# Lexer Implementation from abc import abstractmethod, ABC import re from contextlib import suppress from typing import ( TypeVar, Type, List, Dict, Iterator, Collection, Callable, Optional, FrozenSet, Any, Pattern as REPattern, ClassVar, TYPE_CHECKING ) from types import ModuleType if TYPE_CHECKING: from .common import LexerConf from .utils import classify, get_regexp_width, Serialize from .exceptions import UnexpectedCharacters, LexError, UnexpectedToken from .grammar import TOKEN_DEFAULT_PRIORITY ###{standalone from copy import copy class Pattern(Serialize, ABC): value: str flags: Collection[str] raw: Optional[str] type: ClassVar[str] def __init__(self, value: str, flags: Collection[str]=(), raw: Optional[str]=None) -> None: self.value = value self.flags = frozenset(flags) self.raw = raw def __repr__(self): return repr(self.to_regexp()) # Pattern Hashing assumes all subclasses have a different priority! def __hash__(self): return hash((type(self), self.value, self.flags)) def __eq__(self, other): return type(self) == type(other) and self.value == other.value and self.flags == other.flags @abstractmethod def to_regexp(self) -> str: raise NotImplementedError() @property @abstractmethod def min_width(self) -> int: raise NotImplementedError() @property @abstractmethod def max_width(self) -> int: raise NotImplementedError() def _get_flags(self, value): for f in self.flags: value = ('(?%s:%s)' % (f, value)) return value class PatternStr(Pattern): __serialize_fields__ = 'value', 'flags' type: ClassVar[str] = "str" def to_regexp(self) -> str: return self._get_flags(re.escape(self.value)) @property def min_width(self) -> int: return len(self.value) @property def max_width(self) -> int: return len(self.value) class PatternRE(Pattern): __serialize_fields__ = 'value', 'flags', '_width' type: ClassVar[str] = "re" def to_regexp(self) -> str: return self._get_flags(self.value) _width = None def _get_width(self): if self._width is None: self._width = get_regexp_width(self.to_regexp()) return self._width @property def min_width(self) -> int: return self._get_width()[0] @property def max_width(self) -> int: return self._get_width()[1] class TerminalDef(Serialize): __serialize_fields__ = 'name', 'pattern', 'priority' __serialize_namespace__ = PatternStr, PatternRE name: str pattern: Pattern priority: int def __init__(self, name: str, pattern: Pattern, priority: int=TOKEN_DEFAULT_PRIORITY) -> None: assert isinstance(pattern, Pattern), pattern self.name = name self.pattern = pattern self.priority = priority def __repr__(self): return '%s(%r, %r)' % (type(self).__name__, self.name, self.pattern) def user_repr(self) -> str: if self.name.startswith('__'): # We represent a generated terminal return self.pattern.raw or self.name else: return self.name _T = TypeVar('_T') class Token(str): """A string with meta-information, that is produced by the lexer. When parsing text, the resulting chunks of the input that haven't been discarded, will end up in the tree as Token instances. The Token class inherits from Python's ``str``, so normal string comparisons and operations will work as expected. Attributes: type: Name of the token (as specified in grammar) value: Value of the token (redundant, as ``token.value == token`` will always be true) start_pos: The index of the token in the text line: The line of the token in the text (starting with 1) column: The column of the token in the text (starting with 1) end_line: The line where the token ends end_column: The next column after the end of the token. For example, if the token is a single character with a column value of 4, end_column will be 5. end_pos: the index where the token ends (basically ``start_pos + len(token)``) """ __slots__ = ('type', 'start_pos', 'value', 'line', 'column', 'end_line', 'end_column', 'end_pos') type: str start_pos: int value: Any line: int column: int end_line: int end_column: int end_pos: int def __new__(cls, type_, value, start_pos=None, line=None, column=None, end_line=None, end_column=None, end_pos=None): inst = super(Token, cls).