Implement a secure ICS protocol targeting LoRa Node151 microcontroller for controlling irrigation.
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
 
 
 
 
 
 

438 rindas
8.9 KiB

  1. /*-
  2. * Copyright 2021 John-Mark Gurney.
  3. *
  4. * Redistribution and use in source and binary forms, with or without
  5. * modification, are permitted provided that the following conditions
  6. * are met:
  7. * 1. Redistributions of source code must retain the above copyright
  8. * notice, this list of conditions and the following disclaimer.
  9. * 2. Redistributions in binary form must reproduce the above copyright
  10. * notice, this list of conditions and the following disclaimer in the
  11. * documentation and/or other materials provided with the distribution.
  12. *
  13. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  14. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  15. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  16. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  17. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  18. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  19. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  20. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  21. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  22. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  23. * SUCH DAMAGE.
  24. *
  25. */
  26. #include "stm32l1xx.h"
  27. #include "stm32l1xx_hal.h"
  28. /* LoRaMac headers */
  29. #include <board.h>
  30. #include <adc.h>
  31. #include <radio.h>
  32. #include <delay.h>
  33. /* lora-irr headers */
  34. #include <misc.h>
  35. #include <strobe_rng_init.h>
  36. #include <comms.h>
  37. enum {
  38. CMD_TERMINATE = 1,
  39. CMD_WAITFOR = 2,
  40. CMD_RUNFOR = 3,
  41. CMD_PING = 4,
  42. CMD_SETUNSET = 5,
  43. CMD_ADV = 6,
  44. CMD_CLEAR = 7,
  45. };
  46. /*
  47. * rxpktavail is initialized to true meaning that the data in rxpkt
  48. * can be over written. When a packet is received, the data is copied
  49. * to rxpkt, and then rxpktavail is set to false. Once the packet has
  50. * been processed, it is set back to true.
  51. */
  52. static uint8_t rxpkt[128];
  53. static struct pktbuf rxpktbuf;
  54. static volatile bool rxpktavail;
  55. static uint8_t shared_key[] = "foobar";
  56. static struct pktbuf shared_key_buf = (struct pktbuf){
  57. .pkt = shared_key,
  58. .pktlen = sizeof shared_key - 1,
  59. };
  60. static struct comms_state cs;
  61. void
  62. txdone(void)
  63. {
  64. /* restart Rx when Tx done */
  65. Radio.Rx(0);
  66. }
  67. void
  68. txtimeout(void)
  69. {
  70. /* restart Rx when Tx done */
  71. Radio.Rx(0);
  72. }
  73. void
  74. rxdone(uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr)
  75. {
  76. if (rxpktavail) {
  77. memcpy(rxpkt, payload, MIN(sizeof rxpkt, size));
  78. rxpktbuf = (struct pktbuf){
  79. .pkt = rxpkt,
  80. .pktlen = size,
  81. };
  82. rxpktavail = false;
  83. }
  84. }
  85. void
  86. rxtimeout(void)
  87. {
  88. }
  89. void
  90. rxerr(void)
  91. {
  92. }
  93. RadioEvents_t revents = {
  94. .TxDone = txdone,
  95. .TxTimeout = txtimeout,
  96. .RxDone = rxdone,
  97. .RxTimeout = rxtimeout,
  98. .RxError = rxerr,
  99. };
  100. /*
  101. * Seed the randomness from the radio. This is not a great
  102. * seed, and is hard to gauge how much randomness is really
  103. * there. Assuming about 1 bit per 8 bits looks pretty safe,
  104. * so add 256 * 8 / 32 words.
  105. */
  106. static void
  107. radio_seed_rng(void)
  108. {
  109. #if 1
  110. uint32_t v;
  111. int i;
  112. for (i = 0; i < 256 * 8 / 32; i++) {
