|
- """"This module implements an SPPF implementation
-
- This is used as the primary output mechanism for the Earley parser
- in order to store complex ambiguities.
-
- Full reference and more details is here:
- http://www.bramvandersanden.com/post/2014/06/shared-packed-parse-forest/
- """
-
- from random import randint
- from math import isinf
- from collections import deque
- from operator import attrgetter
- from importlib import import_module
-
- from ..utils import logger
- from ..tree import Tree
- from ..exceptions import ParseError
-
- class ForestNode(object):
- pass
-
- class SymbolNode(ForestNode):
- """
- A Symbol Node represents a symbol (or Intermediate LR0).
-
- Symbol nodes are keyed by the symbol (s). For intermediate nodes
- s will be an LR0, stored as a tuple of (rule, ptr). For completed symbol
- nodes, s will be a string representing the non-terminal origin (i.e.
- the left hand side of the rule).
-
- The children of a Symbol or Intermediate Node will always be Packed Nodes;
- with each Packed Node child representing a single derivation of a production.
-
- Hence a Symbol Node with a single child is unambiguous.
- """
- __slots__ = ('s', 'start', 'end', '_children', 'paths', 'paths_loaded', 'priority', 'is_intermediate', '_hash')
- def __init__(self, s, start, end):
- self.s = s
- self.start = start
- self.end = end
- self._children = set()
- self.paths = set()
- self.paths_loaded = False
-
- ### We use inf here as it can be safely negated without resorting to conditionals,
- # unlike None or float('NaN'), and sorts appropriately.
- self.priority = float('-inf')
- self.is_intermediate = isinstance(s, tuple)
- self._hash = hash((self.s, self.start, self.end))
-
- def add_family(self, lr0, rule, start, left, right):
- self._children.add(PackedNode(self, lr0, rule, start, left, right))
-
- def add_path(self, transitive, node):
- self.paths.add((transitive, node))
-
- def load_paths(self):
- for transitive, node in self.paths:
- if transitive.next_titem is not None:
- vn = SymbolNode(transitive.next_titem.s, transitive.next_titem.start, self.end)
- vn.add_path(transitive.next_titem, node)
- self.add_family(transitive.reduction.rule.origin, transitive.reduction.rule, transitive.reduction.start, transitive.reduction.node, vn)
- else:
- self.add_family(transitive.reduction.rule.origin, transitive.reduction.rule, transitive.reduction.start, transitive.reduction.node, node)
- self.paths_loaded = True
-
- @property
- def is_ambiguous(self):
- return len(self.children) > 1
-
- @property
- def children(self):
- if not self.paths_loaded: self.load_paths()
- return sorted(self._children, key=attrgetter('sort_key'))
-
- def __iter__(self):
- return iter(self._children)
-
- def __eq__(self, other):
- if not isinstance(other, SymbolNode):
- return False
- return self is other or (type(self.s) == type(other.s) and self.s == other.s and self.start == other.start and self.end is other.end)
-
- def __hash__(self):
- return self._hash
-
- def __repr__(self):
- if self.is_intermediate:
- rule = self.s[0]
- ptr = self.s[1]
- before = ( expansion.name for expansion in rule.expansion[:ptr] )
- after = ( expansion.name for expansion in rule.expansion[ptr:] )
- symbol = "{} ::= {}* {}".format(rule.origin.name, ' '.join(before), ' '.join(after))
- else:
- symbol = self.s.name
- return "({}, {}, {}, {})".format(symbol, self.start, self.end, self.priority)
-
- class PackedNode(ForestNode):
- """
- A Packed Node represents a single derivation in a symbol node.
- """
- __slots__ = ('parent', 's', 'rule', 'start', 'left', 'right', 'priority', '_hash')
- def __init__(self, parent, s, rule, start, left, right):
- self.parent = parent
- self.s = s
- self.start = start
- self.rule = rule
- self.left = left
- self.right = right
- self.priority = float('-inf')
- self._hash = hash((self.left, self.right))
-
- @property
- def is_empty(self):
- return self.left is None and self.right is None
-
- @property
- def sort_key(self):
- """
- Used to sort PackedNode children of SymbolNodes.
