|
- /**
- * @file curve25519/decaf.c
- * @author Mike Hamburg
- *
- * @copyright
- * Copyright (c) 2015-2016 Cryptography Research, Inc. \n
- * Released under the MIT License. See LICENSE.txt for license information.
- *
- * @brief Decaf high-level functions.
- *
- * @warning This file was automatically generated in Python.
- * Please do not edit it.
- */
- #define _XOPEN_SOURCE 600 /* for posix_memalign */
- #include "word.h"
- #include "field.h"
-
- #include <decaf.h>
- #include <decaf/ed255.h>
-
- /* Template stuff */
- #define API_NS(_id) decaf_255_##_id
- #define SCALAR_BITS DECAF_255_SCALAR_BITS
- #define SCALAR_SER_BYTES DECAF_255_SCALAR_BYTES
- #define SCALAR_LIMBS DECAF_255_SCALAR_LIMBS
- #define scalar_t API_NS(scalar_t)
- #define point_t API_NS(point_t)
- #define precomputed_s API_NS(precomputed_s)
- #define IMAGINE_TWIST 1
- #define COFACTOR 8
-
- /* Comb config: number of combs, n, t, s. */
- #define COMBS_N 3
- #define COMBS_T 5
- #define COMBS_S 17
- #define DECAF_WINDOW_BITS 4
- #define DECAF_WNAF_FIXED_TABLE_BITS 5
- #define DECAF_WNAF_VAR_TABLE_BITS 3
-
- #define EDDSA_USE_SIGMA_ISOGENY 1
-
- static const int EDWARDS_D = -121665;
- static const scalar_t point_scalarmul_adjustment = {{{
- SC_LIMB(0xd6ec31748d98951c), SC_LIMB(0xc6ef5bf4737dcf70), SC_LIMB(0xfffffffffffffffe), SC_LIMB(0x0fffffffffffffff)
- }}}, precomputed_scalarmul_adjustment = {{{
- SC_LIMB(0x977f4a4775473484), SC_LIMB(0x6de72ae98b3ab623), SC_LIMB(0xffffffffffffffff), SC_LIMB(0x0fffffffffffffff)
- }}};
-
- const uint8_t decaf_x25519_base_point[DECAF_X25519_PUBLIC_BYTES] = { 0x09 };
-
- static const gf RISTRETTO_ISOMAGIC = {{{
- 0x0fdaa805d40ea, 0x2eb482e57d339, 0x007610274bc58, 0x6510b613dc8ff, 0x786c8905cfaff
- }}};
-
- #if COFACTOR==8 || EDDSA_USE_SIGMA_ISOGENY
- static const gf SQRT_ONE_MINUS_D = {FIELD_LITERAL(
- 0x6db8831bbddec, 0x38d7b56c9c165, 0x016b221394bdc, 0x7540f7816214a, 0x0a0d85b4032b1
- )};
- #endif
-
- #if IMAGINE_TWIST
- #define TWISTED_D (-(EDWARDS_D))
- #else
- #define TWISTED_D ((EDWARDS_D)-1)
- #endif
-
- #if TWISTED_D < 0
- #define EFF_D (-(TWISTED_D))
- #define NEG_D 1
- #else
- #define EFF_D TWISTED_D
- #define NEG_D 0
- #endif
-
- /* End of template stuff */
-
- /* Sanity */
- #if (COFACTOR == 8) && !IMAGINE_TWIST && !UNSAFE_CURVE_HAS_POINTS_AT_INFINITY
- /* FUTURE MAGIC: Curve41417 doesn't have these properties. */
- #error "Currently require IMAGINE_TWIST (and thus p=5 mod 8) for cofactor 8"
- /* OK, but why?
- * Two reasons: #1: There are bugs when COFACTOR == && IMAGINE_TWIST
- # #2:
- */
- #endif
-
- #if IMAGINE_TWIST && (P_MOD_8 != 5)
- #error "Cannot use IMAGINE_TWIST except for p == 5 mod 8"
- #endif
-
- #if (COFACTOR != 8) && (COFACTOR != 4)
- #error "COFACTOR must be 4 or 8"
- #endif
-
- #if IMAGINE_TWIST
- extern const gf SQRT_MINUS_ONE;
- #endif
-
- #define WBITS DECAF_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */
-
- extern const point_t API_NS(point_base);
-
- /* Projective Niels coordinates */
- typedef struct { gf a, b, c; } niels_s, niels_t[1];
- typedef struct { niels_t n; gf z; } VECTOR_ALIGNED pniels_s, pniels_t[1];
-
- /* Precomputed base */
- struct precomputed_s { niels_t table [COMBS_N<<(COMBS_T-1)]; };
-
- extern const gf API_NS(precomputed_base_as_fe)[];
- const precomputed_s *API_NS(precomputed_base) =
- (const precomputed_s *) &API_NS(precomputed_base_as_fe);
-
- const size_t API_NS(sizeof_precomputed_s) = sizeof(precomputed_s);
- const size_t API_NS(alignof_precomputed_s) = sizeof(big_register_t);
-
- /** Inverse. */
- static void
- gf_invert(gf y, const gf x, int assert_nonzero) {
- gf t1, t2;
- gf_sqr(t1, x); // o^2
- mask_t ret = gf_isr(t2, t1); // +-1/sqrt(o^2) = +-1/o
- (void)ret;
- if (assert_nonzero) assert(ret);
- gf_sqr(t1, t2);
- gf_mul(t2, t1, x); // not direct to y in case of alias.
- gf_copy(y, t2);
- }
-
- /** identity = (0,1) */
- const point_t API_NS(point_identity) = {{{{{0}}},{{{1}}},{{{1}}},{{{0}}}}};
-
- /* Predeclare because not static: called by elligator */
- void API_NS(deisogenize) (
- gf_s *__restrict__ s,
- gf_s *__restrict__ inv_el_sum,
- gf_s *__restrict__ inv_el_m1,
- const point_t p,
- mask_t toggle_s,
- mask_t toggle_altx,
- mask_t toggle_rotation
- );
-
- void API_NS(deisogenize) (
- gf_s *__restrict__ s,
- gf_s *__restrict__ inv_el_sum,
- gf_s *__restrict__ inv_el_m1,
- const point_t p,
- mask_t toggle_s,
- mask_t toggle_altx,
- mask_t toggle_rotation
- ) {
- #if COFACTOR == 4 && !IMAGINE_TWIST
- (void)toggle_rotation; /* Only applies to cofactor 8 */
- gf t1;
- gf_s *t2 = s, *t3=inv_el_sum, *t4=inv_el_m1;
-
- gf_add(t1,p->x,p->t);
- gf_sub(t2,p->x,p->t);
- gf_mul(t3,t1,t2); /* t3 = num */
- gf_sqr(t2,p->x);
- gf_mul(t1,t2,t3);
- gf_mulw(t2,t1,-1-TWISTED_D); /* -x^2 * (a-d) * num */
- gf_isr(t1,t2); /* t1 = isr */
- gf_mul(t2,t1,t3); /* t2 = ratio */
- gf_mul(t4,t2,RISTRETTO_ISOMAGIC);
- mask_t negx = gf_lobit(t4) ^ toggle_altx;
- gf_cond_neg(t2, negx);
- gf_mul(t3,t2,p->z);
- gf_sub(t3,t3,p->t);
- gf_mul(t2,t3,p->x);
- gf_mulw(t4,t2,-1-TWISTED_D);
- gf_mul(s,t4,t1);
- mask_t lobs = gf_lobit(s);
- gf_cond_neg(s,lobs);
- gf_copy(inv_el_m1,p->x);
