MetaData Sharing
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

12 KiB

medashare (Meta Data Sharing)

The idea for medashare is both a standard, but also an implementation of defining and sharing meta data about files. Some media contains the ability to embed meta data, e.g. mp3, some documents, video files, but not all files are able to convey the complete and rich information that may be desired. This will allow you to identify files, and have external associated meta data with various files.

The idea is also to be able to classify parts of the meta data as private (aka TLP:Red), such that the information will not be shared, so that you can mark files w/ your own tags and/or ratings, which will not be automatically shared.

There will also be able to define derivative works by the standard. For example, an album may have multiple tracks, so you can note that an mp3 file is a segment of the album, or that the mp3 file obtained from a music service is equivalent to the track. This will allow sharing meta data between mediums.

This derivation is also useful for when files are programmatically transformed. Say an image is resized, adding a note that the smaller file is a derivative work can allow others to reproduce the file, but also allow you to not have to reenter all the meta data associated with the new version of the file.

This can be useful for things like raw files on a camera, where you associate general picture information w/ the raw image data (but none of the associated processing data that files like CR2 contains) so that the meta data is not lost.

This work is inspired by my work on STIX, a Cyber Threat Intelligence standard, that has many similar requirements as meta data sharing.

Goals / Use Cases

  1. Provide meta data, such as title, actors, copyright holder, for files, such as movies, photos, documents.
  2. Allow look up of meta data by title, actors, etc.
  3. Look up meta data belonging to a file, via file hash.
  4. Support embedded files, such as within a zip file, or bittorrent, so the querier can get all the meta data for a container file, or that the file can be located for download. For example, the info hash for FreeBSD 11.2-R, which then can be d/l’d.
  5. Identify transformations of files, such as a reencoding of a movie, resizing of a photo, or clips of audio/video. For example, a CD often has tracks, and there may be a file that is the whole CD, or just one or part of a track. Both directions should be supported, noting a track is part of a album and when an album has tracks, and links to them.
  6. Possibly use of fingerprint technology, so that the database can be to query meta data based upon parts of the audio/video/image.
  7. Provide meta data for other objects too, such as suggested page down locations for PDFs, or what parts of PDF should be kept on screen in a complete set, so that a page down keeps things readable (and you don’t have to arrow up).
  8. Links to other repositories, such as YouTube videos, SoundCloud, etc.
  9. i18n. Provide translations for fields as needed. Often movie titles will have different translations for different markets/languages. Actors may have different names (e.g. Chinese name vs English name).
  10. Overlaying/replacing meta data from someone else’s object. This may include deleting properties. Say an actor is missing, or you want to add them to it, or you’ve encoded the DVD, and you just link to someone’s BluRay version.

Types

Everything must have a type. Not having well defined types can lead to confusion and problems. Different encoding schemes have different ways of encoding types. If the encoding scheme has a native way to encode that type, it should be used. In some cases, e.g. JSON, there is no formal types beyond numbers and strings, and in this case, a type should (MUST? or via schemas?) be layered on top.

Integers

Look at adding units.

Objects

These are the nodes that contain a majority of the data.

Common Properties

The following properties are present on all (most?) objects: producer_ref UUID of the producer that created this object. Add signing info.

MetaData Object

Properties: uuid UUIDv4 modified date of last modification dc: A Dublin Core property object_marking_refs Imported from STIX v2.0 Part 1: Section 3.1 granular_markings Imported from STIX v2.0 Part 1: Section 3.1 lang RFC XXXX language of the properties. parent_ref UUIDv4 of the parent MetaData Object. Any properties on this object override the parent. (allow deletion via None/null?) Any missing properties are passed through to the parent for resolution.

Opinion Properties: qualityrating On a scale from 1 (poor/terrible) to 5 (great/pristine), the subjective quality of the content.

The base object will contain all the data associated w/ the file (object). The base set of data is based upon the Dublin Core specification, as it provides a nice starting point, and will provide a good mapping to other systems out there.

There may be a link to another MetaData object from which this one is derived. If there is, all the meta data from the derived object (and the ones it derives from) must be included, except for the ones that have been marked deleted, or were overridden. When a property is marked as opinion, it should not be inherited. If the new author agrees with the opinion, then they have to restate the opinion in their object.

Custom properties must be preceded w/ a namespace. The name space is name followed by colon, as is demonstrated above w/ dc for Dublin Core.

The link to the meta data object must include the version referenced, as the referenced object may change. A three way merge may be needed when updating an object where the derived object has also been updated if the new information is wished to be used.

If a property is imported from the blog itself, it is recommended to mark it as such via the granular marking, see X for more info on how to do this.

Open Questions: When meta data is “declassified”, how do you maintain a link to the classified version?

