/** * A group of prime order, C++ wrapper. * * The Decaf library implements cryptographic operations on a an elliptic curve * group of prime order. It accomplishes this by using a twisted Edwards * curve (isogenous to $(iso_to)) and wiping out the cofactor. * * Most of the functions in this file run in constant time, can't fail * except for ubiquitous reasons like memory exhaustion, and contain no * data-dependend branches, timing or memory accesses. There are some * exceptions, which should be noted. Typically, decoding functions can * fail. */ /** This code uses posix_memalign. */ #ifndef _XOPEN_SOURCE #define _XOPEN_SOURCE 600 #endif #include #include /* for memcpy */ #include #include #include #include #include #include /** @cond internal */ #if __cplusplus >= 201103L #define DECAF_NOEXCEPT noexcept #else #define DECAF_NOEXCEPT throw() #endif /** @endcond */ namespace decaf { /** * $(iso_to)/Decaf instantiation of group. */ struct $(cxx_ns) { /** The name of the curve */ static inline const char *name() { return "$(name)"; } /** The name of the curve */ static inline int bits() { return $(gf_bits); } /** The curve's cofactor (removed, but useful for testing) */ static const int REMOVED_COFACTOR = $(cofactor); /** Residue class of field modulus: p == this mod 2*(this-1) */ static const int FIELD_MODULUS_TYPE = $(modulus &~ (modulus-3)); /** @cond internal */ class Point; class Precomputed; /** @endcond */ /** * A scalar modulo the curve order. * Supports the usual arithmetic operations, all in constant time. */ class Scalar : public Serializable { public: /** wrapped C type */ typedef $(c_ns)_scalar_t Wrapped; /** Size of a serialized element */ static const size_t SER_BYTES = $(C_NS)_SCALAR_BYTES; /** access to the underlying scalar object */ Wrapped s; /** @cond internal */ /** Don't initialize. */ inline Scalar(const NOINIT &) DECAF_NOEXCEPT {} /** @endcond */ /** Set to an unsigned word */ inline Scalar(uint64_t w) DECAF_NOEXCEPT { *this = w; } /** Set to a signed word */ inline Scalar(int64_t w) DECAF_NOEXCEPT { *this = w; } /** Set to an unsigned word */ inline Scalar(unsigned int w) DECAF_NOEXCEPT { *this = w; } /** Set to a signed word */ inline Scalar(int w) DECAF_NOEXCEPT { *this = w; } /** Construct from RNG */ inline explicit Scalar(Rng &rng) DECAF_NOEXCEPT { FixedArrayBuffer sb(rng); *this = sb; } /** Construct from decaf_scalar_t object. */ inline Scalar(const Wrapped &t = $(c_ns)_scalar_zero) DECAF_NOEXCEPT { $(c_ns)_scalar_copy(s,t); } /** Copy constructor. */ inline Scalar(const Scalar &x) DECAF_NOEXCEPT { *this = x; } /** Construct from arbitrary-length little-endian byte sequence. */ inline Scalar(const Block &buffer) DECAF_NOEXCEPT { *this = buffer; } /** Serializable instance */ inline size_t ser_size() const DECAF_NOEXCEPT { return SER_BYTES; } /** Serializable instance */ inline void serialize_into(unsigned char *buffer) const DECAF_NOEXCEPT { $(c_ns)_scalar_encode(buffer, s); } /** Assignment. */ inline Scalar& operator=(const Scalar &x) DECAF_NOEXCEPT { $(c_ns)_scalar_copy(s,x.s); return *this; } /** Assign from unsigned 64-bit integer. */ inline Scalar& operator=(uint64_t w) DECAF_NOEXCEPT { $(c_ns)_scalar_set_unsigned(s,w); return *this; } /** Assign from signed int. */ inline Scalar& operator=(int64_t w) DECAF_NOEXCEPT { Scalar t(-(uint64_t)INT_MIN); $(c_ns)_scalar_set_unsigned(s,(uint64_t)w - (uint64_t)INT_MIN); *this -= t; return *this; } /** Assign from unsigned int. */ inline Scalar& operator=(unsigned int w) DECAF_NOEXCEPT { return *this = (uint64_t)w; } /** Assign from signed int. */ inline Scalar& operator=(int