.

Take note that empty strings are used as placeholders in CurrentTagValue and NewTagValue when declaring
new XML elements and deleting existing XML elements. Empty strings are easily represented by a single
comma; since the arguments are comma-separated lists, portions of the string may have multiple consecutive
commas.

The examples below describe a metadata entry that can be modified, followed by a CDS:UpdateObject()
request to change the title and artist info, add a date and description, and remove the creator. The example does

12 This is largely a limitation with how the specification is interpreted. Implementers should keep in mind that it is acceptable
to expose a non-restricted object and fail UPnP actions that attempt to modify metadata, children, or resources.

Designing a UPnP AV MediaServer
July 2003

17

not indicate if the MediaServer returns a success because a MediaServer may have individual fields set to
exhibit read-only behavior13, or specified new fields may not be supported.

<item id="12" parentID="10" restricted="0">

<dc:title>Run Out of Tunes</dc:title>
<dc:creator>Some Garage Band</dc:creator>
<upnp:artist role=”Lead Singer”>Some Guy</upnp:artist>
<res importUri=“http:/172.16.0.43:4000/item?id=12” protocolInfo=”http-get:*:audio/mpeg:*”
bitrate=”16384”>http://172.16.0.43:4000/12/Some%20Garage%20Band%20-
%20Run%20Out%20of%20Tunes.mp3</res>
<upnp:class>object.item.audioItem.musicTrack</upnp:class>

</item>
Figure 11: Media Item Indicating that One or More Fields may be Modifiable

UpdateObject
(

“12”,

“<dc:title>Run Out Of Tunes</dc:title>,<upnp:artist role=”Lead Singer”>Some
Guy</upnp:artist>,,<dc:creator>Some Garage Band</dc:creator>,”,

“<dc:title>New Title</dc:title>,<upnp:artist role=”Drummer”>Some
Guy</upnp:artist>,<dc:description>New Description</dc:description>,,
<dc:date>2002-01-01</dc:date>”
)

Figure 12: Valid CDS:UpdateObject() Request to Modify Metadata

3.2.5.2 Enforce Completeness of XML Elements
Any XML element in the comma-separated value list needs to be a complete representation of the entire
element in its original form—including attributes. The examples below describe CDS:UpdateObject()
requests on a media item. They will fail because the CDS specification makes no mention of partial
modifications to an XML element.

<item id="12" parentID="10" restricted="0">

<dc:title>Run Out of Tunes</dc:title>
<upnp:artist role=”Lead Singer”>Some Guy</upnp:artist>
<res importUri=“http:/172.16.0.43:4000/item?id=12” protocolInfo=”http-get:*:audio/mpeg:*”
bitrate=”16384”>http://172.16.0.43:4000/12/Some%20Garage%20Band%20-
%20Run%20Out%20of%20Tunes.mp3</res>
<upnp:class>object.item.audioItem.musicTrack</upnp:class>

</item>
Figure 13: Metadata and Resource Field Has Multiple Attributes

13 For example, a MediaServer may not allow a CP to change the title and creator, but it might allow the CP to change the
description field.

Designing a UPnP AV MediaServer
July 2003

18

UpdateObject
(

“12”,

“<res protocolInfo=”http-get:*:audio/mpeg:*” bitrate=”16384”
importUri=“http:/172.16.0.43:4000/item?id=12”>http://172.16.0.43:4000/12/Some%20Garage%20Ban
d%20-%20Run%20Out%20of%20Tunes.mp3</res>,<upnp:artist>Some Guy</upnp:artist>”,

“<res protocolInfo=”http-get:*:audio/mpeg:*” bitrate=”12345”
importUri=“http:/172.16.0.43:4000/item?id=12”>http://172.16.0.43:4000/12/Some%20Garage%20Ban
d%20-%20Run%20Out%20of%20Tunes.mp3</res>,<upnp:artist>Some Other Guy</upnp:artist>”
)
Figure 14: Invalid CDS:UpdateObject() Request and Attribute Order, Incomplete Original XML

The CDS:UpdateObject() request in Figure 14 has the following errors with the CurrentTagValue argument.

� The res@protocolInfo and res@bitrate attributes are not in the same order as the original XML. If a
MediaServer wants to be robust, it must choose to ignore the ordering difference.
� The <upnp:artist> element is missing the upnp:artist@role attribute. The MediaServer must fail the

entire request (even if it does not care about the ordering error) because the XML element is not complete
compared to the original metadata.

3.2.5.3 Changing Object-Level Attributes
If a MediaServer wants to allow a control point to change a media object attribute (such as @restricted), the
MediaServer must accept a request that specifies the entire media object XML as the current tag value. The
MediaServer should still expect the media object in its entirety. Figure 15 shows how such a request might appear;
the highlighted section shows that the control point is changing the object’s @restricted value from false to true.

UpdateObject
(

“12”,

“<item id="12" parentID="10" restricted="0"><dc:title>Run Out of Tunes</dc:title><upnp:artist
role=”Lead Singer”>Some Guy</upnp:artist><res importUri=“http:/172.16.0.43:4000/item?id=12”
protocolInfo=”http-get:*:audio/mpeg:*”
bitrate=”16384”>http://172.16.0.43:4000/12/Some%20Garage%20Band%20-
%20Run%20Out%20of%20Tunes.mp3</res><upnp:class>object.item.audioItem.musicTrack</upnp:cla
ss>
</item>”,

“<item id="12" parentID="10" restricted="1"><dc:title>Run Out of Tunes</dc:title><upnp:artist
role=”Lead Singer”>Some Guy</upnp:artist><res importUri=“http:/172.16.0.43:4000/item?id=12”
protocolInfo=”http-get:*:audio/mpeg:*”
bitrate=”16384”>http://172.16.0.43:4000/12/Some%20Garage%20Band%20-
%20Run%20Out%20of%20Tunes.mp3</res><upnp:class>object.item.audioItem.musicTrack</upnp:cla
ss>
</item>”
)

Figure 15: CDS:UpdateObject() Changing MediaObject Attribute

Designing a UPnP AV MediaServer
July 2003

19

3.2.5.4 CDS:UpdateObject() Follows CDS:CreateObject() Rules
A CDS may reject or modify a request to add, remove, or modify an existing metadata field of a media object.
A polite CDS implementation will apply the same (or very similar) metadata rules used for the
CDS:CreateObject() action to the CDS:UpdateObject() implementation. However, product requirements
may dictate that only some metadata fields can be changed after object construction.

3.2.5.5 Restricted Tag Conveys Modify Permissions
A CDS implementation should convey permission to modify a particular media object through its @restricted
attribute. For more information on the @restricted attribute, see section 3.2.4, Restricted Attribute Versus
writeStatus Element.

3.2.5.6 CDS:UpdateObject() Not For Deleting Resources
A CDS should reject a request to delete a resource element through CDS:UpdateObject(). Likewise, an
implementation may reject a request to modify a resource’s metadata through CDS:UpdateObject().
Convention states that a control point should use CDS:DeleteResource() to delete a resource. Figure 16
describes a CDS:UpdateObject() call that improperly attempts to remove a resource from the media object
described in Figure 4: Adding/Correcting Metadata.

UpdateObject

(
“12”,
“<res protocolInfo=”http-get:*:audio/mpeg:*”
bitrate=”16384”>http://172.16.0.43:4000/12/Some%20Garage%20Band%20-
%20Run%20Out%20of%20Tunes.mp3</res>”,
“”
)

Figure 16: Bad CDS:UpdateObject() Request—Removes Resource

3.2.5.7 CDS:UpdateObject() and Read-Only Tags
There are a number of metadata fields that should not be changed when a control point requests a change.
These include requests to change attribute values like @id, @parentID, or @refItem.

A CDS can choose to allow or reject requests that change additional fields like resource URI values,
@importURI values, @protocolInfo, and other fields the implementer decides are read-only fields.

CDS:UpdateObject() changes should only return a success if the entire set of proposed changes is accepted
by the CDS. Implementations should return error code 705 to indicate that a CDS:UpdateObject() request
could not be completed because the proposed changes affect read-only behavior. Additionally, the error reason
associated with the error code should be a comma-separated value list of metadata fields that can be changed
by a control point. For example, a CDS implementation that only allowed a control point to change the title
and creator metadata could send “dc:title,dc:creator” as its error reason14.

14 The CDS specification does not specify or mandate this behavior, but such a convention should be adopted so as to provide
control points with the opportunity to recover if a MediaServer does not support metadata provided in the
CDS:UpdateObject() invocation. This technique allows control points with the additional logic to retry with a subset of the

Designing a UPnP AV MediaServer
July 2003

20

3.2.6 Destroying Media Objects
As CDS:CreateObject() is to object creation, CDS:DestroyObject() is to object deletion, including the
deletion of reference items. What follows in this section are both rules and suggestions for interpreting the
CDS specification.

3.2.6.1 Restricted Attribute Conveys Destroy Permissions
A CDS implementation should convey permissions to destroy a particular media object through its
@restricted attribute. The @restricted attribute describes the permissions of a single media object with
regards to its metadata and child objects. The @restricted attribute does not infer permissions about the
underlying referenced object.