  113. v = Radio.Random();
  114. strobe_seed_prng((uint8_t *)&v, sizeof v);
  115. }
  116. #endif
  117. }
  118. static void
  119. analog_seed_rng(void)
  120. {
  121. #if 1
  122. uint16_t v;
  123. int i;
  124. for (i = 0; i < 256 / 2; i++) {
  125. /*
  126. * Capture some ADC data. If pin is floating, 0xfff
  127. * happens frequently, if pin is grounded, 0 happens
  128. * frequently, filter these values out.
  129. */
  130. do {
  131. v = AdcReadChannel(&Adc, ADC_CHANNEL_21);
  132. } while (v == 0 || v == 0xfff);
  133. strobe_seed_prng((uint8_t *)&v, sizeof v);
  134. }
  135. #endif
  136. }
  137. static inline uint32_t
  138. letoh_32(uint8_t *v)
  139. {
  140. return v[0] | (v[1] << 8) | (v[2] << 16) | (v[3] << 24);
  141. }
  142. struct chaninfo {
  143. GPIO_TypeDef *bank;
  144. uint16_t pinnum;
  145. bool init;
  146. bool invert;
  147. } chans[] = {
  148. [0] = { .bank = GPIOB, .pinnum = GPIO_PIN_5, .invert = true, },
  149. [1] = { .bank = GPIOB, .pinnum = GPIO_PIN_6, .invert = true, },
  150. [2] = { .bank = GPIOB, .pinnum = GPIO_PIN_7, .invert = true, },
  151. [3] = { .bank = GPIOB, .pinnum = GPIO_PIN_9, .invert = true, },
  152. /* Turn on LED at start */
  153. [4] = { .bank = GPIOB, .pinnum = GPIO_PIN_8, .init = true, },
  154. };
  155. #define nitems(x) (sizeof(x) / sizeof *(x))
  156. static void
  157. set_chan(uint32_t chan, bool val)
  158. {
  159. struct chaninfo ci;
  160. if (chan < nitems(chans)) {
  161. ci = chans[chan];
  162. HAL_GPIO_WritePin(ci.bank, ci.pinnum, val ^ ci.invert ?
  163. GPIO_PIN_SET : GPIO_PIN_RESET);
  164. }
  165. }
  166. static void
  167. setup_gpio()
  168. {
  169. GPIO_InitTypeDef GPIO_InitStruct;
  170. int i;
  171. for (i = 0; i < nitems(chans); i++) {
  172. GPIO_InitStruct = (GPIO_InitTypeDef){
  173. .Pin = chans[i].pinnum,
  174. .Mode = GPIO_MODE_OUTPUT_PP,
  175. .Pull = GPIO_NOPULL,
  176. .Speed = GPIO_SPEED_FREQ_LOW,
  177. };
  178. HAL_GPIO_Init(chans[i].bank, &GPIO_InitStruct);
  179. set_chan(i, chans[i].init);
  180. }
  181. }
  182. static struct sched {
  183. uint32_t cmd;
  184. uint32_t end_wait_tick; /* end if running, otherwise how long to wait */
  185. uint32_t chan;
  186. } schedule[20];
  187. static int schedpos; /* position in schedule, % nitems(schedule)*/
  188. static int schedcnt; /* total items waiting */
  189. #define SCHED_ITEM(x) (schedule[(schedpos + x) % nitems(schedule)])
  190. #define SCHED_HEAD SCHED_ITEM(0)
  191. #define SCHED_TAIL SCHED_ITEM(schedcnt)
  192. static void
  193. start_sched(struct sched *sched)
  194. {
  195. sched->end_wait_tick += uwTick;
  196. if (sched->cmd == CMD_RUNFOR)
  197. set_chan(sched->chan, 1);
  198. }
  199. static void
  200. process_sched()
  201. {
  202. /* nothing to do? */
  203. if (schedcnt == 0)
  204. return;
  205. /* not yet expired */
  206. if (uwTick < SCHED_HEAD.end_wait_tick)
  207. return;
  208. if (SCHED_HEAD.cmd == CMD_RUNFOR)
  209. set_chan(SCHED_HEAD.chan, 0);
  210. /* we are done, advance */
  211. schedpos++;
  212. schedcnt--;
  213. if (schedcnt)
  214. start_sched(&SCHED_HEAD);
  215. }
  216. static void
  217. enqueue_sched(uint32_t cmd, uint32_t ticks, uint32_t chan)
  218. {
  219. if (schedcnt >= nitems(schedule))
  220. return;
  221. SCHED_TAIL = (struct sched){
  222. .cmd = cmd,
  223. .end_wait_tick = ticks,
  224. .chan = chan,
  225. };
  226. if (schedcnt == 0)
  227. start_sched(&SCHED_HEAD);
  228. schedcnt++;
  229. }
  230. static void
  231. procmsg(struct pktbuf inbuf, struct pktbuf *outbuf)
  232. {
  233. uint32_t args[5];
  234. int i, apos, cnt;
  235. i = 1;
  236. apos = 0;