w) DECAF_NOEXCEPT { return *this = (int64_t)w; } /** Destructor securely zeorizes the scalar. */ inline ~Scalar() DECAF_NOEXCEPT { $(c_ns)_scalar_destroy(s); } /** Assign from arbitrary-length little-endian byte sequence in a Block. */ inline Scalar &operator=(const Block &bl) DECAF_NOEXCEPT { $(c_ns)_scalar_decode_long(s,bl.data(),bl.size()); return *this; } /** * Decode from correct-length little-endian byte sequence. * @return DECAF_FAILURE if the scalar is greater than or equal to the group order q. */ static inline decaf_error_t DECAF_WARN_UNUSED decode ( Scalar &sc, const FixedBlock buffer ) DECAF_NOEXCEPT { return $(c_ns)_scalar_decode(sc.s,buffer.data()); } /** Add. */ inline Scalar operator+ (const Scalar &q) const DECAF_NOEXCEPT { Scalar r((NOINIT())); $(c_ns)_scalar_add(r.s,s,q.s); return r; } /** Add to this. */ inline Scalar &operator+=(const Scalar &q) DECAF_NOEXCEPT { $(c_ns)_scalar_add(s,s,q.s); return *this; } /** Subtract. */ inline Scalar operator- (const Scalar &q) const DECAF_NOEXCEPT { Scalar r((NOINIT())); $(c_ns)_scalar_sub(r.s,s,q.s); return r; } /** Subtract from this. */ inline Scalar &operator-=(const Scalar &q) DECAF_NOEXCEPT { $(c_ns)_scalar_sub(s,s,q.s); return *this; } /** Multiply */ inline Scalar operator* (const Scalar &q) const DECAF_NOEXCEPT { Scalar r((NOINIT())); $(c_ns)_scalar_mul(r.s,s,q.s); return r; } /** Multiply into this. */ inline Scalar &operator*=(const Scalar &q) DECAF_NOEXCEPT { $(c_ns)_scalar_mul(s,s,q.s); return *this; } /** Negate */ inline Scalar operator- () const DECAF_NOEXCEPT { Scalar r((NOINIT())); $(c_ns)_scalar_sub(r.s,$(c_ns)_scalar_zero,s); return r; } /** Return 1/this. * @throw CryptoException if this is 0. */ inline Scalar inverse() const /*throw(CryptoException)*/ { Scalar r; if (DECAF_SUCCESS != $(c_ns)_scalar_invert(r.s,s)) { throw CryptoException(); } return r; } /** Invert with Fermat's Little Theorem (slow!). If *this == 0, set r=0 * and return DECAF_FAILURE. */ inline decaf_error_t DECAF_WARN_UNUSED inverse_noexcept(Scalar &r) const DECAF_NOEXCEPT { return $(c_ns)_scalar_invert(r.s,s); } /** Return this/q. @throw CryptoException if q == 0. */ inline Scalar operator/ (const Scalar &q) const /*throw(CryptoException)*/ { return *this * q.inverse(); } /** Set this to this/q. @throw CryptoException if q == 0. */ inline Scalar &operator/=(const Scalar &q) /*throw(CryptoException)*/ { return *this *= q.inverse(); } /** Return half this scalar. Much faster than /2. */ inline Scalar half() const { Scalar out; $(c_ns)_scalar_halve(out.s,s); return out; } /** Compare in constant time */ inline bool operator!=(const Scalar &q) const DECAF_NOEXCEPT { return !(*this == q); } /** Compare in constant time */ inline bool operator==(const Scalar &q) const DECAF_NOEXCEPT { return !!$(c_ns)_scalar_eq(s,q.s); } /** Scalarmul with scalar on left. */ inline Point operator* (const Point &q) const DECAF_NOEXCEPT { return q * (*this); } /** Scalarmul-precomputed with scalar on left. */ inline Point operator* (const Precomputed &q) const DECAF_NOEXCEPT { return q * (*this); } /** Direct scalar multiplication. * @throw CryptoException if the input didn't decode. */ inline SecureBuffer direct_scalarmul ( const FixedBlock &in, decaf_bool_t allow_identity=DECAF_FALSE, decaf_bool_t short_circuit=DECAF_TRUE ) const /*throw(CryptoException)*/; /** Direct scalar multiplication. */ inline decaf_error_t DECAF_WARN_UNUSED direct_scalarmul_noexcept( FixedBuffer &out, const FixedBlock &in, decaf_bool_t allow_identity=DECAF_FALSE, decaf_bool_t short_circuit=DECAF_TRUE ) const DECAF_NOEXCEPT; }; /** Element of prime-order