__new__(cls, value) inst.type = type_ inst.start_pos = start_pos inst.value = value inst.line = line inst.column = column inst.end_line = end_line inst.end_column = end_column inst.end_pos = end_pos return inst def update(self, type_: Optional[str]=None, value: Optional[Any]=None) -> 'Token': return Token.new_borrow_pos( type_ if type_ is not None else self.type, value if value is not None else self.value, self ) @classmethod def new_borrow_pos(cls: Type[_T], type_: str, value: Any, borrow_t: 'Token') -> _T: return cls(type_, value, borrow_t.start_pos, borrow_t.line, borrow_t.column, borrow_t.end_line, borrow_t.end_column, borrow_t.end_pos) def __reduce__(self): return (self.__class__, (self.type, self.value, self.start_pos, self.line, self.column)) def __repr__(self): return 'Token(%r, %r)' % (self.type, self.value) def __deepcopy__(self, memo): return Token(self.type, self.value, self.start_pos, self.line, self.column) def __eq__(self, other): if isinstance(other, Token) and self.type != other.type: return False return str.__eq__(self, other) __hash__ = str.__hash__ class LineCounter: __slots__ = 'char_pos', 'line', 'column', 'line_start_pos', 'newline_char' def __init__(self, newline_char): self.newline_char = newline_char self.char_pos = 0 self.line = 1 self.column = 1 self.line_start_pos = 0 def __eq__(self, other): if not isinstance(other, LineCounter): return NotImplemented return self.char_pos == other.char_pos and self.newline_char == other.newline_char def feed(self, token: Token, test_newline=True): """Consume a token and calculate the new line & column. As an optional optimization, set test_newline=False if token doesn't contain a newline. """ if test_newline: newlines = token.count(self.newline_char) if newlines: self.line += newlines self.line_start_pos = self.char_pos + token.rindex(self.newline_char) + 1 self.char_pos += len(token) self.column = self.char_pos - self.line_start_pos + 1 class UnlessCallback: def __init__(self, scanner): self.scanner = scanner def __call__(self, t): res = self.scanner.match(t.value, 0) if res: _value, t.type = res return t class CallChain: def __init__(self, callback1, callback2, cond): self.callback1 = callback1 self.callback2 = callback2 self.cond = cond def __call__(self, t): t2 = self.callback1(t) return self.callback2(t) if self.cond(t2) else t2 def _get_match(re_, regexp, s, flags): m = re_.match(regexp, s, flags) if m: return m.group(0) def _create_unless(terminals, g_regex_flags, re_, use_bytes): tokens_by_type = classify(terminals, lambda t: type(t.pattern)) assert len(tokens_by_type) <= 2, tokens_by_type.keys() embedded_strs = set() callback = {} for retok in tokens_by_type.get(PatternRE, []): unless = [] for strtok in tokens_by_type.get(PatternStr, []): if strtok.priority != retok.priority: continue s = strtok.pattern.value if s == _get_match(re_, retok.pattern.to_regexp(), s, g_regex_flags): unless.append(strtok) if strtok.pattern.flags <= retok.pattern.flags: embedded_strs.add(strtok) if unless: callback[retok.name] = UnlessCallback(Scanner(unless, g_regex_flags, re_, match_whole=True, use_bytes=use_bytes)) new_terminals = [t for t in terminals if t not in embedded_strs] return new_terminals, callback class Scanner: def __init__(self, terminals, g_regex_flags, re_, use_bytes, match_whole=False): self.terminals = terminals self.g_regex_flags = g_regex_flags self.re_ = re_ self.use_bytes = use_bytes self.match_whole = match_whole self.allowed_types = {t.name for t in self.terminals} self._mres = self._build_mres(terminals, len(terminals)) def _build_mres(self, terminals, max_size): # Python sets an unreasonable group limit (currently 100) in its re module # Worse, the only way to know we reached it is by catching an AssertionError! # This function recursively tries less and less groups until it's successful. postfix = '$' if self.match_whole else '' mres = [] while terminals: pattern = u'|'.join(u'(?P<%s>%s)' % (t.name, t.pattern.to_regexp() + postfix) for t in terminals[:max_size]) if self.use_bytes: pattern = pattern.encode('latin-1') try: mre = self.re_.compile(pattern, self.g_regex_flags) except AssertionError: # Yes, this is what Python provides us.. :/ return self._build_mres(terminals, max_size//2) mres.append((mre, {i: n for n, i in mre.groupindex.items()})) terminals = terminals[max_size:] return mres def match(self, text, pos): for mre, type_from_index in self._mres: m = mre.match(text, pos) if m: return m.group(0), type_from_index[m.lastindex] def _regexp_has_newline(r: str): r"""Expressions that may indicate newlines in a regexp: - newlines (\n) - escaped newline (\\n) - anything but ([^...]) - any-char (.) when the flag (?s) exists - spaces (\s) """ return '\n' in r or '\\n' in r or '\\s' in r or '[^' in r or ('(?s' in r and '.' in r) class LexerState: __slots__ = 'text', 'line_ctr', 'last_token' def __init__(self, text, line_ctr, last_token=None): self.text = text self.line_ctr = line_ctr self.last_token = last_token def __eq__(self, other): if not isinstance(other, LexerState): return NotImplemented return self.text is other.text and self.line_ctr == other.line_ctr and self.last_token == other.last_token def __copy__(self): return type(self)(self.text, copy(self.line_ctr), self.last_token) _Callback = Callable[[Token], Token] class Lexer(ABC): """Lexer interface Method Signatures: lex(self, lexer_state, parser_state) -> Iterator[Token] """ @abstractmethod def lex(self, lexer_state: LexerState, parser_state: Any) -> Iterator[Token]: return NotImplemented def make_lexer_state(self, text): line_ctr = LineCounter(b'\n' if isinstance(text, bytes) else '\n') return LexerState(text, line_ctr) class BasicLexer(Lexer): terminals: Collection[TerminalDef] ignore_types: FrozenSet[str] newline_types: FrozenSet[str] user_callbacks: Dict[str, _Callback] callback: Dict[str, _Callback] re: ModuleType def __init__(self, conf: 'LexerConf') -> None: terminals = list(conf.terminals) assert all(isinstance(t, TerminalDef) for t in terminals), terminals self.re = conf.re_module if not conf.skip_validation: # Sanitization for t in terminals: try: self.re.compile(t.pattern.to_regexp(), conf.g_regex_flags) except self.re.error: raise LexError("Cannot compile token %s: %s" % (t.name, t.pattern)) if t.pattern.min_width == 0: raise LexError("Lexer does not allow zero-width terminals. (%s: %s)" % (t.name, t.pattern)) if not (set(conf.ignore) <= {t.name for t in terminals}): raise LexError("Ignore terminals are not defined: %s" % (set(conf.ignore) - {t.name for t in terminals})) # Init self.newline_types = frozenset(t.name for t in terminals if _regexp_has_newline(t.pattern.to_regexp())) self.ignore_types = frozenset(conf.ignore) terminals.sort(key=lambda x: (-x.priority, -x.pattern.max_width, -len(x.pattern.value), x.name)) self.terminals = terminals self.user_callbacks = conf.callbacks self.g_regex_flags = conf.g_regex_flags self.use_bytes = conf.use_bytes self.terminals_by_name = conf.terminals_by_name self._scanner = None def _build_scanner(self): terminals, self.callback = _create_unless(self.terminals, self.g_regex_flags, self.re, self.use_bytes) assert all(self.callback.values()) for type_, f in self.user_callbacks.items(): if type_ in self.callback: # Already a callback there, probably UnlessCallback self.callback[type_] = CallChain(self.callback[type_], f, lambda t: t.type == type_) else: self.callback[type_] = f