You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

342 lines
8.6 KiB

  1. /**
  2. * @file curve25519/scalar.c
  3. * @author Mike Hamburg
  4. *
  5. * @copyright
  6. * Copyright (c) 2015-2016 Cryptography Research, Inc. \n
  7. * Released under the MIT License. See LICENSE.txt for license information.
  8. *
  9. * @brief Decaf high-level functions.
  10. *
  11. * @warning This file was automatically generated in Python.
  12. * Please do not edit it.
  13. */
  14. #include "word.h"
  15. #include "constant_time.h"
  16. #include <decaf.h>
  17. /* Template stuff */
  18. #define API_NS(_id) decaf_255_##_id
  19. #define SCALAR_BITS DECAF_255_SCALAR_BITS
  20. #define SCALAR_SER_BYTES DECAF_255_SCALAR_BYTES
  21. #define SCALAR_LIMBS DECAF_255_SCALAR_LIMBS
  22. #define scalar_t API_NS(scalar_t)
  23. static const decaf_word_t MONTGOMERY_FACTOR = (decaf_word_t)0xd2b51da312547e1bull;
  24. static const scalar_t sc_p = {{{
  25. SC_LIMB(0x5812631a5cf5d3ed), SC_LIMB(0x14def9dea2f79cd6), SC_LIMB(0x0000000000000000), SC_LIMB(0x1000000000000000)
  26. }}}, sc_r2 = {{{
  27. SC_LIMB(0xa40611e3449c0f01), SC_LIMB(0xd00e1ba768859347), SC_LIMB(0xceec73d217f5be65), SC_LIMB(0x0399411b7c309a3d)
  28. }}};
  29. /* End of template stuff */
  30. #define WBITS DECAF_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */
  31. const scalar_t API_NS(scalar_one) = {{{1}}}, API_NS(scalar_zero) = {{{0}}};
  32. /** {extra,accum} - sub +? p
  33. * Must have extra <= 1
  34. */
  35. static DECAF_NOINLINE void sc_subx(
  36. scalar_t out,
  37. const decaf_word_t accum[SCALAR_LIMBS],
  38. const scalar_t sub,
  39. const scalar_t p,
  40. decaf_word_t extra
  41. ) {
  42. decaf_dsword_t chain = 0;
  43. unsigned int i;
  44. for (i=0; i<SCALAR_LIMBS; i++) {
  45. chain = (chain + accum[i]) - sub->limb[i];
  46. out->limb[i] = chain;
  47. chain >>= WBITS;
  48. }
  49. decaf_word_t borrow = chain+extra; /* = 0 or -1 */
  50. chain = 0;
  51. for (i=0; i<SCALAR_LIMBS; i++) {
  52. chain = (chain + out->limb[i]) + (p->limb[i] & borrow);
  53. out->limb[i] = chain;
  54. chain >>= WBITS;
  55. }
  56. }
  57. static DECAF_NOINLINE void sc_montmul (
  58. scalar_t out,
  59. const scalar_t a,
  60. const scalar_t b
  61. ) {
  62. unsigned int i,j;
  63. decaf_word_t accum[SCALAR_LIMBS+1] = {0};
  64. decaf_word_t hi_carry = 0;
  65. for (i=0; i<SCALAR_LIMBS; i++) {
  66. decaf_word_t mand = a->limb[i];
  67. const decaf_word_t *mier = b->limb;
  68. decaf_dword_t chain = 0;
  69. for (j=0; j<SCALAR_LIMBS; j++) {
  70. chain += ((decaf_dword_t)mand)*mier[j] + accum[j];
  71. accum[j] = chain;
  72. chain >>= WBITS;
  73. }
  74. accum[j] = chain;
  75. mand = accum[0] * MONTGOMERY_FACTOR;
  76. chain = 0;
  77. mier = sc_p->limb;
  78. for (j=0; j<SCALAR_LIMBS; j++) {
  79. chain += (decaf_dword_t)mand*mier[j] + accum[j];
  80. if (j) accum[j-1] = chain;
  81. chain >>= WBITS;
  82. }
  83. chain += accum[j];
  84. chain += hi_carry;
  85. accum[j-1] = chain;
  86. hi_carry = chain >> WBITS;
  87. }
  88. sc_subx(out, accum, sc_p, sc_p, hi_carry);
  89. }
  90. void API_NS(scalar_mul) (
  91. scalar_t out,
  92. const scalar_t a,
  93. const scalar_t b
  94. ) {
  95. sc_montmul(out,a,b);
  96. sc_montmul(out,out,sc_r2);
  97. }
  98. /* PERF: could implement this */
  99. static DECAF_INLINE void sc_montsqr (scalar_t out, const scalar_t a) {
  100. sc_montmul(out,a,a);
  101. }
  102. decaf_error_t API_NS(scalar_invert) (
  103. scalar_t out,
  104. const scalar_t a
  105. ) {
  106. /* Fermat's little theorem, sliding window.