- gf_cond_neg(inv_el_m1,~lobs^negx^toggle_s);
- gf_add(inv_el_m1,inv_el_m1,p->t);
-
- #elif COFACTOR == 8 && IMAGINE_TWIST
- /* More complicated because of rotation */
- gf t1,t2,t3,t4,t5;
- gf_add(t1,p->z,p->y);
- gf_sub(t2,p->z,p->y);
- gf_mul(t3,t1,t2); /* t3 = num */
- gf_mul(t2,p->x,p->y); /* t2 = den */
- gf_sqr(t1,t2);
- gf_mul(t4,t1,t3);
- gf_mulw(t1,t4,-1-TWISTED_D);
- gf_isr(t4,t1); /* isqrt(num*(a-d)*den^2) */
- gf_mul(t1,t2,t4);
- gf_mul(t2,t1,RISTRETTO_ISOMAGIC); /* t2 = "iden" in ristretto.sage */
- gf_mul(t1,t3,t4); /* t1 = "inum" in ristretto.sage */
-
- /* Calculate altxy = iden*inum*i*t^2*(d-a) */
- gf_mul(t3,t1,t2);
- gf_mul_qnr(t4,t3);
- gf_mul(t3,t4,p->t);
- gf_mul(t4,t3,p->t);
- gf_mulw(t3,t4,TWISTED_D+1); /* iden*inum*i*t^2*(d-1) */
- mask_t rotate = toggle_rotation ^ gf_lobit(t3);
-
- /* Rotate if altxy is negative */
- gf_cond_swap(t1,t2,rotate);
- gf_mul_qnr(t4,p->x);
- gf_cond_sel(t4,p->y,t4,rotate); /* t4 = "fac" = ix if rotate, else y */
-
- gf_mul_qnr(t5,RISTRETTO_ISOMAGIC); /* t5 = imi */
- gf_mul(t3,t5,t2); /* iden * imi */
- gf_mul(t2,t5,t1);
- gf_mul(t5,t2,p->t); /* "altx" = iden*imi*t */
- mask_t negx = gf_lobit(t5) ^ toggle_altx;
-
- gf_cond_neg(t1,negx^rotate);
- gf_mul(t2,t1,p->z);
- gf_add(t2,t2,ONE);
- gf_mul(inv_el_sum,t2,t4);
- gf_mul(s,inv_el_sum,t3);
-
- mask_t negs = gf_lobit(s);
- gf_cond_neg(s,negs);
-
- mask_t negz = ~negs ^ toggle_s ^ negx;
- gf_copy(inv_el_m1,p->z);
- gf_cond_neg(inv_el_m1,negz);
- gf_sub(inv_el_m1,inv_el_m1,t4);
- #else
- #error "Cofactor must be 4 (with no IMAGINE_TWIST) or 8 (with IMAGINE_TWIST)"
- #endif
- }
-
- void API_NS(point_encode)( unsigned char ser[SER_BYTES], const point_t p ) {
- gf s,ie1,ie2;
- API_NS(deisogenize)(s,ie1,ie2,p,0,0,0);
- gf_serialize(ser,s,1);
- }
-
- decaf_error_t API_NS(point_decode) (
- point_t p,
- const unsigned char ser[SER_BYTES],
- decaf_bool_t allow_identity
- ) {
- gf s, s2, num, tmp;
- gf_s *tmp2=s2, *ynum=p->z, *isr=p->x, *den=p->t;
-
- mask_t succ = gf_deserialize(s, ser, 1);
- succ &= bool_to_mask(allow_identity) | ~gf_eq(s, ZERO);
- succ &= ~gf_lobit(s);
-
- gf_sqr(s2,s); /* s^2 = -as^2 */
- #if IMAGINE_TWIST
- gf_sub(s2,ZERO,s2); /* -as^2 */
- #endif
- gf_sub(den,ONE,s2); /* 1+as^2 */
- gf_add(ynum,ONE,s2); /* 1-as^2 */
- gf_mulw(num,s2,-4*TWISTED_D);
- gf_sqr(tmp,den); /* tmp = den^2 */
- gf_add(num,tmp,num); /* num = den^2 - 4*d*s^2 */
- gf_mul(tmp2,num,tmp); /* tmp2 = num*den^2 */
- succ &= gf_isr(isr,tmp2); /* isr = 1/sqrt(num*den^2) */
- gf_mul(tmp,isr,den); /* isr*den */
- gf_mul(p->y,tmp,ynum); /* isr*den*(1-as^2) */
- gf_mul(tmp2,tmp,s); /* s*isr*den */
- gf_add(tmp2,tmp2,tmp2); /* 2*s*isr*den */
- gf_mul(tmp,tmp2,isr); /* 2*s*isr^2*den */
- gf_mul(p->x,tmp,num); /* 2*s*isr^2*den*num */
- gf_mul(tmp,tmp2,RISTRETTO_ISOMAGIC); /* 2*s*isr*den*magic */
- gf_cond_neg(p->x,gf_lobit(tmp)); /* flip x */
-
- #if COFACTOR==8
- /* Additionally check y != 0 and x*y*isomagic nonegative */
- succ &= ~gf_eq(p->y,ZERO);
- gf_mul(tmp,p->x,p->y);
- gf_mul(tmp2,tmp,RISTRETTO_ISOMAGIC);
- succ &= ~gf_lobit(tmp2);
- #endif
-
- #if IMAGINE_TWIST
- gf_copy(tmp,p->x);
- gf_mul_qnr(p->x,tmp);
- #endif
-
- /* Fill in z and t */
- gf_copy(p->z,ONE);
- gf_mul(p->t,p->x,p->y);
-
- assert(API_NS(point_valid)(p) | ~succ);
- return decaf_succeed_if(mask_to_bool(succ));
- }
-
- void API_NS(point_sub) (
- point_t p,
- const point_t q,
- const point_t r
- ) {
- gf a, b, c, d;
- gf_sub_nr ( b, q->y, q->x ); /* 3+e */
- gf_sub_nr ( d, r->y, r->x ); /* 3+e */
- gf_add_nr ( c, r->y, r->x ); /* 2+e */
- gf_mul ( a, c, b );
- gf_add_nr ( b, q->y, q->x ); /* 2+e */
- gf_mul ( p->y, d, b );
- gf_mul ( b, r->t, q->t );
- gf_mulw ( p->x, b, 2*EFF_D );
- gf_add_nr ( b, a, p->y ); /* 2+e */
- gf_sub_nr ( c, p->y, a ); /* 3+e */
- gf_mul ( a, q->z, r->z );
- gf_add_nr ( a, a, a ); /* 2+e */
- if (GF_HEADROOM <= 3) gf_weak_reduce(a); /* or 1+e */
- #if NEG_D
- gf_sub_nr ( p->y, a, p->x ); /* 4+e or 3+e */
- gf_add_nr ( a, a, p->x ); /* 3+e or 2+e */
- #else
- gf_add_nr ( p->y, a, p->x ); /* 3+e or 2+e */
- gf_sub_nr ( a, a, p->x ); /* 4+e or 3+e */
- #endif
- gf_mul ( p->z, a, p->y );
- gf_mul ( p->x, p->y, c );
- gf_mul ( p->y, a, b );
- gf_mul ( p->t, b, c );
- }
-
- void API_NS(point_add) (
- point_t p,
- const point_t q,
- const point_t r
- ) {
- gf a, b, c, d;
- gf_sub_nr ( b, q->y, q->x ); /* 3+e */
- gf_sub_nr ( c, r->y, r->x ); /* 3+e */
- gf_add_nr ( d, r->y, r->x ); /* 2+e */
- gf_mul ( a, c, b );
- gf_add_nr ( b, q->y, q->x ); /* 2+e */
- gf_mul ( p->y, d, b );
- gf_mul ( b, r->t, q->t );
- gf_mulw ( p->x, b, 2*EFF_D );
- gf_add_nr ( b, a, p->y ); /* 2+e */
- gf_sub_nr ( c, p->y, a ); /* 3+e */
- gf_mul ( a, q->z, r->z );
- gf_add_nr ( a, a, a ); /* 2+e */
- if (GF_HEADROOM <= 3) gf_weak_reduce(a); /* or 1+e */
- #if NEG_D
- gf_add_nr ( p->y, a, p->x ); /* 3+e or 2+e */
- gf_sub_nr ( a, a, p->x ); /* 4+e or 3+e */
- #else
- gf_sub_nr ( p->y, a, p->x ); /* 4+e or 3+e */
- gf_add_nr ( a, a, p->x ); /* 3+e or 2+e */
- #endif
- gf_mul ( p->z, a, p->y );
- gf_mul ( p->x, p->y, c );
- gf_mul ( p->y, a, b );
- gf_mul ( p->t, b, c );
- }
-
- static DECAF_NOINLINE void
- point_double_internal (