elliptic curve group. */ class Point : public Serializable { public: /** Wrapped C type */ typedef $(c_ns)_point_t Wrapped; /** Size of a serialized element */ static const size_t SER_BYTES = $(C_NS)_SER_BYTES; /** Bytes required for hash */ static const size_t HASH_BYTES = $(C_NS)_HASH_BYTES; /** Bytes required for EdDSA encoding */ static const size_t EDDSA_BYTES = DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES; /** Bytes required for EdDSA encoding */ static const size_t LADDER_BYTES = DECAF_X$(gf_shortname)_PUBLIC_BYTES; /** Ratio due to EdDSA encoding */ static const int EDDSA_ENCODE_RATIO = $(C_NS)_EDDSA_ENCODE_RATIO; /** Ratio due to EdDSA decoding */ static const int EDDSA_DECODE_RATIO = $(C_NS)_EDDSA_DECODE_RATIO; /** Ratio due to ladder decoding */ static const int LADDER_ENCODE_RATIO = DECAF_X$(gf_shortname)_ENCODE_RATIO; /** Size of a steganographically-encoded curve element. If the point is random, the encoding * should look statistically close to a uniformly-random sequnece of STEG_BYTES bytes. */ static const size_t STEG_BYTES = HASH_BYTES * 2; /** Number of bits in invert_elligator which are actually used. */ static const unsigned int INVERT_ELLIGATOR_WHICH_BITS = $(C_NS)_INVERT_ELLIGATOR_WHICH_BITS; /** The c-level object. */ Wrapped p; /** @cond internal */ /** Don't initialize. */ inline Point(const NOINIT &) DECAF_NOEXCEPT {} /** @endcond */ /** Constructor sets to identity by default. */ inline Point(const Wrapped &q = $(c_ns)_point_identity) DECAF_NOEXCEPT { $(c_ns)_point_copy(p,q); } /** Copy constructor. */ inline Point(const Point &q) DECAF_NOEXCEPT { *this = q; } /** Assignment. */ inline Point& operator=(const Point &q) DECAF_NOEXCEPT { $(c_ns)_point_copy(p,q.p); return *this; } /** Destructor securely zeorizes the point. */ inline ~Point() DECAF_NOEXCEPT { $(c_ns)_point_destroy(p); } /** Construct from RNG */ inline explicit Point(Rng &rng, bool uniform = true) DECAF_NOEXCEPT { if (uniform) { FixedArrayBuffer<2*HASH_BYTES> b(rng); set_to_hash(b); } else { FixedArrayBuffer b(rng); set_to_hash(b); } } /** * Initialize from a fixed-length byte string. * The all-zero string maps to the identity. * * @throw CryptoException the string was the wrong length, or wasn't the encoding of a point, * or was the identity and allow_identity was DECAF_FALSE. */ inline explicit Point(const FixedBlock &buffer, bool allow_identity=true) /*throw(CryptoException)*/ { if (DECAF_SUCCESS != decode(buffer,allow_identity ? DECAF_TRUE : DECAF_FALSE)) { throw CryptoException(); } } /** * Initialize from C++ fixed-length byte string. * The all-zero string maps to the identity. * * @retval DECAF_SUCCESS the string was successfully decoded. * @return DECAF_FAILURE the string was the wrong length, or wasn't the encoding of a point, * or was the identity and allow_identity was DECAF_FALSE. Contents of the buffer are undefined. */ inline decaf_error_t DECAF_WARN_UNUSED decode ( const FixedBlock &buffer, bool allow_identity=true ) DECAF_NOEXCEPT { return $(c_ns)_point_decode(p,buffer.data(),allow_identity ? DECAF_TRUE : DECAF_FALSE); } /** * Initialize from C++ fixed-length byte string, like EdDSA. * The all-zero string maps to the identity. * * @retval DECAF_SUCCESS the string was successfully decoded. * @return DECAF_FAILURE the string was the wrong length, or wasn't the encoding of a point. * Contents of the point are undefined. */ inline decaf_error_t DECAF_WARN_UNUSED decode_like_eddsa_and_mul_by_ratio_noexcept ( const FixedBlock &buffer ) DECAF_NOEXCEPT { return $(c_ns)_point_decode_like_eddsa_and_mul_by_ratio(p,buffer.data()); } /** * Decode