  237. while (i < inbuf.pktlen) {
  238. if (i + 4 <= inbuf.pktlen) {
  239. args[apos++] = letoh_32(&inbuf.pkt[i]);
  240. i += 4;
  241. }
  242. }
  243. outbuf->pkt[0] = inbuf.pkt[0];
  244. switch (inbuf.pkt[0]) {
  245. case CMD_WAITFOR:
  246. if (apos == 1)
  247. enqueue_sched(CMD_WAITFOR, args[0], -1);
  248. break;
  249. case CMD_RUNFOR:
  250. if (apos == 2)
  251. enqueue_sched(CMD_RUNFOR, args[0], args[1]);
  252. break;
  253. case CMD_PING:
  254. break;
  255. case CMD_SETUNSET:
  256. if (apos == 2)
  257. set_chan(args[0], args[1]);
  258. break;
  259. case CMD_ADV:
  260. cnt = 1;
  261. if (apos == 1)
  262. cnt = args[0];
  263. for (i = 0; i < cnt && i < schedcnt; i++)
  264. SCHED_ITEM(i).end_wait_tick = 0;
  265. break;
  266. case CMD_CLEAR:
  267. if (schedcnt)
  268. schedcnt = 1;
  269. break;
  270. default:
  271. outbuf->pkt[0] = 0;
  272. break;
  273. }
  274. outbuf->pktlen = 1;
  275. }
  276. int
  277. main()
  278. {
  279. strobe_rng_init();
  280. BoardInitMcu();
  281. Radio.Init(&revents);
  282. analog_seed_rng();
  283. radio_seed_rng();
  284. strobe_rng_save();
  285. setup_gpio();
  286. /* turn on LED */
  287. HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET);
  288. Radio.SetModem(MODEM_LORA);
  289. Radio.SetChannel(914350 * 1000);
  290. /* RX/TX parameters */
  291. const uint8_t modem = MODEM_LORA;
  292. const uint8_t bandwidth = 0 /* 128 kHz */;
  293. const uint8_t datarate = 7 /* 128 chips */;
  294. const uint8_t coderate = 1 /* 4/5 */;
  295. const uint8_t preambleLen = 8 /* symbols */;
  296. const uint8_t fixLen = 0 /* variable */;
  297. const uint8_t crcOn = 1 /* on */;
  298. const uint8_t freqHopOn = 0 /* off */;
  299. const bool iqInverted = false /* not inverted */;
  300. Radio.SetRxConfig(modem, bandwidth, datarate, coderate, 0/*afc*/,
  301. preambleLen, 5/*symTimeout*/, fixLen, 0/*payloadlen*/, crcOn,
  302. freqHopOn, 0/*hopPeriod*/, iqInverted, true/*rxcont*/);
  303. Radio.SetTxConfig(modem, 11/*power*/, 0/*fdev*/, bandwidth, datarate,
  304. coderate, preambleLen, fixLen, crcOn, freqHopOn, 0/*hopPeriod*/,
  305. iqInverted, 1000/*timeout*/);
  306. /* blink led */
  307. HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_RESET);
  308. DelayMs(300);
  309. HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET);
  310. Radio.Rx(0);
  311. comms_init(&cs, procmsg, &shared_key_buf);
  312. uint8_t txbuf[128] = "i'mhere";
  313. struct pktbuf txpktbuf;
  314. txpktbuf = (struct pktbuf){
  315. .pkt = txbuf,
  316. .pktlen = 8,
  317. };
  318. Radio.Send(txpktbuf.pkt, txpktbuf.pktlen);
  319. rxpktavail = true;
  320. //Radio.Rx(0);
  321. loop:
  322. process_sched();
  323. BoardLowPowerHandler();
  324. if (Radio.IrqProcess != NULL)
  325. Radio.IrqProcess();
  326. if (!rxpktavail) {
  327. txpktbuf = (struct pktbuf){
  328. .pkt = txbuf,
  329. .pktlen = sizeof txbuf,
  330. };
  331. /* process available packet */
  332. comms_process(&cs, rxpktbuf, &txpktbuf);
  333. rxpktavail = true;
  334. if (txpktbuf.pktlen) {
  335. int i;
  336. for (i = 0; i < 1; i++) {
  337. DelayMs(20);
  338. Radio.Send(txpktbuf.pkt, txpktbuf.pktlen);
  339. }
  340. #if 0
  341. /* blink led */
  342. HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_RESET);
  343. DelayMs(300);
  344. HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET);
  345. DelayMs(300);
  346. #endif
  347. }
  348. #if 0
  349. /* blink led */
  350. HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_RESET);
  351. DelayMs(300);
  352. HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET);
  353. #endif
  354. }
  355. goto loop;
  356. }