- point_t p,
- const point_t q,
- int before_double
- ) {
- gf a, b, c, d;
- gf_sqr ( c, q->x );
- gf_sqr ( a, q->y );
- gf_add_nr ( d, c, a ); /* 2+e */
- gf_add_nr ( p->t, q->y, q->x ); /* 2+e */
- gf_sqr ( b, p->t );
- gf_subx_nr ( b, b, d, 3 ); /* 4+e */
- gf_sub_nr ( p->t, a, c ); /* 3+e */
- gf_sqr ( p->x, q->z );
- gf_add_nr ( p->z, p->x, p->x ); /* 2+e */
- gf_subx_nr ( a, p->z, p->t, 4 ); /* 6+e */
- if (GF_HEADROOM == 5) gf_weak_reduce(a); /* or 1+e */
- gf_mul ( p->x, a, b );
- gf_mul ( p->z, p->t, a );
- gf_mul ( p->y, p->t, d );
- if (!before_double) gf_mul ( p->t, b, d );
- }
-
- void API_NS(point_double)(point_t p, const point_t q) {
- point_double_internal(p,q,0);
- }
-
- void API_NS(point_negate) (
- point_t nega,
- const point_t a
- ) {
- gf_sub(nega->x, ZERO, a->x);
- gf_copy(nega->y, a->y);
- gf_copy(nega->z, a->z);
- gf_sub(nega->t, ZERO, a->t);
- }
-
- /* Operations on [p]niels */
- static DECAF_INLINE void
- cond_neg_niels (
- niels_t n,
- mask_t neg
- ) {
- gf_cond_swap(n->a, n->b, neg);
- gf_cond_neg(n->c, neg);
- }
-
- static DECAF_NOINLINE void pt_to_pniels (
- pniels_t b,
- const point_t a
- ) {
- gf_sub ( b->n->a, a->y, a->x );
- gf_add ( b->n->b, a->x, a->y );
- gf_mulw ( b->n->c, a->t, 2*TWISTED_D );
- gf_add ( b->z, a->z, a->z );
- }
-
- static DECAF_NOINLINE void pniels_to_pt (
- point_t e,
- const pniels_t d
- ) {
- gf eu;
- gf_add ( eu, d->n->b, d->n->a );
- gf_sub ( e->y, d->n->b, d->n->a );
- gf_mul ( e->t, e->y, eu);
- gf_mul ( e->x, d->z, e->y );
- gf_mul ( e->y, d->z, eu );
- gf_sqr ( e->z, d->z );
- }
-
- static DECAF_NOINLINE void
- niels_to_pt (
- point_t e,
- const niels_t n
- ) {
- gf_add ( e->y, n->b, n->a );
- gf_sub ( e->x, n->b, n->a );
- gf_mul ( e->t, e->y, e->x );
- gf_copy ( e->z, ONE );
- }
-
- static DECAF_NOINLINE void
- add_niels_to_pt (
- point_t d,
- const niels_t e,
- int before_double
- ) {
- gf a, b, c;
- gf_sub_nr ( b, d->y, d->x ); /* 3+e */
- gf_mul ( a, e->a, b );
- gf_add_nr ( b, d->x, d->y ); /* 2+e */
- gf_mul ( d->y, e->b, b );
- gf_mul ( d->x, e->c, d->t );
- gf_add_nr ( c, a, d->y ); /* 2+e */
- gf_sub_nr ( b, d->y, a ); /* 3+e */
- gf_sub_nr ( d->y, d->z, d->x ); /* 3+e */
- gf_add_nr ( a, d->x, d->z ); /* 2+e */
- gf_mul ( d->z, a, d->y );
- gf_mul ( d->x, d->y, b );
- gf_mul ( d->y, a, c );
- if (!before_double) gf_mul ( d->t, b, c );
- }
-
- static DECAF_NOINLINE void
- sub_niels_from_pt (
- point_t d,
- const niels_t e,
- int before_double
- ) {
- gf a, b, c;
- gf_sub_nr ( b, d->y, d->x ); /* 3+e */
- gf_mul ( a, e->b, b );
- gf_add_nr ( b, d->x, d->y ); /* 2+e */
- gf_mul ( d->y, e->a, b );
- gf_mul ( d->x, e->c, d->t );
- gf_add_nr ( c, a, d->y ); /* 2+e */
- gf_sub_nr ( b, d->y, a ); /* 3+e */
- gf_add_nr ( d->y, d->z, d->x ); /* 2+e */
- gf_sub_nr ( a, d->z, d->x ); /* 3+e */
- gf_mul ( d->z, a, d->y );
- gf_mul ( d->x, d->y, b );
- gf_mul ( d->y, a, c );
- if (!before_double) gf_mul ( d->t, b, c );
- }
-
- static void
- add_pniels_to_pt (
- point_t p,
- const pniels_t pn,
- int before_double
- ) {
- gf L0;
- gf_mul ( L0, p->z, pn->z );
- gf_copy ( p->z, L0 );
- add_niels_to_pt( p, pn->n, before_double );
- }
-
- static void
- sub_pniels_from_pt (
- point_t p,
- const pniels_t pn,
- int before_double
- ) {
- gf L0;
- gf_mul ( L0, p->z, pn->z );
- gf_copy ( p->z, L0 );
- sub_niels_from_pt( p, pn->n, before_double );
- }
-
- static DECAF_NOINLINE void
- prepare_fixed_window(
- pniels_t *multiples,
- const point_t b,
- int ntable
- ) {
- point_t tmp;
- pniels_t pn;
- int i;
-
- point_double_internal(tmp, b, 0);
- pt_to_pniels(pn, tmp);
- pt_to_pniels(multiples[0], b);
- API_NS(point_copy)(tmp, b);
- for (i=1; i<ntable; i++) {
- add_pniels_to_pt(tmp, pn, 0);
- pt_to_pniels(multiples[i], tmp);
- }
-
- decaf_bzero(pn,sizeof(pn));
- decaf_bzero(tmp,sizeof(tmp));
- }
-
- void API_NS(point_scalarmul) (
- point_t a,
- const point_t b,
- const scalar_t scalar
- ) {
- const int WINDOW = DECAF_WINDOW_BITS,
- WINDOW_MASK = (1<<WINDOW)-1,
- WINDOW_T_MASK = WINDOW_MASK >> 1,
- NTABLE = 1<<(WINDOW-1);
-
- scalar_t scalar1x;
- API_NS(scalar_add)(scalar1x, scalar, point_scalarmul_adjustment);
- API_NS(scalar_halve)(scalar1x,scalar1x);
-
- /* Set up a precomputed table with odd multiples of b. */
- pniels_t pn, multiples[NTABLE];
- point_t tmp;
- prepare_fixed_window(multiples, b, NTABLE);
-
- /* Initialize. */
- int i,j,first=1;
- i = SCALAR_BITS - ((SCALAR_BITS-1) % WINDOW) - 1;
-
- for (; i>=0; i-=WINDOW) {
- /* Fetch another block of bits */
- word_t bits = scalar1x->limb[i/WBITS] >> (i%WBITS);
- if (i%WBITS >= WBITS-WINDOW && i/WBITS<SCALAR_LIMBS-1) {
- bits ^= scalar1x->limb[i/WBITS+1] << (WBITS - (i%WBITS));
- }
- bits &= WINDOW_MASK;
- mask_t inv = (bits>>(WINDOW-1))-1;
- bits ^= inv;
-
- /* Add in from table. Compute t only on last iteration. */
- constant_time_lookup(pn, multiples, sizeof(pn), NTABLE, bits & WINDOW_T_MASK);
- cond_neg_niels(pn->n, inv);
- if (first) {
- pniels_to_pt(tmp, pn);
- first = 0;
- } else {
- /* Using Hisil et al's lookahead method instead of extensible here
- * for no particular reason. Double WINDOW times, but only compute t on
- * the last one.