from EDDSA, multiply by EDDSA_DECODE_RATIO, and ignore any * remaining cofactor information. * @throw CryptoException if the input point was invalid. */ inline void decode_like_eddsa_and_mul_by_ratio( const FixedBlock &buffer ) /*throw(CryptoException)*/ { if (DECAF_SUCCESS != decode_like_eddsa_and_mul_by_ratio_noexcept(buffer)) throw(CryptoException()); } /** Multiply by EDDSA_ENCODE_RATIO and encode like EdDSA. */ inline SecureBuffer mul_by_ratio_and_encode_like_eddsa() const { SecureBuffer ret(DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES); $(c_ns)_point_mul_by_ratio_and_encode_like_eddsa(ret.data(),p); return ret; } /** Multiply by EDDSA_ENCODE_RATIO and encode like EdDSA. */ inline void mul_by_ratio_and_encode_like_eddsa( FixedBuffer &out ) const { $(c_ns)_point_mul_by_ratio_and_encode_like_eddsa(out.data(),p); } /** Multiply by LADDER_ENCODE_RATIO and encode like X25519/X448. */ inline SecureBuffer mul_by_ratio_and_encode_like_ladder() const { SecureBuffer ret(LADDER_BYTES); $(c_ns)_point_mul_by_ratio_and_encode_like_x$(gf_shortname)(ret.data(),p); return ret; } /** Multiply by LADDER_ENCODE_RATIO and encode like X25519/X448. */ inline void mul_by_ratio_and_encode_like_ladder(FixedBuffer &out) const { $(c_ns)_point_mul_by_ratio_and_encode_like_x$(gf_shortname)(out.data(),p); } /** * Map uniformly to the curve from a hash buffer. * The empty or all-zero string maps to the identity, as does the string "\\x01". * If the buffer is shorter than 2*HASH_BYTES, well, it won't be as uniform, * but the buffer will be zero-padded on the right. */ static inline Point from_hash ( const Block &s ) DECAF_NOEXCEPT { Point p((NOINIT())); p.set_to_hash(s); return p; } /** * Map to the curve from a hash buffer. * The empty or all-zero string maps to the identity, as does the string "\\x01". * If the buffer is shorter than 2*HASH_BYTES, well, it won't be as uniform, * but the buffer will be zero-padded on the right. */ inline void set_to_hash( const Block &s ) DECAF_NOEXCEPT { if (s.size() < HASH_BYTES) { SecureBuffer b(HASH_BYTES); memcpy(b.data(), s.data(), s.size()); $(c_ns)_point_from_hash_nonuniform(p,b.data()); } else if (s.size() == HASH_BYTES) { $(c_ns)_point_from_hash_nonuniform(p,s.data()); } else if (s.size() < 2*HASH_BYTES) { SecureBuffer b(2*HASH_BYTES); memcpy(b.data(), s.data(), s.size()); $(c_ns)_point_from_hash_uniform(p,b.data()); } else { $(c_ns)_point_from_hash_uniform(p,s.data()); } } /** Encode to string. The identity encodes to the all-zero string. */ inline operator SecureBuffer() const { SecureBuffer buffer(SER_BYTES); $(c_ns)_point_encode(buffer.data(), p); return buffer; } /** Serializable instance */ inline size_t ser_size() const DECAF_NOEXCEPT { return SER_BYTES; } /** Serializable instance */ inline void serialize_into(unsigned char *buffer) const DECAF_NOEXCEPT { $(c_ns)_point_encode(buffer, p); } /** Point add. */ inline Point operator+ (const Point &q) const DECAF_NOEXCEPT { Point r((NOINIT())); $(c_ns)_point_add(r.p,p,q.p); return r; } /** Point add. */ inline Point &operator+=(const Point &q) DECAF_NOEXCEPT { $(c_ns)_point_add(p,p,q.p); return *this; } /** Point subtract. */ inline Point operator- (const Point &q) const DECAF_NOEXCEPT { Point r((NOINIT())); $(c_ns)_point_sub(r.p,p,q.p); return r; } /** Point subtract. */ inline Point &operator-=(const Point &q) DECAF_NOEXCEPT { $(c_ns)_point_sub(p,p,q.p); return *this; } /** Point negate. */ inline Point operator- () const DECAF_NOEXCEPT { Point r((NOINIT())); $(c_ns)_point_negate(r.p,p); return r; } /** Double the point out of place. */ inline Point times_two () const DECAF_NOEXCEPT { Point r((NOINIT())); $(c_ns)_point_double(r.p,p); return r; } /** Double the point in place. */ inline Point &double_in_place() DECAF_NOEXCEPT { $(c_ns)_point_double(p,p); return *this; } /** Constant-time compare. */ inline bool operator!