- A SymbolNode has multiple PackedNodes if it matched
- ambiguously. Hence, we use the sort order to identify
- the order in which ambiguous children should be considered.
- """
- return self.is_empty, -self.priority, self.rule.order
-
- def __iter__(self):
- return iter([self.left, self.right])
-
- def __eq__(self, other):
- if not isinstance(other, PackedNode):
- return False
- return self is other or (self.left == other.left and self.right == other.right)
-
- def __hash__(self):
- return self._hash
-
- def __repr__(self):
- if isinstance(self.s, tuple):
- rule = self.s[0]
- ptr = self.s[1]
- before = ( expansion.name for expansion in rule.expansion[:ptr] )
- after = ( expansion.name for expansion in rule.expansion[ptr:] )
- symbol = "{} ::= {}* {}".format(rule.origin.name, ' '.join(before), ' '.join(after))
- else:
- symbol = self.s.name
- return "({}, {}, {}, {})".format(symbol, self.start, self.priority, self.rule.order)
-
- class ForestVisitor(object):
- """
- An abstract base class for building forest visitors.
-
- Use this as a base when you need to walk the forest.
- """
- __slots__ = ['result']
-
- def visit_token_node(self, node): pass
- def visit_symbol_node_in(self, node): pass
- def visit_symbol_node_out(self, node): pass
- def visit_packed_node_in(self, node): pass
- def visit_packed_node_out(self, node): pass
-
- def visit(self, root):
- self.result = None
- # Visiting is a list of IDs of all symbol/intermediate nodes currently in
- # the stack. It serves two purposes: to detect when we 'recurse' in and out
- # of a symbol/intermediate so that we can process both up and down. Also,
- # since the SPPF can have cycles it allows us to detect if we're trying
- # to recurse into a node that's already on the stack (infinite recursion).
- visiting = set()
-
- # We do not use recursion here to walk the Forest due to the limited
- # stack size in python. Therefore input_stack is essentially our stack.
- input_stack = deque([root])
-
- # It is much faster to cache these as locals since they are called
- # many times in large parses.
- vpno = getattr(self, 'visit_packed_node_out')
- vpni = getattr(self, 'visit_packed_node_in')
- vsno = getattr(self, 'visit_symbol_node_out')
- vsni = getattr(self, 'visit_symbol_node_in')
- vtn = getattr(self, 'visit_token_node')
- while input_stack:
- current = next(reversed(input_stack))
- try:
- next_node = next(current)
- except StopIteration:
- input_stack.pop()
- continue
- except TypeError:
- ### If the current object is not an iterator, pass through to Token/SymbolNode
- pass
- else:
- if next_node is None:
- continue
-
- if id(next_node) in visiting:
- raise ParseError("Infinite recursion in grammar, in rule '%s'!" % next_node.s.name)
-
- input_stack.append(next_node)
- continue
-
- if not isinstance(current, ForestNode):
- vtn(current)
- input_stack.pop()
- continue
-
- current_id = id(current)
- if current_id in visiting:
- if isinstance(current, PackedNode): vpno(current)
- else: vsno(current)
- input_stack.pop()
- visiting.remove(current_id)
- continue
- else:
- visiting.add(current_id)
- if isinstance(current, PackedNode): next_node = vpni(current)
- else: next_node = vsni(current)
- if next_node is None:
- continue
-
- if id(next_node) in visiting:
- raise ParseError("Infinite recursion in grammar!")
-
- input_stack.append(next_node)
- continue
-
- return self.result
-
- class ForestSumVisitor(ForestVisitor):
- """
- A visitor for prioritizing ambiguous parts of the Forest.
-
- This visitor is used when support for explicit priorities on
- rules is requested (whether normal, or invert). It walks the
- forest (or subsets thereof) and cascades properties upwards
- from the leaves.
-
- It would be ideal to do this during parsing, however this would
- require processing each Earley item multiple times. That's
- a big performance drawback; so running a forest walk is the
- lesser of two evils: there can be significantly more Earley
- items created during parsing than there are SPPF nodes in the
- final tree.