- */
- for (j=0; j<WINDOW-1; j++)
- point_double_internal(tmp, tmp, -1);
- point_double_internal(tmp, tmp, 0);
- add_pniels_to_pt(tmp, pn, i ? -1 : 0);
- }
- }
-
- /* Write out the answer */
- API_NS(point_copy)(a,tmp);
-
- decaf_bzero(scalar1x,sizeof(scalar1x));
- decaf_bzero(pn,sizeof(pn));
- decaf_bzero(multiples,sizeof(multiples));
- decaf_bzero(tmp,sizeof(tmp));
- }
-
- void API_NS(point_double_scalarmul) (
- point_t a,
- const point_t b,
- const scalar_t scalarb,
- const point_t c,
- const scalar_t scalarc
- ) {
- const int WINDOW = DECAF_WINDOW_BITS,
- WINDOW_MASK = (1<<WINDOW)-1,
- WINDOW_T_MASK = WINDOW_MASK >> 1,
- NTABLE = 1<<(WINDOW-1);
-
- scalar_t scalar1x, scalar2x;
- API_NS(scalar_add)(scalar1x, scalarb, point_scalarmul_adjustment);
- API_NS(scalar_halve)(scalar1x,scalar1x);
- API_NS(scalar_add)(scalar2x, scalarc, point_scalarmul_adjustment);
- API_NS(scalar_halve)(scalar2x,scalar2x);
-
- /* Set up a precomputed table with odd multiples of b. */
- pniels_t pn, multiples1[NTABLE], multiples2[NTABLE];
- point_t tmp;
- prepare_fixed_window(multiples1, b, NTABLE);
- prepare_fixed_window(multiples2, c, NTABLE);
-
- /* Initialize. */
- int i,j,first=1;
- i = SCALAR_BITS - ((SCALAR_BITS-1) % WINDOW) - 1;
-
- for (; i>=0; i-=WINDOW) {
- /* Fetch another block of bits */
- word_t bits1 = scalar1x->limb[i/WBITS] >> (i%WBITS),
- bits2 = scalar2x->limb[i/WBITS] >> (i%WBITS);
- if (i%WBITS >= WBITS-WINDOW && i/WBITS<SCALAR_LIMBS-1) {
- bits1 ^= scalar1x->limb[i/WBITS+1] << (WBITS - (i%WBITS));
- bits2 ^= scalar2x->limb[i/WBITS+1] << (WBITS - (i%WBITS));
- }
- bits1 &= WINDOW_MASK;
- bits2 &= WINDOW_MASK;
- mask_t inv1 = (bits1>>(WINDOW-1))-1;
- mask_t inv2 = (bits2>>(WINDOW-1))-1;
- bits1 ^= inv1;
- bits2 ^= inv2;
-
- /* Add in from table. Compute t only on last iteration. */
- constant_time_lookup(pn, multiples1, sizeof(pn), NTABLE, bits1 & WINDOW_T_MASK);
- cond_neg_niels(pn->n, inv1);
- if (first) {
- pniels_to_pt(tmp, pn);
- first = 0;
- } else {
- /* Using Hisil et al's lookahead method instead of extensible here
- * for no particular reason. Double WINDOW times, but only compute t on
- * the last one.
- */
- for (j=0; j<WINDOW-1; j++)
- point_double_internal(tmp, tmp, -1);
- point_double_internal(tmp, tmp, 0);
- add_pniels_to_pt(tmp, pn, 0);
- }
- constant_time_lookup(pn, multiples2, sizeof(pn), NTABLE, bits2 & WINDOW_T_MASK);
- cond_neg_niels(pn->n, inv2);
- add_pniels_to_pt(tmp, pn, i?-1:0);
- }
-
- /* Write out the answer */
- API_NS(point_copy)(a,tmp);
-
-
- decaf_bzero(scalar1x,sizeof(scalar1x));
- decaf_bzero(scalar2x,sizeof(scalar2x));
- decaf_bzero(pn,sizeof(pn));
- decaf_bzero(multiples1,sizeof(multiples1));
- decaf_bzero(multiples2,sizeof(multiples2));
- decaf_bzero(tmp,sizeof(tmp));
- }
-
- void API_NS(point_dual_scalarmul) (
- point_t a1,
- point_t a2,
- const point_t b,
- const scalar_t scalar1,
- const scalar_t scalar2
- ) {
- const int WINDOW = DECAF_WINDOW_BITS,
- WINDOW_MASK = (1<<WINDOW)-1,
- WINDOW_T_MASK = WINDOW_MASK >> 1,
- NTABLE = 1<<(WINDOW-1);
-
- scalar_t scalar1x, scalar2x;
- API_NS(scalar_add)(scalar1x, scalar1, point_scalarmul_adjustment);
- API_NS(scalar_halve)(scalar1x,scalar1x);
- API_NS(scalar_add)(scalar2x, scalar2, point_scalarmul_adjustment);
- API_NS(scalar_halve)(scalar2x,scalar2x);
-
- /* Set up a precomputed table with odd multiples of b. */
- point_t multiples1[NTABLE], multiples2[NTABLE], working, tmp;
- pniels_t pn;
-
- API_NS(point_copy)(working, b);
-
- /* Initialize. */
- int i,j;
-
- for (i=0; i<NTABLE; i++) {
- API_NS(point_copy)(multiples1[i], API_NS(point_identity));
- API_NS(point_copy)(multiples2[i], API_NS(point_identity));
- }
-
- for (i=0; i<SCALAR_BITS; i+=WINDOW) {
- if (i) {
- for (j=0; j<WINDOW-1; j++)
- point_double_internal(working, working, -1);
- point_double_internal(working, working, 0);
- }
-
- /* Fetch another block of bits */
- word_t bits1 = scalar1x->limb[i/WBITS] >> (i%WBITS),
- bits2 = scalar2x->limb[i/WBITS] >> (i%WBITS);
- if (i%WBITS >= WBITS-WINDOW && i/WBITS<SCALAR_LIMBS-1) {
- bits1 ^= scalar1x->limb[i/WBITS+1] << (WBITS - (i%WBITS));
- bits2 ^= scalar2x->limb[i/WBITS+1] << (WBITS - (i%WBITS));
- }
- bits1 &= WINDOW_MASK;
- bits2 &= WINDOW_MASK;
- mask_t inv1 = (bits1>>(WINDOW-1))-1;
- mask_t inv2 = (bits2>>(WINDOW-1))-1;
- bits1 ^= inv1;
- bits2 ^= inv2;
-
- pt_to_pniels(pn, working);
-
- constant_time_lookup(tmp, multiples1, sizeof(tmp), NTABLE, bits1 & WINDOW_T_MASK);
- cond_neg_niels(pn->n, inv1);
- /* add_pniels_to_pt(multiples1[bits1 & WINDOW_T_MASK], pn, 0); */
- add_pniels_to_pt(tmp, pn, 0);
- constant_time_insert(multiples1, tmp, sizeof(tmp), NTABLE, bits1 & WINDOW_T_MASK);
-
-
- constant_time_lookup(tmp, multiples2, sizeof(tmp), NTABLE, bits2 & WINDOW_T_MASK);
- cond_neg_niels(pn->n, inv1^inv2);
- /* add_pniels_to_pt(multiples2[bits2 & WINDOW_T_MASK], pn, 0); */
- add_pniels_to_pt(tmp, pn, 0);
- constant_time_insert(multiples2, tmp, sizeof(tmp), NTABLE, bits2 & WINDOW_T_MASK);
- }
-
- if (NTABLE > 1) {
- API_NS(point_copy)(working, multiples1[NTABLE-1]);
- API_NS(point_copy)(tmp , multiples2[NTABLE-1]);
-
- for (i=NTABLE-1; i>1; i--) {
- API_NS(point_add)(multiples1[i-1], multiples1[i-1], multiples1[i]);
- API_NS(point_add)(multiples2[i-1], multiples2[i-1], multiples2[i]);
- API_NS(point_add)(working, working, multiples1[i-1]);
- API_NS(point_add)(tmp, tmp, multiples2[i-1]);
- }
-
- API_NS(point_add)(multiples1[0], multiples1[0], multiples1[1]);
- API_NS(point_add)(multiples2[0], multiples2[0], multiples2[1]);
- point_double_internal(working, working, 0);
- point_double_internal(tmp, tmp, 0);
- API_NS(point_add)(a1, working, multiples1[0]);
- API_NS(point_add)(a2, tmp, multiples2[0]);
- } else {
- API_NS(point_copy)(a1, multiples1[0]);
- API_NS(point_copy)(a2, multiples2[0]);
- }
-
- decaf_bzero(scalar1x,sizeof(scalar1x));
- decaf_bzero(scalar2x,sizeof(scalar2x));
- decaf_bzero(pn,sizeof(pn));
- decaf_bzero(multiples1,sizeof(multiples1));
- decaf_bzero(multiples2,sizeof(multiples2));
- decaf_bzero(tmp,sizeof(tmp));
- decaf_bzero(working,sizeof(working));
- }
-
- decaf_bool_t API_NS(point_eq) ( const point_t p, const point_t q ) {
- /* equality mod 2-torsion compares x/y */
- gf a, b;
- gf_mul ( a, p->y, q->x );
- gf_mul ( b, q->y, p->x );
- mask_t succ = gf_eq(a,b);
-
- #if (COFACTOR == 8) && IMAGINE_TWIST
- gf_mul ( a, p->y, q->y );
- gf_mul ( b, q->x, p->x );
- #if !(IMAGINE_TWIST)
- gf_sub ( a, ZERO, a );
- #else
- /* Interesting note: the 4tor would normally be rotation.