=(const Point &q) const DECAF_NOEXCEPT { return ! $(c_ns)_point_eq(p,q.p); } /** Constant-time compare. */ inline bool operator==(const Point &q) const DECAF_NOEXCEPT { return !!$(c_ns)_point_eq(p,q.p); } /** Scalar multiply. */ inline Point operator* (const Scalar &s) const DECAF_NOEXCEPT { Point r((NOINIT())); $(c_ns)_point_scalarmul(r.p,p,s.s); return r; } /** Scalar multiply in place. */ inline Point &operator*=(const Scalar &s) DECAF_NOEXCEPT { $(c_ns)_point_scalarmul(p,p,s.s); return *this; } /** Multiply by s.inverse(). If s=0, maps to the identity. */ inline Point operator/ (const Scalar &s) const /*throw(CryptoException)*/ { return (*this) * s.inverse(); } /** Multiply by s.inverse(). If s=0, maps to the identity. */ inline Point &operator/=(const Scalar &s) /*throw(CryptoException)*/ { return (*this) *= s.inverse(); } /** Validate / sanity check */ inline bool validate() const DECAF_NOEXCEPT { return $(c_ns)_point_valid(p); } /** Double-scalar multiply, equivalent to q*qs + r*rs but faster. */ static inline Point double_scalarmul ( const Point &q, const Scalar &qs, const Point &r, const Scalar &rs ) DECAF_NOEXCEPT { Point p((NOINIT())); $(c_ns)_point_double_scalarmul(p.p,q.p,qs.s,r.p,rs.s); return p; } /** Dual-scalar multiply, equivalent to this*r1, this*r2 but faster. */ inline void dual_scalarmul ( Point &q1, Point &q2, const Scalar &r1, const Scalar &r2 ) const DECAF_NOEXCEPT { $(c_ns)_point_dual_scalarmul(q1.p,q2.p,p,r1.s,r2.s); } /** * Double-scalar multiply, equivalent to q*qs + r*rs but faster. * For those who like their scalars before the point. */ static inline Point double_scalarmul ( const Scalar &qs, const Point &q, const Scalar &rs, const Point &r ) DECAF_NOEXCEPT { return double_scalarmul(q,qs,r,rs); } /** * Double-scalar multiply: this point by the first scalar and base by the second scalar. * @warning This function takes variable time, and may leak the scalars (or points, but currently * it doesn't). */ inline Point non_secret_combo_with_base(const Scalar &s, const Scalar &s_base) DECAF_NOEXCEPT { Point r((NOINIT())); $(c_ns)_base_double_scalarmul_non_secret(r.p,s_base.s,p,s.s); return r; } /** Return a point equal to *this, whose internal data is rotated by a torsion element. */ inline Point debugging_torque() const DECAF_NOEXCEPT { Point q; $(c_ns)_point_debugging_torque(q.p,p); return q; } /** Return a point equal to *this, whose internal data has a modified representation. */ inline Point debugging_pscale(const FixedBlock factor) const DECAF_NOEXCEPT { Point q; $(c_ns)_point_debugging_pscale(q.p,p,factor.data()); return q; } /** Return a point equal to *this, whose internal data has a randomized representation. */ inline Point debugging_pscale(Rng &r) const DECAF_NOEXCEPT { FixedArrayBuffer sb(r); return debugging_pscale(sb); } /** * Modify buffer so that Point::from_hash(Buffer) == *this, and return DECAF_SUCCESS; * or leave buf unmodified and return DECAF_FAILURE. */ inline decaf_error_t invert_elligator ( Buffer buf, uint32_t hint ) const DECAF_NOEXCEPT { unsigned char buf2[2*HASH_BYTES]; memset(buf2,0,sizeof(buf2)); memcpy(buf2,buf.data(),(buf.size() > 2*HASH_BYTES) ? 