Perhaps the most important behavior to consider when implementing CDS:DestroyObject() is destroying
child objects of a restricted container. The CDS specification (with the v1.01 clarifications) states that the
@restricted attribute of a container limits a control point’s behavior—control points cannot change the state
of a container, including adding child objects to or removing them from the container. Of course, enforcing
this to the letter may be undesirable as it may require container hierarchies that a vendor does not wish to
employ or it may encourage implementations to have either completely restricted or completely unrestricted
metadata hierarchies.

In the end, it seems reasonable that a control point be able to invoke CDS:DestroyObject() on an unrestricted
child object even if the parent container is restricted. Control points simply need to have the logic to
gracefully handle the error case where the MediaServer denies the request to destroy the object, which is
something control points need to do regardless of the value of the @restricted attribute.

For more information on recursive destroy/delete behavior, see section 3.2.6.2, Recursive Behavior for
CDS:DestroyObject(). For more information on the @restricted attribute, see section 3.2.4, Restricted
Attribute Versus writeStatus Element.

3.2.6.2 Recursive Behavior for CDS:DestroyObject()
The v1.01 clarifications to the CDS specification leave the capability for recursive destroy to the decisions of
the implementer. This is extremely important, as it impacts both the MediaServer control points and devices.

The impact on control points is significant because a control point that seeks to be interoperable with every
MediaServer (when using CDS:DestroyObject()) must destroy a branch of a CDS hierarchy by deleting
objects in a depth-first-search manner. Essentially, before a container can be destroyed, all of its descendents
must be destroyed. Although this framework is horribly inefficient (as it requires numerous SOAP
invocations) the process does allow for interoperable and predictable behaviors and allows control points to
adapt to errors that occur.

The impact on MediaServers is beneficial to the vendor because it allows a wide variety of implementations.
MediaServers that rely on a local file system can mimic the behavior of their local file system. Likewise,
MediaServers that employ ACID15 rules can properly implement those rules for their metadata database.
Regardless of the back-end information system, all MediaServer implementations that support control point

metadata without affecting the behavior of existing control points. For more information, see section 3.2.1.1.1,
CDS:CreateObject() and Error Code 712.
15 ACID rules are the basic rules employed by most database systems. The acronym stands for Atomic Consistent Isolated
and Durable.

Designing a UPnP AV MediaServer
July 2003

21

management of a CDS hierarchy should have no problem with destroying individual leaf objects in a call to
CDS:DestroyObject().

Even with these limitations though, vendors providing MediaServer control points and devices can still
implement recursive destroy. The key thing to remember is that a vendor’s control point must never assume
that other vendors employ the same rules for recursive destroy. Therefore, it becomes imperative for control
points to check the MediaServer’s model and manufacturer information before attempting to destroy
containers with child objects.

3.2.6.3 Deleting Resources
One area that is intentionally left ambiguous by the CDS specification is the manner in which a CDS handles
locally stored content. The specification does not indicate whether deleting a media object results in the
removal of a locally stored binary16. Despite the ambiguities, MediaServer implementers should consider the
information imparted in this section.

3.2.6.3.1 CDS Spec Does Not Require Removal of Resources
Whether a CDS actually deletes underlying content files is dependent on the needs of the implementation.
There are instances when a CDS should actually delete files from a local file system, and there are other times
when a CDS should create the appearance that a binary file was deleted. Either behavior is permissible,
although implementations should use the presence or absence of CDS:DeleteResource() in the SCPD file of
the CDS to determine the policy.

3.2.6.3.2 No CDS:DeleteResource() Means CDS Handles Resource Removal
If a CDS has not implemented CDS:DeleteResource(), but has implemented CDS:DestroyObject(), it
indicates to a control point that local binaries will be handled by the conventions of the CDS implementation.
For most MediaServer implementations, it will be sufficient to provide CDS:DestroyObject() without
CDS:DeleteResource()17.

3.2.6.3.3 CDS:DeleteResource() Means Delete Binary
The suggested guideline for CDS:DeleteResource() is that MediaServers should implement this method if and
only if the MediaServer specifically wants to bestow control points with explicit control over the storage
lifetime of content owned by the MediaServer. An example where this model is appropriate would involve an
object with multiple resources. If a control point discovers that one of the object’s resources is corrupt, it may
allow the user to delete the corrupt resource and leave the other resources intact.

Therefore, if a control point calls CDS:DeleteResource() before calling CDS:DestroyObject(), then the
MediaServer should delete binaries from the MediaServer’s local storage18. Likewise, if a control point calls
CDS:DestroyObject(), without first calling CDS:DeleteResource(), then the MediaServer should employ its
own policies for removing content binaries to the MediaServer.

16 Keep in mind that CDS exposes metadata. It makes no claims about how and where the underlying binary content is stored.
17 MediaServers can be implemented with a resource-deleting policy in mind, which reduces the need for
CDS:DeleteResource(). Control point logic is certainly simpler if it defers decisions for delete content binaries to the
MediaServer.
18 Implementations may want to move the binaries to a staging area before actually deleting them, so as to allow the user to
confirm the actual removal by using a local user interface at a convenient time.

Designing a UPnP AV MediaServer
July 2003

22

4 Advanced MediaServer Features
The third set of features applicable to a MediaServer device is not so much a feature set affecting UPnP
actions as much as it is a feature set that affects how a MediaServer can behave given its set of actions.
Although the features discussed in this section are not discussed in the UPnP AV specifications, they can add
value to a MediaServer without adding additional UPnP actions. Even though advanced MediaServer features
fall outside the scope of UPnP AV, they are extremely relevant to many implementations.

4.1 Out-of-Band Content Management
Vendors are mistaken when they conclude that a CDS must provide content management actions if it will have
metadata hierarchy that changes. A CDS implementation is allowed to change its CDS hierarchy whenever it
wants. The only restriction is that metadata must always be presented using correct syntax.

Consider a premium content service that uses a MediaServer to advertise its content. The MediaServer’s CDS
would probably not allow the user to manage metadata in any way. Most likely, the CDS would periodically
contact the premium-content master server over the Internet and acquire a manifest of content that the user can
consume for a specified period of time. If appropriate, the CDS hierarchy would change according to the terms
of a subscription. For example, content might disappear if consumed too many times. If the user purchases a
higher-tier of service, additional content might appear.

4.2 Content Aggregation and Metadata Mirroring
MediaServers advertise content and control points discover content—the tasks seem to be mutually exclusive,
but there is a usage scenario that involves both activities by a single UPnP entity: content aggregation. A
MediaServer that has the content aggregation ability uses a control point to enumerate the content of other
MediaServers and then uses its own MediaServer capabilities to advertise that same content again. At first, this
feature might not seem too useful, but it is useful in providing other control points with a single point of access
for finding content on the network. It is unlikely that the such a MediaServer will download the content onto
other MediaServers, thereby restricting itself to the role of being a metadata mirror instead of a content mirror.
(Metadata mirroring is a subset of aggregation. Content mirroring is an example of full aggregation, which
involves downloading the content from a content-origination MediaServer and becoming a redistribution
point.) Typically, aggregating/mirroring MediaServers will have the CDS:Search() action enabled to allow a
control point to search through CDS hierarchies that are advertised through CDS implementations that do not
implement CDS:Search().

4.2.1 Avoid Mirroring of Server-Side Controlled Content
Although content aggregation works for client-side controlled streams (e.g., streams where the MediaRenderer
owns the transport controls), metadata mirroring cannot be done reliably for content that is server-side
controlled (the MediaServer owns the transport controls).

Consider a MediaServer with content intended to be transported across an IEEE 1394 interconnect with the
transport protocol IEC-61883. If a different MediaServer aggregated the metadata and advertised it in its exact
form, a control point would attempt to invoke CM:PrepareForConnection() on the MediaServer with the
mirrored metadata. Such a move would fail the control point because the original MediaServer has the actual
content and it is the one that expects to get the CM:PrepareForConnection() request.

Some have suggested that the aggregating MediaServer proxy the call to CM:PrepareForConnection() and
use its own control point to invoke CM:PrepareForConnection() on the content-originating MediaServer.

Designing a UPnP AV MediaServer
July 2003

23

Thereafter, the aggregating MediaServer needs to monitor the content-originating MediaServer’s connections
in order to properly report the state of the proxied connection. The idea is certainly possible, but may run into
problems with certain out-of-band protocols that depend on information sent in
CM:PrepareForConnection(). Vendors that pursue this usage model are encouraged to ensure that the
out-of-band protocol mechanism can accept CM:PrepareForConnection() arguments in a proxied manner.

4.3 Content Bridging and Transcoding
Fundamentally, the content bridging feature allows network entities to consume content through a
MediaServer when the original content binary may not be consumable. Such a definition has broad
implications when looking at a digital ecosystem of multiple UPnP networks, transport layers and protocols,
and media formats. Content bridging is an extremely useful behavior for a MediaServer that intends to
advertise content on multiple network interfaces because network entities on one interface may not be able to
access content sources on the other network19. Such a MediaServer provides the bridge that would allow
seamless interaction of clients and servers on different networks.