- * But because of the *i twist, it's actually
- * (x,y) <-> (iy,ix)
- */
-
- /* No code, just a comment. */
- #endif
- succ |= gf_eq(a,b);
- #endif
-
- return mask_to_bool(succ);
- }
-
- decaf_bool_t API_NS(point_valid) (
- const point_t p
- ) {
- gf a,b,c;
- gf_mul(a,p->x,p->y);
- gf_mul(b,p->z,p->t);
- mask_t out = gf_eq(a,b);
- gf_sqr(a,p->x);
- gf_sqr(b,p->y);
- gf_sub(a,b,a);
- gf_sqr(b,p->t);
- gf_mulw(c,b,TWISTED_D);
- gf_sqr(b,p->z);
- gf_add(b,b,c);
- out &= gf_eq(a,b);
- out &= ~gf_eq(p->z,ZERO);
- return mask_to_bool(out);
- }
-
- void API_NS(point_debugging_torque) (
- point_t q,
- const point_t p
- ) {
- #if COFACTOR == 8 && IMAGINE_TWIST
- gf tmp;
- gf_mul(tmp,p->x,SQRT_MINUS_ONE);
- gf_mul(q->x,p->y,SQRT_MINUS_ONE);
- gf_copy(q->y,tmp);
- gf_copy(q->z,p->z);
- gf_sub(q->t,ZERO,p->t);
- #else
- gf_sub(q->x,ZERO,p->x);
- gf_sub(q->y,ZERO,p->y);
- gf_copy(q->z,p->z);
- gf_copy(q->t,p->t);
- #endif
- }
-
- void API_NS(point_debugging_pscale) (
- point_t q,
- const point_t p,
- const uint8_t factor[SER_BYTES]
- ) {
- gf gfac,tmp;
- /* NB this means you'll never pscale by negative numbers for p521 */
- ignore_result(gf_deserialize(gfac,factor,0));
- gf_cond_sel(gfac,gfac,ONE,gf_eq(gfac,ZERO));
- gf_mul(tmp,p->x,gfac);
- gf_copy(q->x,tmp);
- gf_mul(tmp,p->y,gfac);
- gf_copy(q->y,tmp);
- gf_mul(tmp,p->z,gfac);
- gf_copy(q->z,tmp);
- gf_mul(tmp,p->t,gfac);
- gf_copy(q->t,tmp);
- }
-
- static void gf_batch_invert (
- gf *__restrict__ out,
- const gf *in,
- unsigned int n
- ) {
- gf t1;
- assert(n>1);
-
- gf_copy(out[1], in[0]);
- int i;
- for (i=1; i<(int) (n-1); i++) {
- gf_mul(out[i+1], out[i], in[i]);
- }
- gf_mul(out[0], out[n-1], in[n-1]);
-
- gf_invert(out[0], out[0], 1);
-
- for (i=n-1; i>0; i--) {
- gf_mul(t1, out[i], out[0]);
- gf_copy(out[i], t1);
- gf_mul(t1, out[0], in[i]);
- gf_copy(out[0], t1);
- }
- }
-
- static void batch_normalize_niels (
- niels_t *table,
- const gf *zs,
- gf *__restrict__ zis,
- int n
- ) {
- int i;
- gf product;
- gf_batch_invert(zis, zs, n);
-
- for (i=0; i<n; i++) {
- gf_mul(product, table[i]->a, zis[i]);
- gf_strong_reduce(product);
- gf_copy(table[i]->a, product);
-
- gf_mul(product, table[i]->b, zis[i]);
- gf_strong_reduce(product);
- gf_copy(table[i]->b, product);
-
- gf_mul(product, table[i]->c, zis[i]);
- gf_strong_reduce(product);
- gf_copy(table[i]->c, product);
- }
-
- decaf_bzero(product,sizeof(product));
- }
-
- void API_NS(precompute) (
- precomputed_s *table,
- const point_t base
- ) {
- const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S;
- assert(n*t*s >= SCALAR_BITS);
-
- point_t working, start, doubles[t-1];
- API_NS(point_copy)(working, base);
- pniels_t pn_tmp;
-
- gf zs[n<<(t-1)], zis[n<<(t-1)];
-
- unsigned int i,j,k;
-
- /* Compute n tables */
- for (i=0; i<n; i++) {
-
- /* Doubling phase */
- for (j=0; j<t; j++) {
- if (j) API_NS(point_add)(start, start, working);
- else API_NS(point_copy)(start, working);
-
- if (j==t-1 && i==n-1) break;
-
- point_double_internal(working, working,0);
- if (j<t-1) API_NS(point_copy)(doubles[j], working);
-
- for (k=0; k<s-1; k++)
- point_double_internal(working, working, k<s-2);
- }
-
- /* Gray-code phase */
- for (j=0;; j++) {
- int gray = j ^ (j>>1);
- int idx = (((i+1)<<(t-1))-1) ^ gray;
-
- pt_to_pniels(pn_tmp, start);
- memcpy(table->table[idx], pn_tmp->n, sizeof(pn_tmp->n));
- gf_copy(zs[idx], pn_tmp->z);
-
- if (j >= (1u<<(t-1)) - 1) break;
- int delta = (j+1) ^ ((j+1)>>1) ^ gray;
-
- for (k=0; delta>1; k++)
- delta >>=1;
-
- if (gray & (1<<k)) {
- API_NS(point_add)(start, start, doubles[k]);
- } else {
- API_NS(point_sub)(start, start, doubles[k]);
- }
- }
- }
-
- batch_normalize_niels(table->table,(const gf *)zs,zis,n<<(t-1));
-
- decaf_bzero(zs,sizeof(zs));
- decaf_bzero(zis,sizeof(zis));
- decaf_bzero(pn_tmp,sizeof(pn_tmp));
- decaf_bzero(working,sizeof(working));
- decaf_bzero(start,sizeof(start));
- decaf_bzero(doubles,sizeof(doubles));
- }
-
- static DECAF_INLINE void
- constant_time_lookup_niels (
- niels_s *__restrict__ ni,
- const niels_t *table,
- int nelts,
- int idx
- ) {
- constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx);
- }
-
- void API_NS(precomputed_scalarmul) (
- point_t out,
- const precomputed_s *table,
- const scalar_t scalar
- ) {
- int i;
- unsigned j,k;
- const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S;
-
- scalar_t scalar1x;
- API_NS(scalar_add)(scalar1x, scalar, precomputed_scalarmul_adjustment);
- API_NS(scalar_halve)(scalar1x,scalar1x);
-
- niels_t ni;
-
- for (i=s-1; i>=0; i--) {
- if (i != (int)s-1) point_double_internal(out,out,0);
-
- for (j=0; j<n; j++) {
- int tab = 0;
-
- for (k=0; k<t; k++) {
- unsigned int bit = i + s*(k + j*t);
- if (bit < SCALAR_BITS) {
- tab |= (scalar1x->limb[bit/WBITS] >> (bit%WBITS) & 1) << k;
- }
- }
-
- mask_t invert = (tab>>(t-1))-1;
- tab ^= invert;
- tab &= (1<<(t-1)) - 1;
-
- constant_time_lookup_niels(ni, &table->table[j<<(t-1)], 1<<(t-1), tab);
-
- cond_neg_niels(ni, invert);
- if ((i!=(int)s-1)||j) {