2*HASH_BYTES : buf.size()); decaf_bool_t ret; if (buf.size() > HASH_BYTES) { ret = decaf_successful($(c_ns)_invert_elligator_uniform(buf2, p, hint)); } else { ret = decaf_successful($(c_ns)_invert_elligator_nonuniform(buf2, p, hint)); } if (buf.size() < HASH_BYTES) { ret &= decaf_memeq(&buf2[buf.size()], &buf2[HASH_BYTES], HASH_BYTES - buf.size()); } for (size_t i=0; i 2*HASH_BYTES) throw LengthException(); SecureBuffer out(STEG_BYTES); decaf_error_t done; do { rng.read(Buffer(out).slice(HASH_BYTES-4,STEG_BYTES-HASH_BYTES+1)); uint32_t hint = 0; for (int i=0; i<4; i++) { hint |= uint32_t(out[HASH_BYTES-4+i])<<(8*i); } done = invert_elligator(out, hint); } while (!decaf_successful(done)); return out; } /** Return the base point of the curve. */ static inline const Point base() DECAF_NOEXCEPT { return Point($(c_ns)_point_base); } /** Return the identity point of the curve. */ static inline const Point identity() DECAF_NOEXCEPT { return Point($(c_ns)_point_identity); } }; /** * Precomputed table of points. * Minor difficulties arise here because the decaf API doesn't expose, as a constant, how big such an object is. * Therefore we have to call malloc() or friends, but that's probably for the best, because you don't want to * stack-allocate a 15kiB object anyway. */ /** @cond internal */ typedef $(c_ns)_precomputed_s Precomputed_U; /** @endcond */ class Precomputed /** @cond internal */ : protected OwnedOrUnowned /** @endcond */ { public: /** Destructor securely zeorizes the memory. */ inline ~Precomputed() DECAF_NOEXCEPT { clear(); } /** * Initialize from underlying type, declared as a reference to prevent * it from being called with 0, thereby breaking override. * * The underlying object must remain valid throughout the lifetime of this one. * * By default, initializes to the table for the base point. * * @warning The empty initializer makes this equal to base, unlike the empty * initializer for points which makes this equal to the identity. */ inline Precomputed ( const Precomputed_U &yours = *$(c_ns)_precomputed_base ) DECAF_NOEXCEPT : OwnedOrUnowned(yours) {} #if __cplusplus >= 201103L /** Move-assign operator */ inline Precomputed &operator=(Precomputed &&it) DECAF_NOEXCEPT { OwnedOrUnowned::operator= (it); return *this; } /** Move constructor */ inline Precomputed(Precomputed &&it) DECAF_NOEXCEPT : OwnedOrUnowned() { *this = it; } /** Undelete copy operator */ inline Precomputed &operator=(const Precomputed &it) DECAF_NOEXCEPT { OwnedOrUnowned::operator= (it); return *this; } #endif /** * Initilaize from point. Must allocate memory, and may throw. */ inline Precomputed &operator=(const Point &it) /*throw(std::bad_alloc)*/ { alloc(); $(c_ns)_precompute(ours.mine,it.p); return *this; } /** * Copy constructor. */ inline Precomputed(const Precomputed &it) /*throw(std::bad_alloc)*/ : OwnedOrUnowned() { *this = it; } /** * Constructor which initializes from point. */ inline explicit Precomputed(const Point &it) /*throw(std::bad_alloc)*/ : OwnedOrUnowned() { *this = it; } /** Fixed base scalarmul. */ inline Point operator* (const Scalar &s) const DECAF_NOEXCEPT { Point r; $(c_ns)_precomputed_scalarmul(r.p,get(),s.s); return r; } /** Multiply by s.inverse(). If s=0, maps to the identity. */ inline Point operator/ (const Scalar &s) const /*throw(CryptoException)*/ { return (*this) * s.inverse(); } /** Return the table for the base point. */ static inline const Precomputed base() DECAF_NOEXCEPT { return Precomputed(); } public: /** @cond internal */ friend class OwnedOrUnowned; static inline size_t size() DECAF_NOEXCEPT { return $(c_ns)_sizeof_precomputed_s; } static inline size_t alignment() DECAF_NOEXCEPT { return $(c_ns)_alignof_precomputed_s; } static inline const Precomputed_U * default_value() DECAF_NOEXCEPT { return $(c_ns)_precomputed_base; } /** @endcond */ }; /** X-only Diffie-Hellman ladder functions */ struct DhLadder { public: /** Bytes in an X$(gf_shortname) public key. */ static const size_t PUBLIC_BYTES = DECAF_X$(gf_shortname)_PUBLIC_BYTES; /** Bytes in an X$(gf_shortname) private key. */ static const size_t PRIVATE_BYTES = DECAF_X$(gf_shortname)_PRIVATE_BYTES; /** Base point for a scalar multiplication. */ static const FixedBlock base_point() DECAF_NOEXCEPT { return FixedBlock(decaf_x$(gf_shortname)_base_point); } /** Calculate and return a shared secret with public key. */ static inline SecureBuffer shared_secret( const FixedBlock &pk, const FixedBlock &scalar ) /*throw(std::bad_alloc,CryptoException)*/ { SecureBuffer out(PUBLIC_BYTES); if (DECAF_SUCCESS != decaf_x$(gf_shortname)(out.data(), pk.data(), scalar.data())) { throw CryptoException(); } return out; } /** Calculate and write into out a shared secret with public key, noexcept version. */ static inline decaf_error_t DECAF_WARN_UNUSED shared_secret_noexcept ( FixedBuffer &out, const FixedBlock &pk, const FixedBlock &scalar ) DECAF_NOEXCEPT { return decaf_x$(gf_shortname)(out.data(), pk.data(), scalar.data()); } /** Calculate and return a public key; equivalent to shared_secret(base_point(),scalar) * but possibly faster. * @deprecated Renamed to derive_public_key. */ static inline SecureBuffer DECAF_DEPRECATED("Renamed to derive_public_key") generate_key( const FixedBlock &scalar ) /*throw(std::bad_alloc)*/ { SecureBuffer out(PUBLIC_BYTES); decaf_x$(gf_shortname)_derive_public_key(out.data(), scalar.data()); return out; } /** Calculate and return a public key; equivalent to shared_secret(base_point(),scalar) * but possibly faster. */ static inline SecureBuffer derive_public_key( const FixedBlock &scalar ) /*throw(std::bad_alloc)*/ { SecureBuffer out(PUBLIC_BYTES); decaf_x$(gf_shortname)_derive_public_key(out.data(), scalar.data()); return out; } /** Calculate and return a public key into a fixed buffer; * equivalent to shared_secret(base_point(),scalar) but possibly faster. */ static inline void derive_public_key_noexcept ( FixedBuffer &out, const FixedBlock &scalar ) DECAF_NOEXCEPT { decaf_x$(gf_shortname)_derive_public_key(out.data(), scalar.data()); } /** Calculate and return a public key into a fixed buffer; * equivalent to shared_secret(base_point(),scalar) but possibly faster. * @deprecated Renamed to derive_public_key_noexcept. */ static inline void DECAF_DEPRECATED("Renamed to derive_public_key_noexcept") generate_key_noexcept ( FixedBuffer &out, const FixedBlock &scalar ) DECAF_NOEXCEPT { decaf_x$(gf_shortname)_derive_public_key(out.data(), scalar.data()); } }; }; /* struct $(cxx_ns) */ /** @cond internal */ inline SecureBuffer $(cxx_ns)::Scalar::direct_scalarmul ( const FixedBlock<$(cxx_ns)::Point::SER_BYTES> &in, decaf_bool_t allow_identity, decaf_bool_t short_circuit ) const /*throw(CryptoException)*/ { SecureBuffer out($(cxx_ns)::Point::SER_BYTES); if (DECAF_SUCCESS != $(c_ns)_direct_scalarmul(out.data(), in.data(), s, allow_identity, short_circuit) ) { throw CryptoException(); } return out; } inline decaf_error_t $(cxx_ns)::Scalar::direct_scalarmul_noexcept ( FixedBuffer<$(cxx_ns)::Point::SER_BYTES> &out, const FixedBlock<$(cxx_ns)::Point::SER_BYTES> &in, decaf_bool_t allow_identity, decaf_bool_t short_circuit ) const DECAF_NOEXCEPT { return $(c_ns)_direct_scalarmul(out.data(), in.data(), s, allow_identity, short_circuit); } /** @endcond */ $("/** Alternative name for %s, for backwards compatibility */\ntypedef %s %s;\n" % (cxx_ns,cxx_ns,altname) if altname else "") #undef DECAF_NOEXCEPT } /* namespace decaf */