Before continuing, it should be noted that metadata mirroring behavior is fundamentally different than
bridging and transcoding behavior. Metadata mirroring is achieved using a simple algorithm to exactly mirror
metadata while preserving the original resource-URI address. In contrast, bridging and transcoding do not
provide an exact mirror of the metadata because the resource URI only gives the appearance that the
bridging/mirroring MediaServer actually hosts the content.

A bridging MediaServer with multiple network interfaces and content aggregation abilities can modify its CDS
hierarchy so that the resource paths point to another MediaServer. By advertising resources that point to the
bridging MediaServer, a device gives the impression that a local MediaServer hosts the content, while, in fact,
it is actually stored on a non-local MediaServer. When network entities attempt to access the data on the
bridging MediaServer, the non-local MediaServer can stream the content from the other network, and
retransmit the stream to a network entity that would normally not be able to access the non-routable content.

Another form of content bridging is transcoding—a feature that allows network entities to request content in a
media format different from the original source. For example, consider the presence of two MediaServers with
one of them advertising support for MPEG2 streams. The second MediaServer has transcoding capability and
could choose to advertise that same content on the first MediaServer, except that the resource would indicate
MPEG4 content. When the transcoding MediaServer gets a request for the MPEG4 content, it would request
the original MPEG2 stream from the original source, and transcode the content in real-time to the MPEG4
requester. A transcoding MediaServer could also implement some caching algorithms to optimize future
requests for transcoded content.

While bridging requests and transcoding are useful, the idea of bridging across different transport layers is a
very interesting feature. It would allow for scenarios like IEEE 1394 endpoints requesting content through a
MediaServer that obtains the actual content through an HTTP-GET request.

4.4 Content Snippets
Providing snippets of content has similarities to providing transcoding of content. Basically, a MediaServer
provides a short snippet of content at the request of the user to allow the user to quickly determine if the

19 A simple example is a MediaServer with two network cards, each with IP addresses that belong to two different IP
networks. If IP endpoints on one network cannot reach the other, the MediaServer is in the perfect position to bridge content.

Designing a UPnP AV MediaServer
July 2003

24

content is wanted. This is extremely useful given the size of good quality digital images, audio, and movies.
The following are examples of snippets a MediaServer could be asked to provide.

� Thumbnail images of photographs or other bitmap images.
� The first thirty seconds of an audio track or movie clip.
� Highlights extracted from an Internet sports broadcast.

The recommended way to provide content snippet capability is by adding additional resources to a media
object. The first resource in the media object should continue to be the full-content resource. If the media
object already has multiple resources (possibly for additional transcoded formats or protocols), the snippet
resource should follow the resource that is most similar to the encoding and network protocol20.

4.5 Autonomous User Agents
The concept of autonomous user agents is not new; in fact, the content aggregation feature could even qualify
as a user agent. Other examples involve intelligent management of other CDS entities on the network. Agents
could be configured to:

� Back up metadata (and possibly content) found on other MediaServers
� Actively monitor usage
� Push content to other CDS entities

A possible scenario that employs both usage monitoring and pushing of content involves a lightweight
MediaServer embedded in a UPnP enabled car stereo. In this implementation an agent is initially given a
general knowledge of the user’s preferences and daily monitors content usage. Anytime this feature is enabled
and the car is present on the WLAN, the agent refines and augments the music directory to more closely match
the user’s tastes. To enhance an otherwise boring daily commute, the agent compiles and supplies a fresh,
mini-directory of songs sure to please the listener.

5 Rules to Follow
Innovation is always of value, but there are a number of key design principles to adhere to when building a
MediaServer. Many of these suggestions appear obvious, but observations at UPnP AV plugfest events have
shown that it is easy for competent developers to make serious mistakes in their CDS implementation.

The rules in this section are intended to supplement the rules found throughout section 3.2, Content
Management.

5.1 DIDL-Lite Writing Rules
The most common problem for UPnP implementers has been XML errors—the disease of malformed XML has
infected many UPnP devices, and MediaServers are no exception. In addition to XML errors in device descriptions,
service descriptions, GENA events, and SOAP messages, a MediaServer has the DIDL-Lite XML to contend with.

Malformed or invalid DIDL-Lite is unforgiving. Observed symptoms include crashing CDS control points and content
that never appears in CDS control point applications. To make matters worse, a MediaServer is not adversely affected

20 In theory, XML is always unordered. In practice, many implementations assume some ordering. Realistically, a control
point that is prepared to handle multiple resources is going to need to examine all resources in order to find the appropriate
full-length or snippet resource.

Designing a UPnP AV MediaServer
July 2003

25

by the plight of control points. The solution for this common MediaServer problem resides in the MediaServer’s logic
for serializing XML. The applicable design principle is simple—limit the use of hard-coded XML.

In memory-constrained implementations, this can be done by combining the C language’s sprintf method with
#define preprocessor (that defines the format for DIDL-Lite XML strings). A good implementation will define
all of these strings in one location, which is invaluable at a plugfest if the XML needs debugging.

Implementations that have more memory, and can afford an object-oriented design, should leverage classes
that are designed to serialize DIDL-Lite, and (possibly) classes that are designed to serialize well-formed
XML. Implementations that use an object-oriented database built from the ground up can make those classes
responsible for serializing their own XML. While these suggestions seem obvious to most designers,
observations at plugfests indicate that people are straying from basic design rules.

Remembering and applying the rules below will reduce malformed XML and make the difference between
schema-compliant DIDL-Lite and invalid metadata.

5.1.1 Properly Escape XML
It should not be forgotten that DIDL-Lite is packaged as the body of a SOAP response and that the DIDL-Lite
portion of the SOAP payload needs to be properly escaped. Also, data values in the DIDL-Lite need to be
doubly-escaped; once for DIDL-Lite itself, twice for the SOAP response.

The following text block is an example of a properly escaped response to a CDS:Browse() request. Observe the
double-escaping of the container’s title (highlighted below), which would actually read: Bill & Bob’s Songs.

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
 <s:Body>
 <u:BrowseResponse xmlns:u="urn:schemas-upnp-org:service:ContentDirectory:1">
 <Result><DIDL-Lite xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp">
 <container id="6" searchable="0" parentID="5" restricted="1" childCount="0">
 <dc:title>Bill &amp; Bob's Songs</dc:title>
 <upnp:class>object.container.playlistContainer</upnp:class>
 <upnp:storageMedium>UNKNOWN</upnp:storageMedium>
 <upnp:writeStatus>UNKNOWN</upnp:writeStatus>
 <res protocolInfo="http-
get:*:audio/mpegurl:*">http://134.134.19.123:57298/MediaServerContent_0/1/6/%20-
%20Bill%20%26%20Bob%27s%20Songs.m3u</res>
 </container>
</DIDL-Lite></Result>
 <NumberReturned>1</NumberReturned>
 <TotalMatches>1</TotalMatches>
 <UpdateID>3</UpdateID>
 </u:BrowseResponse>
 </s:Body>
</s:Envelope>

Figure 17: XML Escaping Example With DIDL-Lite

Designing a UPnP AV MediaServer
July 2003

26

5.1.2 Numerical Data Types are not String Data Types
Implementers unfamiliar with XML often conclude incorrectly that XML elements and attribute values can be
an empty string to indicate an undefined value. The UPnP framework defining standard numerical data types
does not allow an empty string to represent a valid numerical value.

5.1.3 Do not Forget ParentID and other Required Metadata
Since a root has no parent container, it is easy to think that the root container of a CDS hierarchy does not need
to print the parentID attribute. This is wrong—root containers have a parent of –1. This mistake is surprisingly
common, but is easily found and fixed. The CDS specification also defines other metadata that is required,
including: a dc:title element and a upnp:class element. These elements are in addition to other attributes that
belong to a container or item element.

5.1.4 Do not include the XML declaration and comments
The merits of allowing CDS:Search() and CDS:Browse() responses to declare their DIDL-Lite payloads with
the typical “<?xml …> element has been debated at UPnP plugfests. The majority agree that it is best not to
include the declaration and to assume UTF-8 encoding (as per the XML specification). A similar question has
been raised about allowing XML comments in the DIDL-Lite. To simplify DIDL-Lite parsing, CDS
implementations should avoid responses with XML comments.

Developers should be aware that their SOAP-level XML needs to have the proper XML declaration. See
section 5.1.1, Properly Escape XML, for an example with the XML declaration at the SOAP level, but missing
from the DIDL-Lite level.

5.2 Implement Proper UpdateID Support
MediaServers, both lightweight and advanced, need to properly populate the UpdateID output argument in a
CDS:Browse() response for a container. This rule applies to both forms of CDS:Browse() requests:
BrowseMetadata and BrowseDirectChildren. This rule does not apply to Browse requests on an item21.

A MediaServer that does not properly implement functionality for tracking container UpdateID values can
cause problems for control points. Depending on the mistake, a control point logic may incorrectly conclude
that nothing has changed or that something has changed.

