This repo contains code to mirror other repos. It also contains the code that is getting mirrored.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

272 lines
8.7 KiB

  1. "This module implements an Earley Parser"
  2. # The parser uses a parse-forest to keep track of derivations and ambiguations.
  3. # When the parse ends successfully, a disambiguation stage resolves all ambiguity
  4. # (right now ambiguity resolution is not developed beyond the needs of lark)
  5. # Afterwards the parse tree is reduced (transformed) according to user callbacks.
  6. # I use the no-recursion version of Transformer and Visitor, because the tree might be
  7. # deeper than Python's recursion limit (a bit absurd, but that's life)
  8. #
  9. # The algorithm keeps track of each state set, using a corresponding Column instance.
  10. # Column keeps track of new items using NewsList instances.
  11. #
  12. # Author: Erez Shinan (2017)
  13. # Email : erezshin@gmail.com
  14. from functools import cmp_to_key
  15. from ..utils import compare
  16. from ..common import ParseError, UnexpectedToken, Terminal
  17. from ..tree import Tree, Visitor_NoRecurse, Transformer_NoRecurse
  18. from .grammar_analysis import GrammarAnalyzer
  19. class EndToken:
  20. type = '$end'
  21. class Derivation(Tree):
  22. def __init__(self, rule, items=None):
  23. Tree.__init__(self, 'drv', items or [])
  24. self.rule = rule
  25. END_TOKEN = EndToken()
  26. class Item(object):
  27. "An Earley Item, the atom of the algorithm."
  28. def __init__(self, rule, ptr, start, tree):
  29. self.rule = rule
  30. self.ptr = ptr
  31. self.start = start
  32. self.tree = tree if tree is not None else Derivation(self.rule)
  33. @property
  34. def expect(self):
  35. return self.rule.expansion[self.ptr]
  36. @property
  37. def is_complete(self):
  38. return self.ptr == len(self.rule.expansion)
  39. def advance(self, tree):
  40. assert self.tree.data == 'drv'
  41. new_tree = Derivation(self.rule, self.tree.children + [tree])
  42. return Item(self.rule, self.ptr+1, self.start, new_tree)
  43. def __eq__(self, other):
  44. return self.start is other.start and self.ptr == other.ptr and self.rule == other.rule
  45. def __hash__(self):
  46. return hash((self.rule, self.ptr, id(self.start)))
  47. def __repr__(self):
  48. before = list(map(str, self.rule.expansion[:self.ptr]))
  49. after = list(map(str, self.rule.expansion[self.ptr:]))
  50. return '<(%d) %s : %s * %s>' % (id(self.start), self.rule.origin, ' '.join(before), ' '.join(after))
  51. class NewsList(list):
  52. "Keeps track of newly added items (append-only)"
  53. def __init__(self, initial=None):
  54. list.__init__(self, initial or [])
  55. self.last_iter = 0
  56. def get_news(self):
  57. i = self.last_iter
  58. self.last_iter = len(self)
  59. return self[i:]
  60. class Column:
  61. "An entry in the table, aka Earley Chart. Contains lists of items."
  62. def __init__(self, i):
  63. self.i = i
  64. self.to_reduce = NewsList()
  65. self.to_predict = NewsList()
  66. self.to_scan = NewsList()
  67. self.item_count = 0
  68. self.added = set()
  69. self.completed = {}
  70. def add(self, items):
  71. """Sort items into scan/predict/reduce newslists
  72. Makes sure only unique items are added.
  73. """
  74. for item in items:
  75. if item.is_complete:
  76. # XXX Potential bug: What happens if there's ambiguity in an empty rule?
  77. if item.rule.expansion and item in self.completed:
  78. old_tree = self.completed[item].tree
  79. if old_tree.data != '_ambig':
  80. new_tree = old_tree.copy()
  81. new_tree.rule = old_tree.rule
  82. old_tree.set('_ambig', [new_tree])
  83. if item.tree.children[0] is old_tree: # XXX a little hacky!
  84. raise ParseError("Infinite recursion in grammar!")