- add_niels_to_pt(out, ni, j==n-1 && i);
- } else {
- niels_to_pt(out, ni);
- }
- }
- }
-
- decaf_bzero(ni,sizeof(ni));
- decaf_bzero(scalar1x,sizeof(scalar1x));
- }
-
- void API_NS(point_cond_sel) (
- point_t out,
- const point_t a,
- const point_t b,
- decaf_bool_t pick_b
- ) {
- constant_time_select(out,a,b,sizeof(point_t),bool_to_mask(pick_b),0);
- }
-
- /* FUTURE: restore Curve25519 Montgomery ladder? */
- decaf_error_t API_NS(direct_scalarmul) (
- uint8_t scaled[SER_BYTES],
- const uint8_t base[SER_BYTES],
- const scalar_t scalar,
- decaf_bool_t allow_identity,
- decaf_bool_t short_circuit
- ) {
- point_t basep;
- decaf_error_t succ = API_NS(point_decode)(basep, base, allow_identity);
- if (short_circuit && succ != DECAF_SUCCESS) return succ;
- API_NS(point_cond_sel)(basep, API_NS(point_base), basep, succ);
- API_NS(point_scalarmul)(basep, basep, scalar);
- API_NS(point_encode)(scaled, basep);
- API_NS(point_destroy)(basep);
- return succ;
- }
-
- void API_NS(point_mul_by_cofactor_and_encode_like_eddsa) (
- uint8_t enc[DECAF_EDDSA_25519_PUBLIC_BYTES],
- const point_t p
- ) {
-
- /* The point is now on the twisted curve. Move it to untwisted. */
- gf x, y, z, t;
- point_t q;
- #if COFACTOR == 8
- API_NS(point_double)(q,p);
- #else
- API_NS(point_copy)(q,p);
- #endif
-
- #if EDDSA_USE_SIGMA_ISOGENY
- {
- /* Use 4-isogeny like ed25519:
- * 2*x*y*sqrt(d/a-1)/(ax^2 + y^2 - 2)
- * (y^2 - ax^2)/(y^2 + ax^2)
- * with a = -1, d = -EDWARDS_D:
- * -2xysqrt(EDWARDS_D-1)/(2z^2-y^2+x^2)
- * (y^2+x^2)/(y^2-x^2)
- */
- gf u;
- gf_sqr ( x, q->x ); // x^2
- gf_sqr ( t, q->y ); // y^2
- gf_add( u, x, t ); // x^2 + y^2
- gf_add( z, q->y, q->x );
- gf_sqr ( y, z);
- gf_sub ( y, u, y ); // -2xy
- gf_sub ( z, t, x ); // y^2 - x^2
- gf_sqr ( x, q->z );
- gf_add ( t, x, x);
- gf_sub ( t, t, z); // 2z^2 - y^2 + x^2
- gf_mul ( x, y, z ); // 2xy(y^2-x^2)
- gf_mul ( y, u, t ); // (x^2+y^2)(2z^2-y^2+x^2)
- gf_mul ( u, z, t );
- gf_copy( z, u );
- gf_mul ( u, x, RISTRETTO_ISOMAGIC );
- #if IMAGINE_TWIST
- gf_mul_qnr( x, u );
- #else
- #error "... probably wrong"
- gf_copy( x, u );
- #endif
- decaf_bzero(u,sizeof(u));
- }
- #elif IMAGINE_TWIST
- {
- API_NS(point_double)(q,q);
- API_NS(point_double)(q,q);
- gf_mul_qnr(x, q->x);
- gf_copy(y, q->y);
- gf_copy(z, q->z);
- }
- #else
- {
- /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */
- gf u;
- gf_sqr ( x, q->x );
- gf_sqr ( t, q->y );
- gf_add( u, x, t );
- gf_add( z, q->y, q->x );
- gf_sqr ( y, z);
- gf_sub ( y, y, u );
- gf_sub ( z, t, x );
- gf_sqr ( x, q->z );
- gf_add ( t, x, x);
- gf_sub ( t, t, z);
- gf_mul ( x, t, y );
- gf_mul ( y, z, u );
- gf_mul ( z, u, t );
- decaf_bzero(u,sizeof(u));
- }
- #endif
- /* Affinize */
- gf_invert(z,z,1);
- gf_mul(t,x,z);
- gf_mul(x,y,z);
-
- /* Encode */
- enc[DECAF_EDDSA_25519_PRIVATE_BYTES-1] = 0;
- gf_serialize(enc, x, 1);
- enc[DECAF_EDDSA_25519_PRIVATE_BYTES-1] |= 0x80 & gf_lobit(t);
-
- decaf_bzero(x,sizeof(x));
- decaf_bzero(y,sizeof(y));
- decaf_bzero(z,sizeof(z));
- decaf_bzero(t,sizeof(t));
- API_NS(point_destroy)(q);
- }
-
-
- decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) (
- point_t p,
- const uint8_t enc[DECAF_EDDSA_25519_PUBLIC_BYTES]
- ) {
- uint8_t enc2[DECAF_EDDSA_25519_PUBLIC_BYTES];
- memcpy(enc2,enc,sizeof(enc2));
-
- mask_t low = ~word_is_zero(enc2[DECAF_EDDSA_25519_PRIVATE_BYTES-1] & 0x80);
- enc2[DECAF_EDDSA_25519_PRIVATE_BYTES-1] &= ~0x80;
-
- mask_t succ = gf_deserialize(p->y, enc2, 1);
- #if 7 == 0
- succ &= word_is_zero(enc2[DECAF_EDDSA_25519_PRIVATE_BYTES-1]);
- #endif
-
- gf_sqr(p->x,p->y);
- gf_sub(p->z,ONE,p->x); /* num = 1-y^2 */
- #if EDDSA_USE_SIGMA_ISOGENY
- gf_mulw(p->t,p->z,EDWARDS_D); /* d-dy^2 */
- gf_mulw(p->x,p->z,EDWARDS_D-1); /* num = (1-y^2)(d-1) */
- gf_copy(p->z,p->x);
- #else
- gf_mulw(p->t,p->x,EDWARDS_D); /* dy^2 */
- #endif
- gf_sub(p->t,ONE,p->t); /* denom = 1-dy^2 or 1-d + dy^2 */
-
- gf_mul(p->x,p->z,p->t);
- succ &= gf_isr(p->t,p->x); /* 1/sqrt(num * denom) */
-
- gf_mul(p->x,p->t,p->z); /* sqrt(num / denom) */
- gf_cond_neg(p->x,gf_lobit(p->x)^low);
- gf_copy(p->z,ONE);
-
- #if EDDSA_USE_SIGMA_ISOGENY
- {
- /* Use 4-isogeny like ed25519:
- * 2*x*y/sqrt(1-d/a)/(ax^2 + y^2 - 2)
- * (y^2 - ax^2)/(y^2 + ax^2)
- * (MAGIC: above formula may be off by a factor of -a
- * or something somewhere; check it for other a)
- *
- * with a = -1, d = -EDWARDS_D:
- * -2xy/sqrt(1-EDWARDS_D)/(2z^2-y^2+x^2)
- * (y^2+x^2)/(y^2-x^2)
- */
- gf a, b, c, d;
- gf_sqr ( c, p->x );
- gf_sqr ( a, p->y );
- gf_add ( d, c, a ); // x^2 + y^2
- gf_add ( p->t, p->y, p->x );
- gf_sqr ( b, p->t );
- gf_sub ( b, b, d ); // 2xy
- gf_sub ( p->t, a, c ); // y^2 - x^2
- gf_sqr ( p->x, p->z );
- gf_add ( p->z, p->x, p->x );
- gf_sub ( a, p->z, p->t ); // 2z^2 - y^2 + x^2
- gf_mul ( c, a, SQRT_ONE_MINUS_D );
- gf_mul ( p->x, b, p->t); // (2xy)(y^2-x^2)
- gf_mul ( p->z, p->t, c ); // (y^2-x^2)sd(2z^2 - y^2 + x^2)
- gf_mul ( p->y, d, c ); // (y^2+x^2)sd(2z^2 - y^2 + x^2)
- gf_mul ( p->t, d, b );
- decaf_bzero(a,sizeof(a));