Blob Object

Properties: uuid UUIDv4 blobhash Hash of the blob. This needs to be indexed metadata_ref UUID of the MetaData Object

This is the main mapping object. It maps a set of binary data to the MetaData object. All the data must be stored on the MetaData object. The reason it has a UUIDv4 is that this is your private mapping for the blog. You could possibly have multiple mappings, but most people will only have one, and this also allows you to publish your mapping, and coexist w/ other producer’s mappings.

File Object

Properties: uuid UUIDv5 If the stats do not match, check hash, create a derivative blob object, possibly? modified date of last modification of the object blobhash Hash of the binary data. stat Stats for the file, modified time, file size, used to detect when file has been changed/modified.

A file object references a blob Object, and contains information about the file name in the file system associated w/ the blob. This is used to speed up looking up blob objects.

Container Object

A container object references one or more File objects. This is for representing containers such as zip or tar.gz files, but is also for BitTorrent hashes (event for single file torrents).

URL Object

Similar to the File Object, but for web resources.

These are the edges that connect the nodes. For the most part they do not contain any data.

Equivalent

The two linked nodes, required to be File Objects, are equivalent.

Questions

Open

  1. Fully embedded links or have a separate node object? Embedded links have the advantage of being smaller, but require more structure in the parent object. This structure is likely needed in some cases, such as albums w/ tracks, but some edges, such as a clip to a movie still needs to contain data (meaning not so much a node). I’m leaning towards embedded for now, as this should make things easier, and often structure is needed.
  2. How to handle similar, but split meta data? One person decides to make a simple meta data object for a scene from a movie, while another person makes a segment of that scene from the movie. Should the segment object be a link between the two? or contain it’s own proper data? Some of this can be handled w/ an equivalent meta data object to link two meta datas as being the same.
  3. For quality, is this talking about the possible representation, or the actual “content”? So, a VHS, or old analog over the air encoding may be crappy, but the movie content may be good. We may want to do a multi layered approach (this is less than ideal due to complexities), where files can only link to info about that file, i.e. coding, format, resolution, and this meta data object links to one that is the actual content, i.e. movie w/ actors. Or should this be done via overlay? i.e. someone creates a BluRay meta data object about a movie, and then the DVD overlays the DVD resolution and other info, w/ deleting properties that are not relevant.

Ask cvoid: Should a file system reference point to the blob hash or the uuidv4 of the blog object? blob hash requires a lookup, and maybe selection? Maybe both? To denote the selection. Likely File Objects are going to be private, so internal optimization? This will likely be different for URL objects as they are more public, where file system is often local only (unless on a shared, e.g. work, system).

Settled / Likely Closed

  1. Does a track of a CD deserve it’s own “meta data” object? Thinking yes, as the track may be played on radio, etc. And the Album object can point to the tracks. This also helps solve the compilation problem as the artists and other details are easier to represent separately.

Some thoughts

DHT looks like a good option for finding things. IPFS is a great option for storing the data, and allowing peers to find the data, but it does NOT provide a search solution. It should be able to combine the hash tree crypto solution along w/ the DHT to provide a way to build up an index for a peice of data.

Need to look at DSHT Thoughts:

For search, you need two functions:

  1. lookup(term)
  2. addobject(term, object)

How to do lookup:

  1. Generate a hash of the search term: searchhash = hash(term)
  2. Do a query of this hash to find if there is an object at this location, and this hash will reference an object that contains the results.

How to add an object:

  1. Do a lookup and fetch the object that contains all the current objects.
  2. Update object w/ new object, and now publish this new object.

Validating the object:

Attacks to prevent: Adding random hashes that don’t map to anything. Adding valid hashes that don’t have the proper term in them. When adding hashes, limit number of unverified hashes per block iteration.

Issue is, how do accept that a new block is valid: Some items are attempted to be fetched (likely based upon generation) and validated. Ones that are not validated are marked as suched, and after a period of time of remaining unvalidated are removed. New objects likely need to be validated in the immediately following block to help prevent bad growth. Likely there needs to be multiple “live” blocks that are intermingled. This can be done via a simple LSFR + count, likely dependant upon number of updates and size and difficulty of validating objects.

When updating, always check for n + 1 until n is not found. When publishing, depending upon timeframe, select n where n is smallest but still means time parameter.


IPFS not sure if it has a final hash mapping system, but each object in IPFS may have different multihash depending upon how blog/list is broken out.

Need a mapping system like: sha256:XXX -> ipfs:XLYkgq61DYaa8Nh3cq1U7rLinSa7dSHQ16x

This could/should include multiple other items? like maybe block level hashing, though if there’s an ipfs, that provides it..

Reference Info:

https://wiki.freedesktop.org/www/CommonExtendedAttributes/ Dublin Core reference by Freedesktop