  85. old_tree.children.append(item.tree)
  86. else:
  87. self.completed[item] = item
  88. self.to_reduce.append(item)
  89. else:
  90. if item not in self.added:
  91. self.added.add(item)
  92. if isinstance(item.expect, Terminal):
  93. self.to_scan.append(item)
  94. else:
  95. self.to_predict.append(item)
  96. self.item_count += 1 # Only count if actually added
  97. def __nonzero__(self):
  98. return bool(self.item_count)
  99. class Parser:
  100. def __init__(self, rules, start_symbol, callback, resolve_ambiguity=True):
  101. self.analysis = GrammarAnalyzer(rules, start_symbol)
  102. self.start_symbol = start_symbol
  103. self.resolve_ambiguity = resolve_ambiguity
  104. self.postprocess = {}
  105. self.predictions = {}
  106. for rule in self.analysis.rules:
  107. if rule.origin != '$root': # XXX kinda ugly
  108. a = rule.alias
  109. self.postprocess[rule] = a if callable(a) else (a and getattr(callback, a))
  110. self.predictions[rule.origin] = [x.rule for x in self.analysis.expand_rule(rule.origin)]
  111. def parse(self, stream, start_symbol=None):
  112. # Define parser functions
  113. start_symbol = start_symbol or self.start_symbol
  114. def predict(nonterm, column):
  115. assert not isinstance(nonterm, Terminal), nonterm
  116. return [Item(rule, 0, column, None) for rule in self.predictions[nonterm]]
  117. def complete(item):
  118. name = item.rule.origin
  119. return [i.advance(item.tree) for i in item.start.to_predict if i.expect == name]
  120. def predict_and_complete(column):
  121. while True:
  122. to_predict = {x.expect for x in column.to_predict.get_news()
  123. if x.ptr} # if not part of an already predicted batch
  124. to_reduce = column.to_reduce.get_news()
  125. if not (to_predict or to_reduce):
  126. break
  127. for nonterm in to_predict:
  128. column.add( predict(nonterm, column) )
  129. for item in to_reduce:
  130. column.add( complete(item) )
  131. def scan(i, token, column):
  132. to_scan = column.to_scan.get_news()
  133. next_set = Column(i)
  134. next_set.add(item.advance(token) for item in to_scan if item.expect.match(token))
  135. if not next_set:
  136. expect = {i.expect for i in column.to_scan}
  137. raise UnexpectedToken(token, expect, stream, i)
  138. return next_set
  139. # Main loop starts
  140. column0 = Column(0)
  141. column0.add(predict(start_symbol, column0))
  142. column = column0
  143. for i, token in enumerate(stream):
  144. predict_and_complete(column)
  145. column = scan(i, token, column)
  146. predict_and_complete(column)
  147. # Parse ended. Now build a parse tree
  148. solutions = [n.tree for n in column.to_reduce
  149. if n.rule.origin==start_symbol and n.start is column0]
  150. if not solutions:
  151. raise ParseError('Incomplete parse: Could not find a solution to input')
  152. elif len(solutions) == 1:
  153. tree = solutions[0]
  154. else:
  155. tree = Tree('_ambig', solutions)
  156. if self.resolve_ambiguity:
  157. ResolveAmbig().visit(tree)
  158. return ApplyCallbacks(self.postprocess).transform(tree)
  159. class ApplyCallbacks(Transformer_NoRecurse):
  160. def __init__(self, postprocess):
  161. self.postprocess = postprocess
  162. def drv(self, tree):
  163. children = tree.children
  164. callback = self.postprocess[tree.rule]
  165. if callback:
  166. return callback(children)
  167. else:
  168. return Tree(rule.origin, children)
  169. def _compare_rules(rule1, rule2):
  170. assert rule1.origin == rule2.origin
  171. c = compare( len(rule1.expansion), len(rule2.expansion))
  172. if rule1.origin.startswith('__'): # XXX hack! We need to set priority in parser, not here
  173. c = -c
  174. return c
  175. def _compare_drv(tree1, tree2):
  176. if not (isinstance(tree1, Tree) and isinstance(tree2, Tree)):
  177. return compare(tree1, tree2)
  178. c = _compare_rules(tree1.rule, tree2.rule)
  179. if c:
  180. return c
  181. # rules are "equal", so compare trees
  182. for t1, t2 in zip(tree1.children, tree2.children):
  183. c = _compare_drv(t1, t2)
  184. if c:
  185. return c
  186. return compare(len(tree1.children), len(tree2.children))
  187. class ResolveAmbig(Visitor_NoRecurse):
  188. def _ambig(self, tree):
  189. best = min(tree.children, key=cmp_to_key(_compare_drv))
  190. assert best.data == 'drv'
  191. tree.set('drv', best.children)
  192. tree.rule = best.rule # needed for applying callbacks
  193. # RULES = [
  194. # ('a', ['d']),
  195. # ('d', ['b']),
  196. # ('b', ['C']),
  197. # ('b', ['b', 'C']),
  198. # ('b', ['C', 'b']),
  199. # ]
  200. # p = Parser(RULES, 'a')
  201. # for x in p.parse('CC'):
  202. # print x.pretty()
  203. #---------------
  204. # RULES = [
  205. # ('s', ['a', 'a']),
  206. # ('a', ['b', 'b']),
  207. # ('b', ['C'], lambda (x,): x),
  208. # ('b', ['b', 'C']),
  209. # ]
  210. # p = Parser(RULES, 's', {})
  211. # print p.parse('CCCCC').pretty()