- """
- def visit_packed_node_in(self, node):
- return iter([node.left, node.right])
-
- def visit_symbol_node_in(self, node):
- return iter(node.children)
-
- def visit_packed_node_out(self, node):
- priority = node.rule.options.priority if not node.parent.is_intermediate and node.rule.options.priority else 0
- priority += getattr(node.right, 'priority', 0)
- priority += getattr(node.left, 'priority', 0)
- node.priority = priority
-
- def visit_symbol_node_out(self, node):
- node.priority = max(child.priority for child in node.children)
-
- class ForestToTreeVisitor(ForestVisitor):
- """
- A Forest visitor which converts an SPPF forest to an unambiguous AST.
-
- The implementation in this visitor walks only the first ambiguous child
- of each symbol node. When it finds an ambiguous symbol node it first
- calls the forest_sum_visitor implementation to sort the children
- into preference order using the algorithms defined there; so the first
- child should always be the highest preference. The forest_sum_visitor
- implementation should be another ForestVisitor which sorts the children
- according to some priority mechanism.
- """
- __slots__ = ['forest_sum_visitor', 'callbacks', 'output_stack']
- def __init__(self, callbacks, forest_sum_visitor = None):
- assert callbacks
- self.forest_sum_visitor = forest_sum_visitor
- self.callbacks = callbacks
-
- def visit(self, root):
- self.output_stack = deque()
- return super(ForestToTreeVisitor, self).visit(root)
-
- def visit_token_node(self, node):
- self.output_stack[-1].append(node)
-
- def visit_symbol_node_in(self, node):
- if self.forest_sum_visitor and node.is_ambiguous and isinf(node.priority):
- self.forest_sum_visitor.visit(node)
- return next(iter(node.children))
-
- def visit_packed_node_in(self, node):
- if not node.parent.is_intermediate:
- self.output_stack.append([])
- return iter([node.left, node.right])
-
- def visit_packed_node_out(self, node):
- if not node.parent.is_intermediate:
- result = self.callbacks[node.rule](self.output_stack.pop())
- if self.output_stack:
- self.output_stack[-1].append(result)
- else:
- self.result = result
-
- class ForestToAmbiguousTreeVisitor(ForestToTreeVisitor):
- """
- A Forest visitor which converts an SPPF forest to an ambiguous AST.
-
- Because of the fundamental disparity between what can be stored in
- an SPPF and what can be stored in a Tree; this implementation is not
- complete. It correctly deals with ambiguities that occur on symbol nodes only,
- and cannot deal with ambiguities that occur on intermediate nodes.
-
- Usually, most parsers can be rewritten to avoid intermediate node
- ambiguities. Also, this implementation could be fixed, however
- the code to handle intermediate node ambiguities is messy and
- would not be performant. It is much better not to use this and
- instead to correctly disambiguate the forest and only store unambiguous
- parses in Trees. It is here just to provide some parity with the
- old ambiguity='explicit'.
-
- This is mainly used by the test framework, to make it simpler to write
- tests ensuring the SPPF contains the right results.
- """
- def __init__(self, callbacks, forest_sum_visitor = ForestSumVisitor):
- super(ForestToAmbiguousTreeVisitor, self).__init__(callbacks, forest_sum_visitor)
-
- def visit_token_node(self, node):
- self.output_stack[-1].children.append(node)
-
- def visit_symbol_node_in(self, node):
- if node.is_ambiguous:
- if self.forest_sum_visitor and isinf(node.priority):
- self.forest_sum_visitor.visit(node)
- if node.is_intermediate:
- # TODO Support ambiguous intermediate nodes!