- decaf_bzero(b,sizeof(b));
- decaf_bzero(c,sizeof(c));
- decaf_bzero(d,sizeof(d));
- }
- #elif IMAGINE_TWIST
- {
- gf_mul(p->t,p->x,SQRT_MINUS_ONE);
- gf_copy(p->x,p->t);
- gf_mul(p->t,p->x,p->y);
- }
- #else
- {
- /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */
- gf a, b, c, d;
- gf_sqr ( c, p->x );
- gf_sqr ( a, p->y );
- gf_add ( d, c, a );
- gf_add ( p->t, p->y, p->x );
- gf_sqr ( b, p->t );
- gf_sub ( b, b, d );
- gf_sub ( p->t, a, c );
- gf_sqr ( p->x, p->z );
- gf_add ( p->z, p->x, p->x );
- gf_sub ( a, p->z, d );
- gf_mul ( p->x, a, b );
- gf_mul ( p->z, p->t, a );
- gf_mul ( p->y, p->t, d );
- gf_mul ( p->t, b, d );
- decaf_bzero(a,sizeof(a));
- decaf_bzero(b,sizeof(b));
- decaf_bzero(c,sizeof(c));
- decaf_bzero(d,sizeof(d));
- }
- #endif
-
- decaf_bzero(enc2,sizeof(enc2));
- assert(API_NS(point_valid)(p) || ~succ);
-
- return decaf_succeed_if(mask_to_bool(succ));
- }
-
- decaf_error_t decaf_x25519 (
- uint8_t out[X_PUBLIC_BYTES],
- const uint8_t base[X_PUBLIC_BYTES],
- const uint8_t scalar[X_PRIVATE_BYTES]
- ) {
- gf x1, x2, z2, x3, z3, t1, t2;
- ignore_result(gf_deserialize(x1,base,1));
- gf_copy(x2,ONE);
- gf_copy(z2,ZERO);
- gf_copy(x3,x1);
- gf_copy(z3,ONE);
-
- int t;
- mask_t swap = 0;
-
- for (t = X_PRIVATE_BITS-1; t>=0; t--) {
- uint8_t sb = scalar[t/8];
-
- /* Scalar conditioning */
- if (t/8==0) sb &= -(uint8_t)COFACTOR;
- else if (t == X_PRIVATE_BITS-1) sb = -1;
-
- mask_t k_t = (sb>>(t%8)) & 1;
- k_t = -k_t; /* set to all 0s or all 1s */
-
- swap ^= k_t;
- gf_cond_swap(x2,x3,swap);
- gf_cond_swap(z2,z3,swap);
- swap = k_t;
-
- gf_add_nr(t1,x2,z2); /* A = x2 + z2 */ /* 2+e */
- gf_sub_nr(t2,x2,z2); /* B = x2 - z2 */ /* 3+e */
- gf_sub_nr(z2,x3,z3); /* D = x3 - z3 */ /* 3+e */
- gf_mul(x2,t1,z2); /* DA */
- gf_add_nr(z2,z3,x3); /* C = x3 + z3 */ /* 2+e */
- gf_mul(x3,t2,z2); /* CB */
- gf_sub_nr(z3,x2,x3); /* DA-CB */ /* 3+e */
- gf_sqr(z2,z3); /* (DA-CB)^2 */
- gf_mul(z3,x1,z2); /* z3 = x1(DA-CB)^2 */
- gf_add_nr(z2,x2,x3); /* (DA+CB) */ /* 2+e */
- gf_sqr(x3,z2); /* x3 = (DA+CB)^2 */
-
- gf_sqr(z2,t1); /* AA = A^2 */
- gf_sqr(t1,t2); /* BB = B^2 */
- gf_mul(x2,z2,t1); /* x2 = AA*BB */
- gf_sub_nr(t2,z2,t1); /* E = AA-BB */ /* 3+e */
-
- gf_mulw(t1,t2,-EDWARDS_D); /* E*-d = a24*E */
- gf_add_nr(t1,t1,z2); /* AA + a24*E */ /* 2+e */
- gf_mul(z2,t2,t1); /* z2 = E(AA+a24*E) */
- }
-
- /* Finish */
- gf_cond_swap(x2,x3,swap);
- gf_cond_swap(z2,z3,swap);
- gf_invert(z2,z2,0);
- gf_mul(x1,x2,z2);
- gf_serialize(out,x1,1);
- mask_t nz = ~gf_eq(x1,ZERO);
-
- decaf_bzero(x1,sizeof(x1));
- decaf_bzero(x2,sizeof(x2));
- decaf_bzero(z2,sizeof(z2));
- decaf_bzero(x3,sizeof(x3));
- decaf_bzero(z3,sizeof(z3));
- decaf_bzero(t1,sizeof(t1));
- decaf_bzero(t2,sizeof(t2));
-
- return decaf_succeed_if(mask_to_bool(nz));
- }
-
- /* Thanks Johan Pascal */
- void decaf_ed25519_convert_public_key_to_x25519 (
- uint8_t x[DECAF_X25519_PUBLIC_BYTES],
- const uint8_t ed[DECAF_EDDSA_25519_PUBLIC_BYTES]
- ) {
- gf y;
- {
- uint8_t enc2[DECAF_EDDSA_25519_PUBLIC_BYTES];
- memcpy(enc2,ed,sizeof(enc2));
-
- /* retrieve y from the ed compressed point */
- enc2[DECAF_EDDSA_25519_PUBLIC_BYTES-1] &= ~0x80;
- ignore_result(gf_deserialize(y, enc2, 0));
- decaf_bzero(enc2,sizeof(enc2));
- }
-
- {
- gf n,d;
-
- #if EDDSA_USE_SIGMA_ISOGENY
- /* u = (1+y)/(1-y)*/
- gf_add(n, y, ONE); /* n = y+1 */
- gf_sub(d, ONE, y); /* d = 1-y */
- gf_invert(d, d, 0); /* d = 1/(1-y) */
- gf_mul(y, n, d); /* u = (y+1)/(1-y) */
- gf_serialize(x,y,1);
- #else /* EDDSA_USE_SIGMA_ISOGENY */
- /* u = y^2 * (1-dy^2) / (1-y^2) */
- gf_sqr(n,y); /* y^2*/
- gf_sub(d,ONE,n); /* 1-y^2*/
- gf_invert(d,d,0); /* 1/(1-y^2)*/
- gf_mul(y,n,d); /* y^2 / (1-y^2) */
- gf_mulw(d,n,EDWARDS_D); /* dy^2*/
- gf_sub(d, ONE, d); /* 1-dy^2*/
- gf_mul(n, y, d); /* y^2 * (1-dy^2) / (1-y^2) */
- gf_serialize(x,n,1);
- #endif /* EDDSA_USE_SIGMA_ISOGENY */
-
- decaf_bzero(y,sizeof(y));
- decaf_bzero(n,sizeof(n));
- decaf_bzero(d,sizeof(d));
- }
- }
-
- void decaf_x25519_generate_key (
- uint8_t out[X_PUBLIC_BYTES],
- const uint8_t scalar[X_PRIVATE_BYTES]
- ) {
- decaf_x25519_derive_public_key(out,scalar);
- }
-
- void decaf_x25519_derive_public_key (
- uint8_t out[X_PUBLIC_BYTES],
- const uint8_t scalar[X_PRIVATE_BYTES]
- ) {
- /* Scalar conditioning */
- uint8_t scalar2[X_PRIVATE_BYTES];
- memcpy(scalar2,scalar,sizeof(scalar2));
- scalar2[0] &= -(uint8_t)COFACTOR;
-
- scalar2[X_PRIVATE_BYTES-1] &= ~(-1u<<((X_PRIVATE_BITS+7)%8));
- scalar2[X_PRIVATE_BYTES-1] |= 1<<((X_PRIVATE_BITS+7)%8);
-
- scalar_t the_scalar;
- API_NS(scalar_decode_long)(the_scalar,scalar2,sizeof(scalar2));
-
- /* We're gonna isogenize by 2, so divide by 2.
- *
- * Why by 2, even though it's a 4-isogeny?
- *
- * The isogeny map looks like
- * Montgomery <-2-> Jacobi <-2-> Edwards
- *
- * Since the Jacobi base point is the PREimage of the iso to
- * the Montgomery curve, and we're going
- * Jacobi -> Edwards -> Jacobi -> Montgomery,
- * we pick up only a factor of 2 over Jacobi -> Montgomery.