self._scanner = Scanner(terminals, self.g_regex_flags, self.re, self.use_bytes) @property def scanner(self): if self._scanner is None: self._build_scanner() return self._scanner def match(self, text, pos): return self.scanner.match(text, pos) def lex(self, state: LexerState, parser_state: Any) -> Iterator[Token]: with suppress(EOFError): while True: yield self.next_token(state, parser_state) def next_token(self, lex_state: LexerState, parser_state: Any=None) -> Token: line_ctr = lex_state.line_ctr while line_ctr.char_pos < len(lex_state.text): res = self.match(lex_state.text, line_ctr.char_pos) if not res: allowed = self.scanner.allowed_types - self.ignore_types if not allowed: allowed = {""} raise UnexpectedCharacters(lex_state.text, line_ctr.char_pos, line_ctr.line, line_ctr.column, allowed=allowed, token_history=lex_state.last_token and [lex_state.last_token], state=parser_state, terminals_by_name=self.terminals_by_name) value, type_ = res if type_ not in self.ignore_types: t = Token(type_, value, line_ctr.char_pos, line_ctr.line, line_ctr.column) line_ctr.feed(value, type_ in self.newline_types) t.end_line = line_ctr.line t.end_column = line_ctr.column t.end_pos = line_ctr.char_pos if t.type in self.callback: t = self.callback[t.type](t) if not isinstance(t, Token): raise LexError("Callbacks must return a token (returned %r)" % t) lex_state.last_token = t return t else: if type_ in self.callback: t2 = Token(type_, value, line_ctr.char_pos, line_ctr.line, line_ctr.column) self.callback[type_](t2) line_ctr.feed(value, type_ in self.newline_types) # EOF raise EOFError(self) class ContextualLexer(Lexer): lexers: Dict[str, BasicLexer] root_lexer: BasicLexer def __init__(self, conf: 'LexerConf', states: Dict[str, Collection[str]], always_accept: Collection[str]=()) -> None: terminals = list(conf.terminals) terminals_by_name = conf.terminals_by_name trad_conf = copy(conf) trad_conf.terminals = terminals lexer_by_tokens = {} self.lexers = {} for state, accepts in states.items(): key = frozenset(accepts) try: lexer = lexer_by_tokens[key] except KeyError: accepts = set(accepts) | set(conf.ignore) | set(always_accept) lexer_conf = copy(trad_conf) lexer_conf.terminals = [terminals_by_name[n] for n in accepts if n in terminals_by_name] lexer = BasicLexer(lexer_conf) lexer_by_tokens[key] = lexer self.lexers[state] = lexer assert trad_conf.terminals is terminals self.root_lexer = BasicLexer(trad_conf) def make_lexer_state(self, text): return self.root_lexer.make_lexer_state(text) def lex(self, lexer_state: LexerState, parser_state: Any) -> Iterator[Token]: try: while True: lexer = self.lexers[parser_state.position] yield lexer.next_token(lexer_state, parser_state) except EOFError: pass except UnexpectedCharacters as e: # In the contextual lexer, UnexpectedCharacters can mean that the terminal is defined, but not in the current context. # This tests the input against the global context, to provide a nicer error. try: last_token = lexer_state.last_token # Save last_token. Calling root_lexer.next_token will change this to the wrong token token = self.root_lexer.next_token(lexer_state, parser_state) raise UnexpectedToken(token, e.allowed, state=parser_state, token_history=[last_token], terminals_by_name=self.root_lexer.terminals_by_name) except UnexpectedCharacters: raise e # Raise the original UnexpectedCharacters. The root lexer raises it with the wrong expected set. class LexerThread: """A thread that ties a lexer instance and a lexer state, to be used by the parser""" def __init__(self, lexer, text): self.lexer = lexer self.state = lexer.make_lexer_state(text) def lex(self, parser_state): return self.lexer.lex(self.state, parser_state) def __copy__(self): copied = object.__new__(LexerThread) copied.lexer = self.lexer copied.state = copy(self.state) return copied ###}