- logger.warning("Ambiguous intermediate node in the SPPF: %s. "
- "Lark does not currently process these ambiguities; resolving with the first derivation.", node)
- return next(iter(node.children))
- else:
- self.output_stack.append(Tree('_ambig', []))
-
- return iter(node.children)
-
- def visit_symbol_node_out(self, node):
- if not node.is_intermediate and node.is_ambiguous:
- result = self.output_stack.pop()
- if self.output_stack:
- self.output_stack[-1].children.append(result)
- else:
- self.result = result
-
- def visit_packed_node_in(self, node):
- if not node.parent.is_intermediate:
- self.output_stack.append(Tree('drv', []))
- return iter([node.left, node.right])
-
- def visit_packed_node_out(self, node):
- if not node.parent.is_intermediate:
- result = self.callbacks[node.rule](self.output_stack.pop().children)
- if self.output_stack:
- self.output_stack[-1].children.append(result)
- else:
- self.result = result
-
- class ForestToPyDotVisitor(ForestVisitor):
- """
- A Forest visitor which writes the SPPF to a PNG.
-
- The SPPF can get really large, really quickly because
- of the amount of meta-data it stores, so this is probably
- only useful for trivial trees and learning how the SPPF
- is structured.
- """
- def __init__(self, rankdir="TB"):
- self.pydot = import_module('pydot')
- self.graph = self.pydot.Dot(graph_type='digraph', rankdir=rankdir)
-
- def visit(self, root, filename):
- super(ForestToPyDotVisitor, self).visit(root)
- self.graph.write_png(filename)
-
- def visit_token_node(self, node):
- graph_node_id = str(id(node))
- graph_node_label = "\"{}\"".format(node.value.replace('"', '\\"'))
- graph_node_color = 0x808080
- graph_node_style = "\"filled,rounded\""
- graph_node_shape = "diamond"
- graph_node = self.pydot.Node(graph_node_id, style=graph_node_style, fillcolor="#{:06x}".format(graph_node_color), shape=graph_node_shape, label=graph_node_label)
- self.graph.add_node(graph_node)
-
- def visit_packed_node_in(self, node):
- graph_node_id = str(id(node))
- graph_node_label = repr(node)
- graph_node_color = 0x808080
- graph_node_style = "filled"
- graph_node_shape = "diamond"
- graph_node = self.pydot.Node(graph_node_id, style=graph_node_style, fillcolor="#{:06x}".format(graph_node_color), shape=graph_node_shape, label=graph_node_label)
- self.graph.add_node(graph_node)
- return iter([node.left, node.right])
-
- def visit_packed_node_out(self, node):
- graph_node_id = str(id(node))
- graph_node = self.graph.get_node(graph_node_id)[0]
- for child in [node.left, node.right]:
- if child is not None:
- child_graph_node_id = str(id(child))
- child_graph_node = self.graph.get_node(child_graph_node_id)[0]
- self.graph.add_edge(self.pydot.Edge(graph_node, child_graph_node))
- else:
- #### Try and be above the Python object ID range; probably impl. specific, but maybe this is okay.
- child_graph_node_id = str(randint(100000000000000000000000000000,123456789012345678901234567890))
- child_graph_node_style = "invis"
- child_graph_node = self.pydot.Node(child_graph_node_id, style=child_graph_node_style, label="None")
- child_edge_style = "invis"
- self.graph.add_node(child_graph_node)
- self.graph.add_edge(self.pydot.Edge(graph_node, child_graph_node, style=child_edge_style))
-
- def visit_symbol_node_in(self, node):
- graph_node_id = str(id(node))
- graph_node_label = repr(node)
- graph_node_color = 0x808080
- graph_node_style = "\"filled\""
- if node.is_intermediate:
- graph_node_shape = "ellipse"
- else:
- graph_node_shape = "rectangle"
- graph_node = self.pydot.Node(graph_node_id, style=graph_node_style, fillcolor="#{:06x}".format(graph_node_color), shape=graph_node_shape, label=graph_node_label)
- self.graph.add_node(graph_node)
- return iter(node.children)
-
- def visit_symbol_node_out(self, node):
- graph_node_id = str(id(node))
- graph_node = self.graph.get_node(graph_node_id)[0]
- for child in node.children:
- child_graph_node_id = str(id(child))
- child_graph_node = self.graph.get_node(child_graph_node_id)[0]
- self.graph.add_edge(self.pydot.Edge(graph_node, child_graph_node))
|