5.3 Implement CDS.SystemUpdateID and CDS.ContainerUpdateIDs
CDS implementations need to implement the CDS.SystemUpdateID state variable. A CDS that never events a
change in its CDS hierarchy will never inform control points about changes in its CDS hierarchy. A CDS
implementation that requires a control point to periodically examine the CDS hierarchy is an invalid
implementation.

Similarly a CDS should implement the CDS.ContainerUpdateIDs state variable. Although the specification
does not require this state variable, practice has determined that it is extremely useful and helps minimize the
number of Browse requests that are placed on the CDS.

21 Unless the specification explicitly prohibits such behavior, a CDS implementation may even opt to have UpdateID values
for items.

Designing a UPnP AV MediaServer
July 2003

27

5.4 IP Address Rules for HTTP-GET Content
MediaServers that distribute content through HTTP-GET should avoid using the hostname of the MediaServer
when providing the content’s URL in CDS responses. Hostnames pose problems for UPnP networks, as DNS
servers may not be available to resolve a hostname.

CDS implementations on host machines with multiple network interfaces unfortunately cannot reply with any
of the IP addresses of the host machine. Also, they need to take active steps to ensure that contents served from
the MediaServer are routable by consuming endpoints. Unfortunately, no technique exists to ensure that
content found through a CDS request is routable from the source to the consuming endpoint, but there are two
methods that minimize non-routable content symptoms for content that should be routable.

� If the UPnP stack permits acquiring the IP address/port where a CDS request was received and the
device’s HTTP server can accommodate virtual directories, a CDS implementation can use the IP
address/port where the request was received as the base IP address for the content. This technique is
relatively simple to implement, but it has shortcomings. These become evident when a control point and a
MediaServer are on the same host machine and the CDS responses point to content accessible on one
interface, but a target MediaRenderer can only access content (on the MediaServer) through another
interface. Other than this, the technique is very reliable.
� For CDS implementations that cannot guarantee that a CDS control point will not reside on the same host

machine (such as a desktop PC), the technique is slightly different. In this case, it is recommended that a
CDS expose multiple resource elements for each piece of accessible content. For example, a
MediaServer, with 3 IP addresses, hosting a media object with an MP3 resource would serialize the media
object with 3 resource elements. As a courtesy to control points that are not on multiple network
interfaces, the first resource element should use the IP address where the request was received. The other
two resource elements are provided for CDS control points that are capable of determining if content is
routable based on a comparison of the IP addresses for the content and the MediaRenderer. For additional
information, please see section 6.3, Multi-NIC or Single-NIC Systems.

5.5 Build CDS DIDL-Lite Responses Dynamically
Do not serialize CDS responses straight from a DIDL-Lite document when that document represents the entire
CDS hierarchy—it can be disastrous. In the long term it leaves the developer very little implementation
flexibility. Also, it becomes cumbersome, if not impossible, to print CDS responses so that the network
locations of resources dynamically adjust to match the network location of the MediaServer.

The ideal technique is to sufficiently decouple the back-end database/information-system from the DIDL-Lite
XML used in CDS responses. Should the CDS implementation grow in complexity, sufficient abstraction of
the information system from the XML writing modules will allow the CDS implementation to evolve
gracefully compared to an implementation whose information system was directly tied to the application logic.
For suggestions on decoupling the information system from the CDS logic, see section 6.2, Information
System’s Infrastructure.

5.6 ObjectID Lifetime
CDS implementations should avoid recycling objectID strings. For example, when an object is removed from
a CDS hierarchy and a short time later a new object is added, the new object should not have the same
objectID as the previously removed object.

Designing a UPnP AV MediaServer
July 2003

28

Similarly, CDS implementations should avoid changing the objectID of a media object simply because its
metadata changed. This type of behavior tends to hinder control points from remembering media objects, an
ability necessary for functionality like a favorite items list.

5.7 Device-Friendly Resource URI Paths
When advertising URIs, a MediaServer should include some kind of user-friendly information towards the end
of each URI22. This information can be the title, the title and creator, or just the name used by the local file
system. Doing this will improve the usability of lightweight devices that employ URIs to deliver information
to the user about content in playback. As an additional courtesy to devices, a URI path should end with the
proper file extension. See section 5.14.3, Mime-Types and File Extension Mappings, for more information.

The total length of a URI should not exceed 1024 bytes and implementers are strongly encouraged to further
restrict the length to no more than 255 bytes. A URI of 255 bytes should be long enough to do basic URI
obfuscation in addition to providing a means to encode internationalized URIs. See section 5.15 for more
information on Internationalization.

MediaServers should use an IP address instead of a hostname when advertising a URL (a.k.a., HTTP URI)
because not all networks (especially home networks) will have a server to provide hostname resolution.
Requiring name resolution functionality for MediaRenderer devices will also increase the memory footprint
and code complexity for those devices.

For recommendations on serializing DIDL-Lite responses on a host machine with multiple network interfaces,
read section 6.3, Multi-NIC or Single-NIC Systems.

5.8 Device Friendly Object IDs
As a general rule, a CDS should impose reasonable lengths on its object ID strings. The total length of an
objectID should not exceed 1024 characters and implementers are further encouraged to restrict the length to
255 characters.

5.9 Additional Metadata Value Rules
Additional rules for metadata values also exist. Sometimes these rules help devices, but they more often help
control points determine reasonable lengths for string data.

5.9.1 Max String Lengths: 255 Bytes/1KB/1MB+
Each field of common, string-based metadata intended for short information should be no more than 255 bytes
long. Short fields include: dc:title, dc:creator, upnp:class, upnp:producer, artist, author, director, genre, and
album. Remember that 1 byte does not necessarily equal 1 character because UTF8 encodings allow up to 3
bytes per character.

Some common strings, like URI values and dc:description, will need a little more space.

Long-information (upnp:longDescription) CDS implementations should be free to have reasonably bounded
string lengths on the order of a megabyte or more. Likewise, control points that request such information

22 The text after the last “/” (or appropriate delimiter) character should have a friendly title (and maybe the creator), or use the
name of the local file. Ideally, the URI will end with “[creator] – [title].[file extension]”.

Designing a UPnP AV MediaServer
July 2003

29

should be prepared to accept this quantity of metadata. To avoid usability issues resulting from response times
of 30 seconds or more, the CDS hierarchy should not employ metadata with excessive string lengths.

5.9.2 Min String Lengths: 30 Bytes
If an implementer imposes a maximum string length that is shorter than the values in 5.9.1, he should not make it
less than a total of 10 characters, or 30 bytes. This is appropriate for short information, like creator and title, but for
longer information strings the implementer will have to exercise good judgment and provide an appropriate length.

5.9.3 Use 1 and 0 Instead of True and False
To accommodate simplified control points, MediaServers should always report Boolean values of true and
false in terms of 1 and 0.

5.9.4 Trim White Spaces From Metadata
As a general rule, CDS implementations should expose metadata with white-space characters trimmed from
the beginning and end of string values. This may not apply to some fields, but it does apply to short string
values and URI values. Trimming white-space characters can be particularly helpful to control points on
embedded platforms.

5.10 More Metadata is Good
A CDS implementation should provide as much metadata as it can because users value more information—
even if they will not actually use it. Of course platforms hosting the MediaServer may impose natural
limitations.

Limitations on the variety of metadata fields is largely dependent on the purpose of the CDS and its platform.
The amount of metadata provided by a MediaServer running on a hand-held PDA or a digital camera may be
extremely limited compared to the amount of metadata provided by a MediaServer running on a PC. Although
the PDA and PC may both mirror the local file systems, the PDA may not have the resources to thoroughly
interrogate MP3 files and respond with metadata acquired from the file’s ID3 tags. Similarly, the digital camera
and PDA may both run on resource-limited platforms, but because the digital camera limits its metadata to the
photographic information, it might provide more useful information about its pictures than the PDA.

5.11 More Accuracy and More Clarity Please
Although more information is good, inaccurate information is useless, and ambiguous information can be
extremely difficult to use. For example, a CDS implementation that always reports media items with a class of
object.item is providing extremely vague information. Likewise, a title like “Radio Station 1” is a legal title,
but “KXYZ, 99.9 FM” is a better, more useful title. As mentioned before, the platform and focus of a CDS will
most likely impose natural limitations, but users always benefit from greater clarity and accuracy in metadata.

5.12 Implement Metadata Filtering
In addition to providing as much metadata as it can, a CDS implementation must behave properly when a
control point issues a CDS:Search() or CDS:Browse() action with the Filter argument. The only time a
MediaServer should respond with all of its metadata is when a control point specifies a star-value (*) for the
Filter argument. If a control point specifies an empty string, only the fields needed to remain DIDL-Lite

Designing a UPnP AV MediaServer
July 2003

30

schema compliant should be returned23. With the exception of the star-value case, MediaServers are behaving
incorrectly when they respond with metadata fields that are not present in the Filter argument.