- */
- API_NS(scalar_halve)(the_scalar,the_scalar);
- point_t p;
- API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),the_scalar);
-
- /* Isogenize to Montgomery curve.
- *
- * Why isn't this just a separate function, eg decaf_encode_like_x25519?
- * Basically because in general it does the wrong thing if there is a cofactor
- * component in the input. In this function though, there isn't a cofactor
- * component in the input.
- */
- gf_invert(p->t,p->x,0); /* 1/x */
- gf_mul(p->z,p->t,p->y); /* y/x */
- gf_sqr(p->y,p->z); /* (y/x)^2 */
- #if IMAGINE_TWIST
- gf_sub(p->y,ZERO,p->y);
- #endif
- gf_serialize(out,p->y,1);
-
- decaf_bzero(scalar2,sizeof(scalar2));
- API_NS(scalar_destroy)(the_scalar);
- API_NS(point_destroy)(p);
- }
-
- /**
- * @cond internal
- * Control for variable-time scalar multiply algorithms.
- */
- struct smvt_control {
- int power, addend;
- };
-
- static int recode_wnaf (
- struct smvt_control *control, /* [nbits/(table_bits+1) + 3] */
- const scalar_t scalar,
- unsigned int table_bits
- ) {
- unsigned int table_size = SCALAR_BITS/(table_bits+1) + 3;
- int position = table_size - 1; /* at the end */
-
- /* place the end marker */
- control[position].power = -1;
- control[position].addend = 0;
- position--;
-
- /* PERF: Could negate scalar if it's large. But then would need more cases
- * in the actual code that uses it, all for an expected reduction of like 1/5 op.
- * Probably not worth it.
- */
-
- uint64_t current = scalar->limb[0] & 0xFFFF;
- uint32_t mask = (1<<(table_bits+1))-1;
-
- unsigned int w;
- const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2;
- for (w = 1; w<(SCALAR_BITS-1)/16+3; w++) {
- if (w < (SCALAR_BITS-1)/16+1) {
- /* Refill the 16 high bits of current */
- current += (uint32_t)((scalar->limb[w/B_OVER_16]>>(16*(w%B_OVER_16)))<<16);
- }
-
- while (current & 0xFFFF) {
- assert(position >= 0);
- uint32_t pos = __builtin_ctz((uint32_t)current), odd = (uint32_t)current >> pos;
- int32_t delta = odd & mask;
- if (odd & 1<<(table_bits+1)) delta -= (1<<(table_bits+1));
- current -= delta << pos;
- control[position].power = pos + 16*(w-1);
- control[position].addend = delta;
- position--;
- }
- current >>= 16;
- }
- assert(current==0);
-
- position++;
- unsigned int n = table_size - position;
- unsigned int i;
- for (i=0; i<n; i++) {
- control[i] = control[i+position];
- }
- return n-1;
- }
-
- static void
- prepare_wnaf_table(
- pniels_t *output,
- const point_t working,
- unsigned int tbits
- ) {
- point_t tmp;
- int i;
- pt_to_pniels(output[0], working);
-
- if (tbits == 0) return;
-
- API_NS(point_double)(tmp,working);
- pniels_t twop;
- pt_to_pniels(twop, tmp);
-
- add_pniels_to_pt(tmp, output[0],0);
- pt_to_pniels(output[1], tmp);
-
- for (i=2; i < 1<<tbits; i++) {
- add_pniels_to_pt(tmp, twop,0);
- pt_to_pniels(output[i], tmp);
- }
-
- API_NS(point_destroy)(tmp);
- decaf_bzero(twop,sizeof(twop));
- }
-
- extern const gf API_NS(precomputed_wnaf_as_fe)[];
- static const niels_t *API_NS(wnaf_base) = (const niels_t *)API_NS(precomputed_wnaf_as_fe);
- const size_t API_NS(sizeof_precomputed_wnafs) __attribute((visibility("hidden")))
- = sizeof(niels_t)<<DECAF_WNAF_FIXED_TABLE_BITS;
-
- void API_NS(precompute_wnafs) (
- niels_t out[1<<DECAF_WNAF_FIXED_TABLE_BITS],
- const point_t base
- ) __attribute__ ((visibility ("hidden")));
-
- void API_NS(precompute_wnafs) (
- niels_t out[1<<DECAF_WNAF_FIXED_TABLE_BITS],
- const point_t base
- ) {
- pniels_t tmp[1<<DECAF_WNAF_FIXED_TABLE_BITS];
- gf zs[1<<DECAF_WNAF_FIXED_TABLE_BITS], zis[1<<DECAF_WNAF_FIXED_TABLE_BITS];
- int i;
- prepare_wnaf_table(tmp,base,DECAF_WNAF_FIXED_TABLE_BITS);
- for (i=0; i<1<<DECAF_WNAF_FIXED_TABLE_BITS; i++) {
- memcpy(out[i], tmp[i]->n, sizeof(niels_t));
- gf_copy(zs[i], tmp[i]->z);
- }
- batch_normalize_niels(out, (const gf *)zs, zis, 1<<DECAF_WNAF_FIXED_TABLE_BITS);
-
- decaf_bzero(tmp,sizeof(tmp));
- decaf_bzero(zs,sizeof(zs));
- decaf_bzero(zis,sizeof(zis));
- }
-
- void API_NS(base_double_scalarmul_non_secret) (
- point_t combo,
- const scalar_t scalar1,
- const point_t base2,
- const scalar_t scalar2
- ) {
- const int table_bits_var = DECAF_WNAF_VAR_TABLE_BITS,
- table_bits_pre = DECAF_WNAF_FIXED_TABLE_BITS;
- struct smvt_control control_var[SCALAR_BITS/(table_bits_var+1)+3];
- struct smvt_control control_pre[SCALAR_BITS/(table_bits_pre+1)+3];
-
- int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre);
- int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var);
-
- pniels_t precmp_var[1<<table_bits_var];
- prepare_wnaf_table(precmp_var, base2, table_bits_var);
-
- int contp=0, contv=0, i = control_var[0].power;
-
- if (i < 0) {
- API_NS(point_copy)(combo, API_NS(point_identity));
- return;
- } else if (i > control_pre[0].power) {
- pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
- contv++;
- } else if (i == control_pre[0].power && i >=0 ) {
- pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
- add_niels_to_pt(combo, API_NS(wnaf_base)[control_pre[0].addend >> 1], i);
- contv++; contp++;
- } else {
- i = control_pre[0].power;
- niels_to_pt(combo, API_NS(wnaf_base)[control_pre[0].addend >> 1]);
- contp++;
- }
-
- for (i--; i >= 0; i--) {
- int cv = (i==control_var[contv].power), cp = (i==control_pre[contp].power);
- point_double_internal(combo,combo,i && !(cv||cp));
-
- if (cv) {
- assert(control_var[contv].addend);
-
- if (control_var[contv].addend > 0) {
- add_pniels_to_pt(combo, precmp_var[control_var[contv].addend >> 1], i&&!cp);
- } else {
- sub_pniels_from_pt(combo, precmp_var[(-control_var[contv].addend) >> 1], i&&!cp);
- }
- contv++;
- }
-
- if (cp) {
- assert(control_pre[contp].addend);
-
- if (control_pre[contp].addend > 0) {
- add_niels_to_pt(combo, API_NS(wnaf_base)[control_pre[contp].addend >> 1], i);
- } else {
- sub_niels_from_pt(combo, API_NS(wnaf_base)[(-control_pre[contp].addend) >> 1], i);
- }
- contp++;
- }
- }
-
- /* This function is non-secret, but whatever this is cheap. */
- decaf_bzero(control_var,sizeof(control_var));
- decaf_bzero(control_pre,sizeof(control_pre));
- decaf_bzero(precmp_var,sizeof(precmp_var));
-
- assert(contv == ncb_var); (void)ncb_var;
- assert(contp == ncb_pre); (void)ncb_pre;
- }
-
- void API_NS(point_destroy) (
- point_t point
- ) {
- decaf_bzero(point, sizeof(point_t));
- }
-
- void API_NS(precomputed_destroy) (
- precomputed_s *pre
- ) {
- decaf_bzero(pre, API_NS(sizeof_precomputed_s));
- }
|