  107. * Sliding window is fine here because the modulus isn't secret.
  108. */
  109. const int SCALAR_WINDOW_BITS = 3;
  110. scalar_t precmp[1<<SCALAR_WINDOW_BITS];
  111. const int LAST = (1<<SCALAR_WINDOW_BITS)-1;
  112. /* Precompute precmp = [a^1,a^3,...] */
  113. sc_montmul(precmp[0],a,sc_r2);
  114. if (LAST > 0) sc_montmul(precmp[LAST],precmp[0],precmp[0]);
  115. int i;
  116. for (i=1; i<=LAST; i++) {
  117. sc_montmul(precmp[i],precmp[i-1],precmp[LAST]);
  118. }
  119. /* Sliding window */
  120. unsigned residue = 0, trailing = 0, started = 0;
  121. for (i=SCALAR_BITS-1; i>=-SCALAR_WINDOW_BITS; i--) {
  122. if (started) sc_montsqr(out,out);
  123. decaf_word_t w = (i>=0) ? sc_p->limb[i/WBITS] : 0;
  124. if (i >= 0 && i<WBITS) {
  125. assert(w >= 2);
  126. w-=2;
  127. }
  128. residue = (residue<<1) | ((w>>(i%WBITS))&1);
  129. if (residue>>SCALAR_WINDOW_BITS != 0) {
  130. assert(trailing == 0);
  131. trailing = residue;
  132. residue = 0;
  133. }
  134. if (trailing > 0 && (trailing & ((1<<SCALAR_WINDOW_BITS)-1)) == 0) {
  135. if (started) {
  136. sc_montmul(out,out,precmp[trailing>>(SCALAR_WINDOW_BITS+1)]);
  137. } else {
  138. API_NS(scalar_copy)(out,precmp[trailing>>(SCALAR_WINDOW_BITS+1)]);
  139. started = 1;
  140. }
  141. trailing = 0;
  142. }
  143. trailing <<= 1;
  144. }
  145. assert(residue==0);
  146. assert(trailing==0);
  147. /* Demontgomerize */
  148. sc_montmul(out,out,API_NS(scalar_one));
  149. decaf_bzero(precmp, sizeof(precmp));
  150. return decaf_succeed_if(~API_NS(scalar_eq)(out,API_NS(scalar_zero)));
  151. }
  152. void API_NS(scalar_sub) (
  153. scalar_t out,
  154. const scalar_t a,
  155. const scalar_t b
  156. ) {
  157. sc_subx(out, a->limb, b, sc_p, 0);
  158. }
  159. void API_NS(scalar_add) (
  160. scalar_t out,
  161. const scalar_t a,
  162. const scalar_t b
  163. ) {
  164. decaf_dword_t chain = 0;
  165. unsigned int i;
  166. for (i=0; i<SCALAR_LIMBS; i++) {
  167. chain = (chain + a->limb[i]) + b->limb[i];
  168. out->limb[i] = chain;
  169. chain >>= WBITS;
  170. }
  171. sc_subx(out, out->limb, sc_p, sc_p, chain);
  172. }
  173. void
  174. API_NS(scalar_set_unsigned) (
  175. scalar_t out,
  176. uint64_t w
  177. ) {
  178. memset(out,0,sizeof(scalar_t));
  179. unsigned int i = 0;
  180. for (; i<sizeof(uint64_t)/sizeof(decaf_word_t); i++) {
  181. out->limb[i] = w;
  182. #if DECAF_WORD_BITS < 64
  183. w >>= 8*sizeof(decaf_word_t);
  184. #endif
  185. }
  186. }
  187. decaf_bool_t
  188. API_NS(scalar_eq) (
  189. const scalar_t a,
  190. const scalar_t b
  191. ) {
  192. decaf_word_t diff = 0;
  193. unsigned int i;
  194. for (i=0; i<SCALAR_LIMBS; i++) {
  195. diff |= a->limb[i] ^ b->limb[i];
  196. }
  197. return mask_to_bool(word_is_zero(diff));
  198. }
  199. static DECAF_INLINE void scalar_decode_short (
  200. scalar_t s,
  201. const unsigned char *ser,
  202. unsigned int nbytes