<DIDL-Lite xmlns:dc=http://purl.org/dc/elements/1.1/ xmlns:upnp=”urn:schemas-upnp-org:metadata-1-
0/upnp/” xmlns=”urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/”>

<item id="12" parentID="10" restricted="0">
<dc:title>Run Out of Tunes</dc:title>
<dc:creator>Some Garage Band</dc:creator>
<dc:date>2002-01-02</dc:date>
<res protocolInfo=”http-get:*:audio/mpeg:*”
bitrate=”16384”>http://172.16.0.43:4000/12/Some%20Garage%20Band%20-
%20Run%20Out%20of%20Tunes.mp3</res>
<upnp:class>object.item.audioItem.musicTrack</upnp:class>

</item>
</DIDL-Lite>

Figure 18: Metadata Filtering Example, Filter = “*”

<DIDL-Lite xmlns:dc=http://purl.org/dc/elements/1.1/ xmlns:upnp=”urn:schemas-upnp-org:metadata-1-
0/upnp/” xmlns=”urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/”>

<item id="12" parentID="10" restricted="0">
<dc:title>Run Out of Tunes</dc:title>
<dc:creator>Some Garage Band</dc:creator>
<dc:date>2002-01-02</dc:date>
<res protocolInfo=”http-get:*:audio/mpeg:*”
bitrate=”16384”>http://172.16.0.43:4000/12/Some%20Garage%20Band%20-
%20Run%20Out%20of%20Tunes.mp3</res>
<upnp:class>object.item.audioItem.musicTrack</upnp:class>

</item>
</DIDL-Lite>

Figure 19: Metadata Filtering Example, Filter = “dc:title, dc:creator, res”

<DIDL-Lite xmlns:dc=http://purl.org/dc/elements/1.1/ xmlns:upnp=”urn:schemas-upnp-org:metadata-1-
0/upnp/” xmlns=”urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/”>

<item id="12" parentID="10" restricted="0">
<dc:title>Run Out of Tunes</dc:title>
<dc:creator>Some Garage Band</dc:creator>
<dc:date>2002-01-02</dc:date>
<res protocolInfo=”http-get:*:audio/mpeg:*”
bitrate=”16384”>http://172.16.0.43:4000/12/Some%20Garage%20Band%20-
%20Run%20Out%20of%20Tunes.mp3</res>
<upnp:class>object.item.audioItem.musicTrack</upnp:class>

</item>
</DIDL-Lite>

Figure 20: Metadata Filtering Example, Filter = ""

23 It is a common mistake for people to assume that creator and resource fields are required, but they are not.

http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/

Designing a UPnP AV MediaServer
July 2003

31

The examples above describe three DIDL-Lite outputs. Strikeout text indicates material that would be missing
from the DIDL-Lite. Figure 18 shows a completely unfiltered response. Figure 19 shows a response that
includes title, creator, and resource elements. (Readers should observe that the bit rate attribute is missing from
the response because it is not specified in the filter, nor is the attribute required for the DIDL-Lite schema.)
Figure 20 is a completely filtered response, with only the necessary elements to provide a schema-compliant
DIDL-Lite response.

5.13 HTTP Rules
This section outlines the HTTP rules that should always apply when building UPnP devices.

5.13.1.1 Never Use HTTP 0.9
Devices should never use HTTP 0.9 for requests or responses. This version of HTTP is obsolete and causes
problems for many recipients.

5.13.1.2 Closing Sockets After HTTP 1.0 Responses
In HTTP 1.0 server implementations, the server is responsible for closing the socket. Substantiation for this
behavior is found in this text from the HTTP 1.0 specification:

“Except for experimental applications, current practice requires that the connection be
established by the client prior to each request and closed by the server after sending the
response.” (Section 1.3, RFC 1945)

5.13.1.3 Always Respond Before Closing the Socket
Before closing the socket, devices must always respond to an HTTP request with an HTTP response. The
response may be a valid HTTP response with the intended body or an HTTP error message. Devices that close
the socket without sending a response can cause problems for some HTTP clients. When an HTTP client that
pipelines requests attempts to recover from an unanswered request by retrying the original request, the
retry-recovery algorithm may actually result in the device being flooded with requests.

5.13.1.4 Always Specify the Content-Length
Devices should respond to HTTP messages with the content-length field24. This behavior resolves the
ambiguities resulting from platforms that set the socket’s LINGER flag to true. Devices that set the LINGER
flag to true without specifying the content length have sometimes caused control points to process a
subsequent event before the initial event. This occurs because the socket used for the initial event is closed by
the device after the socket for a subsequent event closes.

When devices specify the content length in all their HTTP messages, it allows the control point to close the
socket if the software logic needs to prevent timing errors between separate HTTP sessions.

24 The context of this section is UPnP-related HTTP messages. The content-length header may not be present when
distributing live content streams. Also, the content-length field has a different purpose when used in a response to a HEAD
request.

Designing a UPnP AV MediaServer
July 2003

32

5.13.1.5 HTTP Header Rules
The following rules apply to the headers of HTTP messages.

� HTTP header names are case insensitive. Devices should not falter when control points issue HTTP
requests with valid header names.
� HTTP headers may have leading and/or trailing white space characters before the colon (:) delimiter.

Devices and control points need to properly parse HTTP messages with such headers.
� HTTP-GET messages must have the “HOST” header entry. This is required by the HTTP specification.

HTTP-GET requests must properly escape the requested URI target.

Plugfests have shown that a number of interoperability problems are caused by the false assumption that
everybody formats their HTTP headers in the same manner. The syntax rules for HTTP headers are well
defined, but the formatting of the syntax is not.

5.14 MediaServer Support for HTTP-GET Content
To maximize interoperability and usability with MediaRenderer devices, MediaServers that distribute content
through HTTP-GET should implement the rules defined in this section.

5.14.1 No PrepareForConnection for HTTP-GET MediaServers
Given that HTTP-GET is probably the most prevalent transport protocol used for streaming content at UPnP
AV plugfests, it is important to understand how the ambiguities of connection lifetime can cause problems for
a MediaServer.

Consider a MediaServer that implements PrepareForConnection and supports many types of protocolInfo,
including those that rely on HTTP-GET. When a control point invokes PrepareForConnection on the
MediaServer, the device responds with a ConnectionID. Subsequently, the control point instructs the
MediaRenderer to stream and play the content.

When the renderer begins streaming, how does the MediaServer know that a particular HTTP-GET request
from the renderer is actually a request intended for a particular connection? All the MediaServer knows is that
it is supposed to prepare for an http request for some kind of content. It lacks the information that would
provide the logical binding between a specific ConnectionID and the underlying HTTP-GET request.
Attempting to guess the binding25 based on time, protocol, and content type is an extremely flawed response in
an environment with multiple streams and/or multiple renderers26.

Assuming a control point has rights to close a connection (with the intent to create a new one), the device faces
yet an additional obstacle—actually closing the correct connection. Is the MediaServer supposed to close a

25 The binding in question is the logical relationship between an HTTP request and a PrepareForConnection invocation.
26 Some have suggested that providing the intended URI in the PrepareForConnection would be sufficient information for the
MediaServer. Unfortunately, many renderers are likely to implement SEEK (or Next with playlist files) by using HTTP-GET
requests with the RANGE header as a means of seeking-to-positions within a file. Every time the renderer seeks, the renderer
issues a new request. All this leads to the question: Does connection lifetime end with an HTTP request or through
ConnectionClose? If it ends with the HTTP request, the framework is faulty—especially given that a Stop transport action
will likely close the HTTP session that is streaming the content. If it ends with ConnectionClose, the device becomes
dependent on a control point calling the method. While a solution based on ConnectionClose is architecturally good, it leaves
a MediaServer open to the possibility of connections that are never closed. The only way for a MediaServer to close
connections is to monitor HTTP activities. Unfortunately, since content advertised through a MediaServer has no requirement
to actually be stored/served by the MediaServer, there is no feasible solution.

Designing a UPnP AV MediaServer
July 2003

33

socket? Given that MediaServers are not even guaranteed to be hosting the content that they are advertising,
how is this to be done? Even if the behavior is as simple as removing a connection ID from a list (and not
closing a socket), this opens the device to a potential memory leak at unclosed connections.

In another proposed solution, MediaServer’s always return the same connection ID for a protocol like
HTTP-GET, and reply with new connection IDs for protocols that have hard bindings. Unfortunately, this type
of inconsistency requires control points to understand how protocols and transports behave, and this runs
counter to UPnP AV being agnostic about those things.

The truth is that PrepareForConnection is extremely unfriendly to HTTP-GET MediaServers. The underlying
problem is that HTTP-GET connections are ethereal in nature. In fact, the actual content may not even be
hosted by the MediaServer. An HTTP-GET connection exists insofar as it is necessary to logically represent
an AV connection. Unfortunately, an HTTP-GET connection does not have a set of reasonable and consistent
assumptions for MediaServers and control points. The connection provides no useful purpose and only adds to
the ambiguity and possible abuse of a MediaServer.

If a MediaServer wants to mix server-side controlled streams (such as IEEE1394) with client-side controlled
streams (HTTP-GET), the vendor should implement two MediaServers. The MediaServer with server-side
control abilities will have the PrepareForConnection action, while the client-side MediaServer will not. Both
MediaServers could be embedded, or one could be the parent of the other. The device hierarchy does not
matter compared to the logical separation of the devices.

5.14.2 HTTP-GET ProtocolInfo For All Content Types
MediaServers that can serve any type of content (such as a MediaServer exposing a local file system) can use
the “http-get:*:*:*” protocolInfo string to inform control points that all forms of content can be acquired from
the MediaServer. This protocolInfo string can be used in the ConnectionManager service’s GetProtocolInfo
action and in the associated state variables for representing the allowed source types for the MediaServer. The
only time this string should be seen as CDS metadata is in a media object entry with a resource that has been
declared (and the MediaServer does not know the content type because it has yet to acquire the content).

5.14.3 Mime-Types and File Extension Mappings
The typical format for an HTTP-GET protocolInfo string is: http-get:*:[mime-type]:*. Table 1 contains a
listing of common mime-types that should be used to populate the third field of a protocolInfo string. In
addition to using protocolInfo strings that are advertised by ConnectionManager, ContentDirectory services
need to use the proper protocolInfo strings in their advertised resource (a.k.a., res) elements. To enable
friendly behavior for many HTTP streaming engines, ContentDirectory services are encouraged to use the
associated file extensions for advertised resources.

Table 1: Mime-Types and File Extension Mappings
Mime-Type File Extension Description

Audio Formats
audio/aiff .AIF, .AIFF Apple* Audio Interchange File Format
audio/basic .AU, SND Sun Microsystems* Unix* audio and Sound audio formats
audio/lpcm .LPCM LPCM audio
audio/midi .MID, .RMI Musical Instrument Digital Interface audio format
audio/mp1 .MP1 MPEG audio layer 1

Designing a UPnP AV MediaServer
July 2003

34

Mime-Type File Extension Description
audio/mp2 .MP2 MPEG audio layer 2
audio/mpeg .MP3 MPEG audio layer 3
audio/x-ac3 .AC3 AC-3
audio/x-aac .AAC AAC
audio/x-atrac3 .AT3P Sony* ATrac-3Plus*
audio/x-dts .DTS DTS
audio/x-ogg .OGG Ogg Vorbis* audio format
audio/x-quicktime .MOV, .QT Apple QuickTime* audio format
audio/x-pn-realaudio .RA Real Networks* audio format
audio/wav .WAV Microsoft Waveform* audio format
audio/x-ms-wma .WMA Microsoft Windows Media Audio format

Video Formats
video/x-dv .DV Digital Video format
video/x-motion-jpeg .MJPG Motion JPEG video format
video/quicktime .MOV, .QT Apple QuickTime video format
video/MP1S .mpeg, .mpg, .mpe,

.m1v
MPEG-1 System Stream

video/mpeg2 .MPEG2, .MPG2 Moving Picture Experts Group 2 video format (program and
transport streams)

video/MP2T .mp2t MPEG-2 Transport Stream
video/MP2P .mp2p, .vob MPEG-2 Program Stream
video/MP4V-ES .m4p, .mp4 MPEG-4 Stream
video/x-pn-realmedia .RM Real Networks* video format
video/x-ms-wmv .WMV Microsoft Windows Media Video format

Image/Icon Formats
image/bmp .BMP Microsoft Bitmap raster format
image/gif .GIF Graphics Interchange Format*
image/x-icon .ICO Microsoft Icon* format
image/jpeg .JPG, .JPEG Joint Photographic Experts Group image format
image/png .PNG Portable Network Graphics format
image/x-quicktime .QTI, .QTF, .QTIF Apple QuickTime image format
image/tiff .TIF, .TIFF Tagged-Image File Format

Control/Metafile/Streaming Formats

video/avi .AVI Microsoft Audio Visual Interleave file format
video/x-ms-asf .ASF Microsoft Advanced Streaming Format
video/x-ms-asx .ASX Microsoft Advanced Stream Redirector file format
audio/x-mpequrl .M3U MP3 play list metafile format
audio/x-pn-realaudio .RAM RealAudio media metafile format
application/smil .SMI, .SMIL Synchronized Multimedia Integration Language

Miscellaneous

Designing a UPnP AV MediaServer
July 2003

35

Mime-Type File Extension Description
application/octet-stream (any) Any unknown data types
text/html .HTM, .HTML HTML files
text/plain .TXT Plain text files

5.14.4 HTTP-HEAD
MediaServers should be able to respond to HTTP-HEAD requests from a MediaRenderer. This allows
renderer devices to acquire the HTTP headers of a file. The headers returned should include the content type
and the content length of the actual file (if known). Clients requesting an HTTP-HEAD are expected to
understand that the content length header may not represent the actual content length of the body. If the
content length is not known (perhaps it is live content distributed over HTTP), the content-length field should
not be included in the server’s response to the HEAD request.

5.14.5 HTTP-RANGE
In order to allow renderers to efficiently implement Seek behavior with HTTP-GET based content, the devices
need the ability to specify ranges of content. Furthermore, the ability to download portions of a playlist file
(such as an M3U or ASX) is invaluable to a renderer that cannot download the entire playlist. For this reason a
MediaServer should implement support for HTTP-RANGE. The only time a device should not worry about
supporting RANGE requests on content is when the content is some form of live stream, where RANGE really
does not apply.

Even though HTTP 1.0 does not specifically describe RANGE as an option27, MediaServers serving their local
content should be able to accept an HTTP 1.0 GET request with the RANGE option. Requiring a lightweight
MediaServer (or the client MediaRenderer) to support HTTP 1.1 is probably more work than it is worth.
However, given that HTTP 1.0 permits the presence of additional headers, adding functionality for a
MediaServer to support the RANGE option in HTTP 1.0 is both easy and beneficial to client devices. In the
worst case, a client can always get a 200-OK response from the server and receive the entire file.

MediaServers that respond to an HTTP 1.1 request with an HTTP 1.1 response should properly support
multi-part RANGE requests. Although many argue that supporting multi-part RANGE requests is not worth
the effort, implementers need to respect the specifications that are foundational to the UPnP framework. That
being said, MediaServers that cannot support multi-part ranges can always respond with an HTTP 200 OK
message and send the entire file. A MediaServer (either HTTP 1.0 or 1.1) that supports a single RANGE, but
lacks support for multiple ranges, should never respond with an incomplete set of ranges or ranges that do not
correspond to those specified in the request.

5.14.6 Content-Length
When HTTP web servers respond to an HTTP request, the responses should include the Content-Length
whenever possible. Providing clients with information about the total length of a file (such as an audio, video,
or playlist file) greatly improves the opportunities for a client to optimize the processing of the downloaded
content. A valid exception to this rule is when the device is responding with a live stream.

27 Some contend that the specification alludes to the presence of RANGE.

Designing a UPnP AV MediaServer
July 2003

36

5.14.7 Chunked Encoding
MediaServers can make use of chunked HTTP 1.1 responses. Ideally, chunked responses are limited to
live-content streams, but different implementations may have reason to use chunked responses for all HTTP
1.1 traffic. The most common reason being that underlying media distribution middleware may be
implemented outside of the UPnP implementer’s control. Whatever the reason, implementers are forewarned
that not all HTTP clients have robust implementations and that support of chunked responses is often ignored.
As a corollary, implementers of HTTP clients are strongly encouraged to build robust implementations that
properly handle all aspects of HTTP 1.1, including chunked encoding.

5.14.8 Pipelining Support and Persistent Connections
An HTTP 1.1 client that issues pipelined requests is issuing its multiple HTTP requests on the same socket.
This type of an HTTP socket is known as a persistent connection28. Contrary to popular belief, this is possible
for both HTTP 1.0 and 1.1, although HTTP 1.0 implementations of persistent connections have some flaws
when proxy servers become part of the usage. Intel sees no harm in vendors choosing to implement HTTP 1.0
persistent connections because activating a persistent connection is always initiated from the HTTP client.
HTTP 1.0 server implementations that do not support persistent connections need to respond appropriately by
sending a complete response to the first request, followed by closing the socket.

In any case, using the same socket to issue requests saves time and platform resources because the TCP phase
of socket creation and tear-down is removed between requests. The pipelining of requests on a persistent
connection works the same for HTTP 1.0 and HTTP 1.1, with the exception that HTTP 1.1 supports chunked
encoding and is friendly to proxy servers.

Most HTTP requests work fine in a pipelined series of requests. However, the HTTP HEAD request is an
exception to this rule. As it stands the response to a HEAD request can specify the content length as the “size
of the entity-body that would have been sent had the request been a GET” (section 14.14, HTTP 1.1
specification, RFC 2068). Proper interpretation of this header field is the burden of the HTTP client. Some
could argue that the HTTP server should always close the socket after a HEAD response, but Intel believes the
benefits of persistent connections outweigh the problems caused by bad HTTP clients. As such, Intel believes
it is ultimately the responsibility of the client to properly interpret the HEAD response.

5.15 Internationalization
UPnP devices and control points should work together even if they are not from the same region of the world.
The UPnP specification makes heavy use of the UTF-8 encoding; implementers that are not familiar with this
encoding are encouraged to research it and use it. Many developers are often surprised to learn that 16 bits
(which allows for 65535 characters) is not sufficient to encode every letter of every alphabet in the world. In
fact, it does not even come near what would be required. The UTF-8 encoding allows for more than 16 bits per
character, therefore there is no reason to truncate UTF-8 encoded characters.