  203. ) {
  204. unsigned int i,j,k=0;
  205. for (i=0; i<SCALAR_LIMBS; i++) {
  206. decaf_word_t out = 0;
  207. for (j=0; j<sizeof(decaf_word_t) && k<nbytes; j++,k++) {
  208. out |= ((decaf_word_t)ser[k])<<(8*j);
  209. }
  210. s->limb[i] = out;
  211. }
  212. }
  213. decaf_error_t API_NS(scalar_decode)(
  214. scalar_t s,
  215. const unsigned char ser[SCALAR_SER_BYTES]
  216. ) {
  217. unsigned int i;
  218. scalar_decode_short(s, ser, SCALAR_SER_BYTES);
  219. decaf_dsword_t accum = 0;
  220. for (i=0; i<SCALAR_LIMBS; i++) {
  221. accum = (accum + s->limb[i] - sc_p->limb[i]) >> WBITS;
  222. }
  223. /* Here accum == 0 or -1 */
  224. API_NS(scalar_mul)(s,s,API_NS(scalar_one)); /* ham-handed reduce */
  225. return decaf_succeed_if(~word_is_zero(accum));
  226. }
  227. void API_NS(scalar_destroy) (
  228. scalar_t scalar
  229. ) {
  230. decaf_bzero(scalar, sizeof(scalar_t));
  231. }
  232. void API_NS(scalar_decode_long)(
  233. scalar_t s,
  234. const unsigned char *ser,
  235. size_t ser_len
  236. ) {
  237. if (ser_len == 0) {
  238. API_NS(scalar_copy)(s, API_NS(scalar_zero));
  239. return;
  240. }
  241. size_t i;
  242. scalar_t t1, t2;
  243. i = ser_len - (ser_len%SCALAR_SER_BYTES);
  244. if (i==ser_len) i -= SCALAR_SER_BYTES;
  245. scalar_decode_short(t1, &ser[i], ser_len-i);
  246. if (ser_len == sizeof(scalar_t)) {
  247. assert(i==0);
  248. /* ham-handed reduce */
  249. API_NS(scalar_mul)(s,t1,API_NS(scalar_one));
  250. API_NS(scalar_destroy)(t1);
  251. return;
  252. }
  253. while (i) {
  254. i -= SCALAR_SER_BYTES;
  255. sc_montmul(t1,t1,sc_r2);
  256. ignore_result( API_NS(scalar_decode)(t2, ser+i) );
  257. API_NS(scalar_add)(t1, t1, t2);
  258. }
  259. API_NS(scalar_copy)(s, t1);
  260. API_NS(scalar_destroy)(t1);
  261. API_NS(scalar_destroy)(t2);
  262. }
  263. void API_NS(scalar_encode)(
  264. unsigned char ser[SCALAR_SER_BYTES],
  265. const scalar_t s
  266. ) {
  267. unsigned int i,j,k=0;
  268. for (i=0; i<SCALAR_LIMBS; i++) {
  269. for (j=0; j<sizeof(decaf_word_t); j++,k++) {
  270. ser[k] = s->limb[i] >> (8*j);
  271. }
  272. }
  273. }
  274. void API_NS(scalar_cond_sel) (
  275. scalar_t out,
  276. const scalar_t a,
  277. const scalar_t b,
  278. decaf_bool_t pick_b
  279. ) {
  280. constant_time_select(out,a,b,sizeof(scalar_t),bool_to_mask(pick_b),sizeof(out->limb[0]));
  281. }
  282. void API_NS(scalar_halve) (
  283. scalar_t out,
  284. const scalar_t a
  285. ) {
  286. decaf_word_t mask = -(a->limb[0] & 1);
  287. decaf_dword_t chain = 0;
  288. unsigned int i;
  289. for (i=0; i<SCALAR_LIMBS; i++) {
  290. chain = (chain + a->limb[i]) + (sc_p->limb[i] & mask);
  291. out->limb[i] = chain;
  292. chain >>= DECAF_WORD_BITS;
  293. }
  294. for (i=0; i<SCALAR_LIMBS-1; i++) {
  295. out->limb[i] = out->limb[i]>>1 | out->limb[i+1]<<(WBITS-1);
  296. }
  297. out->limb[i] = out->limb[i]>>1 | chain<<(WBITS-1);
  298. }