Control Points and renderer devices that do not have a user interface do not need to worry about the specifics
of UTF-8. Most western string operations in languages such as C and C++ will still work with UTF-8 encoded
strings since UTF-8 strings are also null-terminated.

While the XML specification allows for both UTF-8 and UTF-16 encodings, only UTF-8 should be used when
implementing UPnP devices. Many developers incorrectly assume that UTF-16 can encode more characters, or

28 Full discussion on persistent connections and the pipelining of requests can be found in the HTTP 1.1 specification, RFC
2068.

Designing a UPnP AV MediaServer
July 2003

37

is required to encode Asian characters. Both UTF-8 and UTF-16 can encode characters that are over 24 bits
wide. Besides the additional flexibility gained from more bits, UTF-8 is also backward compatible with the
ASCII character set.

When encoding a URI, always encode it using UTF-8. If URI escaping is needed, encode the URI into UTF-8
before performing the escaping operation. The opposite is also true, always un-escape a URI according to the
URI’s scheme before decoding it into the UTF-8 format.

5.16 Represent Media Collections with Container Objects
The ContentDirectory specification uses <container> elements to represent photo albums, music albums,
playlists, and other forms of media collections. However, the specification also defines the
object.item.playlistItem media class for playlists.

Developers should avoid using the object.item.playlistItem media class, and other item representations, for
media collections. Having multiple methods for representing media collections can be problematic for control
points.

CDS implementations should always use media classes that derive from object.container.playlistContainer.
A container and item object both allow advertisement of resources, but a container allows the implementation
to optionally provide additional metadata about the content in the media collection.

As a corollary, a container representing a collection of media should at least have one resource for the
container-derived media class. This allows control points the ability to use the container’s resource to obtain
the entire collection in the form of a playlist-like29 file.

A CDS implementer is encouraged to provide CDS metadata for individual content pieces that make up the
media collection. The metadata for each content piece would appear as a child object30 of the parent container.
If resource URI values are known for the individual content pieces, a CDS implementation should also provide
that information as part of the child object. As a general rule, a playlist-like file that refers to its individual
content pieces through URI values31 should have the child objects expose those URI values. A file format that
actually embeds all individual content pieces into its binary format will not likely expose URI values for
individual content pieces; however, those implementations may still be able to expose basic metadata.

5.17 Advertise Fully Qualified, Non-Local URIs
A MediaServer should not expose local path information for individual content pieces in CDS metadata, in a playlist, or in
other similar media collections. Local file paths, or even UNC-formatted paths, are of little use to most renderers. Similarly,
relative URI paths are of little use to many clients.

5.18 Playlist Files and Metadata
Practice has determined that control points should avoid sending DIDL-Lite metadata to renderer devices
when calling the AVTransport’s SetAVTransportURI action. Instead of the control point sending metadata to
the renderer device, the MediaServer implementation should embed metadata into its hosted playlist resources.

29 There may be other forms of playlist files, like a scripted slideshow or presentation file format.
30 It is theoretically possible that a child object can be another container object. This is not recommended for most forms of
playlists, although some content forms may require this type of a model.
31 The M3U file format is an example of such a file format. In its basic essence, an M3U file has a set of URI references to
other files.

Designing a UPnP AV MediaServer
July 2003

38

At a minimum this information should be the title of the individual content, but creator information can also be
of great help.

As a practical example, consider the Nullsoft* M3U and Microsoft* ASX file formats. Both formats allow
metadata to be embedded into the playlist files. If a renderer can parse the files for URI values, then the
renderer can additionally extract metadata about the current track. Supplying even the most basic metadata
provides a better user experience than no metadata.

5.18.1 Recommendations for M3U Metadata
Given the common use of M3U and the numerous possibilities for how metadata can be stored in the file,
some suggestions on how to format the metadata are in order. When exposing and hosting M3U files,
MediaServers should use the Extended-M3U format. The Extended-M3U file should conform to the following
conventions:

� An M3U playlist file is a carriage-return, line-feed (CR/LF) delimited list of explicit, non-relative,
fully-qualified URI strings. An M3U file may optionally contain lines that begin with the token #EXTINF
followed by information such as duration and other short textual fields. A #EXTINF line must precede the
line with the associated URI. The #EXTINF entries end with CR/LF.
� Playlist files that contain #EXTINF tokens must also begin the file with the #EXTM3U token on a single

line. The #EXTM3U line ends with CR/LF.
� The format of a #EXTINF lines is as follows (all characters are literal, except brackets and text enclosed

in brackets):
#EXTINF:[integer duration in seconds; -1 if duration is unknown],[text]

� A UPnP media server content directory service that advertises an M3U playlist file with #EXTINF tokens
should set the [text] field to contain the artist information and title, delimited by the space-dash-space
string (-). If only one piece of information is known, then the space-dash-space delimiter should still be
present to simplify renderer parsing of the text.
� If a URI’s scheme has specialized escaping conventions, such as for HTTP, then all URI values that

specify that scheme must be properly escaped according to the scheme’s specific conventions. See section
5.15, Internationalization, for additional information on escaping with international characters.

6 Key Design Decisions
Experience has shown that the process of building a MediaServer can have many pitfalls. This section
provides encouragement and advice for the implementer to consider during the design phase.

6.1 Information System’s Metadata Fields
The CDS specification provides a wealth of knowledge on CDS-normative metadata. The specification
authors, when tasked with determining the (minimum) metadata fields that are normative, decided that very
few are actually required. Even the tables that describe metadata appropriate for certain media classes indicate
that most metadata fields are not required. The freedom to specify very minimal metadata sets affords
MediaServer implementers a great deal of flexibility as they carefully consider the metadata requirements of
their CDS.

Designing a UPnP AV MediaServer
July 2003

39

6.1.1 Thinking Ahead
Implementers are encouraged to have an expansive vision of their product’s features and implementation that
is balanced with thoughtful limitations. Implementers should not design MediaServers that can accommodate
all types and sizes of metadata, nor should they design MediaServers that can accommodate only a single
product revision.

The scope of the metadata fields should be liberal. If a product might eventually need metadata for a certain
task, the initial design should account for that potential. It is easier during initial design to declare that all
media objects have an empty string for a description metadata field than to be forced later to build a new
database to accommodate a description element.

Keep in mind that metadata fields are tied into the information system. In a well designed MediaServer, the
exposed features are sufficiently decoupled from the information system to in no way hinder potential
capabilities. In summary, the information system should be feature rich and robust—even when the product
does not seem to warrant an information system with these capabilities.

6.1.2 Settings Limits on Search
The CDS:Search() action is an extremely convenient method, but CDS implementers are not obligated to
allow a control point to search on every CDS metadata field that is employed by the MediaServer. Even
though a MediaServer could be created with the ability to perform a search query that involved any type of
metadata, an analysis would likely indicate that the trade-offs and/or requirements placed on the
implementation are unacceptable. As an example, consider an implementation where the information system
will store lyrics. If the implementer chooses to allow a control point to issue a query that requires examination
of song lyrics, the implementation is likely to fail the requirement to respond within 30 seconds because the
additional requirements placed on the relational database would be too great.

Implementations that limit the scope of searches should at least provide the ability to search on basic fields like
title, creator, media class, and for the protocolInfo attribute on a resource element. Other fields are always a
bonus, but these metadata fields are very much at the core of most search queries.

6.2 Information System’s Infrastructure
The design decisions regarding the technique for storing and using metadata are very much tied to the
decisions that determine the supported metadata. The two general techniques that seem to be at the forefront
are the database approach and the file system approach.

6.2.1 The Relational Database Approach
Many view the relational database approach as ideal because it usually provides sufficient layers of abstraction
to allow product evolution over a long period of time. This approach is also the technique of choice for those
who already have a database infrastructure that catalogs content. This technique is also great for
implementations that are required to handle CDS:Search() requests since many relational databases excel in
such tasks.

A well thought-out design properly isolates the information system from the CDS-specific logic, building the
CDS logic as a front-end module for the database. Such a technique allows the CDS logic to focus on
accepting the CDS requests, performing operations (both query and modifications) on the database, and
transcribing the metadata in the database into DIDL-Lite in CDS responses. As for the database, its design and

Designing a UPnP AV MediaServer
July 2003

40

purpose is focused on defining the supported metadata fields, storing the metadata (and possibly the content
too), and responding to operations that can eventually be translated into CDS-compliant response messages.

As a side note, implementers interested in using an existing relational database may find it a practical necessity
to augment the existing database to accommodate certain requirements of a CDS response. Assuming that the
relational database has columns for title and creator metadata, a CDS is still required to support the
CDS:Browse() action. One of the more subtle requirements of this action is that every container object is
required to report the number of child objects through the container@childCount attribute. Thus the typical
relational database, essentially consisting of a flat list of content metadata, may require modifications so that
the database provides information needed about the container hierarchy exposed by the CDS.

6.2.2 The File System (or Hierarchical Database) Approach
Not every implementation demands a relational database approach, and some implementers do not have the
platform resources for a database. This being the case, the most common alternative has been to use a local file
system for both content storage and the information system. This technique works when the file system and the
content on the file system have sufficient information for populating the metadata fields. (It should be noted
that a file system is essentially an instantiation of a hierarchical database.)

As a practical example, consider a lightweight MediaServer running on a hand-held PDA. The MediaServer
exposes the contents of the local file system as a hierarchy of media containers and media items. Each item’s
title is the name of the file on the storage, and a resource is a mapping that allows a network entity to
download the file.

When a MediaServer runs on a platform with greater resources, like a desktop PC, a more complex
implementation of this technique is appropriate. Such a MediaServer can implement a modest, object-oriented
database that ties into the file system and provides a real-time representation of the file system in object form.
Instead of providing the filename as the title, the CDS logic could analyze the files and obtain more useful
information to use as metadata. For example, Microsoft Word documents contain metadata about the
document. Audio files, like MP3 and WMA, have information about the artist, title, and album of the song.
Images have information about resolution and possibly the time and place of image capture.

The biggest drawback of this technique is that it seldom scales as well as a database approach when it comes to
handling search. This technique usually involves linear-time search algorithms, which may only work with
small CDS hierarchies. Indexing techniques can improve performance, but it is unlikely such an
implementation will match a database. This technique requires the implementer to value the efficiency of
mirroring a content store over the efficiency of handling search requests.

6.2.3 Building an Efficient CDS
Those interested in building reusable CDS implementations have often wondered if it is possible to build a
CDS solution that is flexible enough to accommodate all types of back-end information systems. While it is
possible to build a MediaServer implementation that can support a variety of information systems, the larger
risk is creating an inefficient MediaServer implementation.

Generalized CDS implementations often exhibit bad performance. Although some may think that using all of
the permitted 30 seconds for responding to a CDS request is acceptable, an intuitive observer will notice that
such an assumption exaggerates the average consumer’s patience threshold. Given technological societies’
trend for instant gratification, the consumer of UPnP devices are more likely to be impatient.

Designing a UPnP AV MediaServer
July 2003

41

Because a MediaServer is often a hub for content distribution, the likelihood of multiple control points making
queries in a rapid or simultaneous manner is very much a reality. For this reason, CDS implementations
(especially those that represent large content repositories) have a practical necessity for being extremely
optimized. (Although there exists no performance requirement, some have argued that CDS responses should
never take longer than 10 seconds. Some even say 5 seconds.) Although the appearance of high performance
can often be gated by the performance of the control point browsing the content, MediaServer devices are no
less responsible for ensuring that queries by answered quickly.

Because of the practical need for quick response times, a CDS implementation often needs to have an
optimized infrastructure for handling CDS:Search() and CDS:Browse() actions. Software layers designed to
abstract the detailed methodology of enumerating the information-system often lead to bad performance. The
methodology for enumerating a relational database is fundamentally different than enumerating a hierarchical
database. In fact, the way in which one enumerates a relational database (with intent to expose a hierarchy, as
expected by CDS control points) can easily differ as a result of the desired container hierarchy.

So the message to implementers of CDS middleware is simply this: Properly scope your choice of supported
information-systems. Properly analyze the risk posed by attempting to add abstraction layers between the logic
that obtains metadata information and the logic that serializes the DIDL-Lite. Always remember control points
that enumerate a CDS will almost never see CDS metadata as a relational list because the baseline means of
enumerating a MediaServer’s content is always that of a hierarchy.

6.3 Multi-NIC or Single-NIC Systems
A CDS designed to run on a set-top box, or on a closed system with a single network interface, can define
itself as a single-NIC CDS implementation. Every other implementation should run properly on a host
machine with multiple network interfaces. It is clear that host machines with multiple network interfaces are a
permanent part of our digital ecosystem and implementers need to accommodate them. Any CDS
implementation designed to run on a high-end PDA or modern PC is headed for disaster if it does not account
for multiple network interfaces.

As such, the following rules should be applied to MediaServer implementations that serve content and support
multiple network interfaces.

� Represent content available on multiple network interfaces with multiple resource elements of the media
object, where each resource has a URI that is routable from one of the machine’s interfaces.

� When serializing multiple resources of an item, first group the resources by their interface, and then,

within these groups, order the resources according to what the print order would be if there was only a
single network interface.

� When serializing multiple resources of a media object, make sure the first group of resources have URI

values that are accessible from the network interface that received the CDS query/request.

There is an exception to the definition given above of what a single-NIC CDS implementation is and it occurs
under these conditions:

� An IEEE1394/CAT5 MediaServer is part of a stereo system
� Other AV components are designed to handle all UPnP activities on the CAT5 network
� The IEEE1394 network is reserved for the out-of-band transport of content

Designing a UPnP AV MediaServer
July 2003

42

� The CDS (logically) advertises its content on the CAT5 network

In such a scenario, the implementation is treated as a single-NIC implementation, as its UPnP activities only
happen on a single network interface.

7 Summary
In the interests of interoperability, Intel has provided this document as a means of sharing key learnings and
suggestions to the industry. While this document addresses many important issues related to MediaServer
design, it is acknowledged that implementers are still left with many unanswered questions. It is hoped that
future efforts by individuals, the industry, and the UPnP AV Forum will resolve these questions, even as new
ones are raised.

	Introduction
	MediaServer or MediaRenderer?
	Basic Function
	Primary Service
	Features

	DIDL-Lite Basics
	Sample CDS Hierarchy
	Media Objects
	Media Classes
	Title and Creator
	ObjectID and Parent ID Attributes
	Restricted Attribute and WriteStatus Element
	Object Resources
	ProtocolInfo
	Resource URI
	ImportURI
	Multiple Resources

	Determine the Desired Feature Sets
	Content Discovery and Distribution
	Content Discovery
	Content Distribution

	Content Management
	Creating Media Objects
	Support Specific Metadata; Reject Unsupported Metadata
	CDS:CreateObject() and Error Code 712

	Modify Metadata Values Within Reason
	More Accurate Metadata is Good

	Reference Items
	Specifying the Actual Resource/Content
	Restricted Attribute Versus writeStatus Element
	Restricted Containers and Creating Objects
	Read˚only Resources

	Modifying Metadata Entries
	Properly Interpret CSV Arguments
	Enforce Completeness of XML Elements
	Changing Object˚Level Attributes
	CDS:UpdateObject() Follows CDS:CreateObject() Rules
	Restricted Tag Conveys Modify Permissions
	CDS:UpdateObject() Not For Deleting Resources
	CDS:UpdateObject() and Read˚Only Tags

	Destroying Media Objects
	Restricted Attribute Conveys Destroy Permissions
	Recursive Behavior for CDS:DestroyObject()
	Deleting Resources
	CDS Spec Does Not Require Removal of Resources
	No CDS:DeleteResource() Means CDS Handles Resource Removal
	CDS:DeleteResource() Means Delete Binary

	Advanced MediaServer Features
	Out˚of˚Band Content Management
	Content Aggregation and Metadata Mirroring
	Avoid Mirroring of Server˚Side Controlled Content

	Content Bridging and Transcoding
	Content Snippets
	Autonomous User Agents

	Rules to Follow
	DIDL˚Lite Writing Rules
	Properly Escape XML
	Numerical Data Types are not String Data Types
	Do not Forget ParentID and other Required Metadata
	Do not include the XML declaration and comments

	Implement Proper UpdateID Support
	Implement CDS.SystemUpdateID and CDS.ContainerUpdateIDs
	IP Address Rules for HTTP˚GET Content
	Build CDS DIDL˚Lite Responses Dynamically
	ObjectID Lifetime
	Device˚Friendly Resource URI Paths
	Device Friendly Object IDs
	Additional Metadata Value Rules
	Max String Lengths: 255 Bytes/1KB/1MB+
	Min String Lengths: 30 Bytes
	Use 1 and 0 Instead of True and False
	Trim White Spaces From Metadata

	More Metadata is Good
	More Accuracy and More Clarity Please
	Implement Metadata Filtering
	HTTP Rules
	
	Never Use HTTP 0.9
	Closing Sockets After HTTP 1.0 Responses
	Always Respond Before Closing the Socket
	Always Specify the Content˚Length
	HTTP Header Rules

	MediaServer Support for HTTP˚GET Content
	No PrepareForConnection for HTTP˚GET MediaServers
	HTTP˚GET ProtocolInfo For All Content Types
	Mime˚Types and File Extension Mappings
	HTTP˚HEAD
	HTTP˚RANGE
	Content˚Length
	Chunked Encoding
	Pipelining Support and Persistent Connections

	Internationalization
	Represent Media Collections with Container Objects
	Advertise Fully Qualified, Non˚Local URIs
	Playlist Files and Metadata
	Recommendations for M3U Metadata

	Key Design Decisions
	Information System’s Metadata Fields
	Thinking Ahead
	Settings Limits on Search

	Information System’s Infrastructure
	The Relational Database Approach
	The File System (or Hierarchical Database) Approach
	Building an Efficient CDS

	Multi˚NIC or Single˚NIC Systems

	Summary

