/** * @file decaf_255.h * @author Mike Hamburg * * @copyright * Copyright (c) 2015 Cryptography Research, Inc. \n * Released under the MIT License. See LICENSE.txt for license information. * * @brief A group of prime order p. * * The Decaf library implements cryptographic operations on a an elliptic curve * group of prime order p. It accomplishes this by using a twisted Edwards * curve (isogenous to Ed255-Goldilocks) and wiping out the cofactor. * * The formulas are all complete and have no special cases, except that * decaf_255_decode can fail because not every sequence of bytes is a valid group * element. * * The formulas contain no data-dependent branches, timing or memory accesses, * except for decaf_255_base_double_scalarmul_non_secret. * * This library may support multiple curves eventually. The Ed255-Goldilocks * specific identifiers are prefixed with DECAF_255 or decaf_255. */ #ifndef __DECAF_255_H__ #define __DECAF_255_H__ 1 #include #include /* Goldilocks' build flags default to hidden and stripping executables. */ /** @cond internal */ #if defined(DOXYGEN) && !defined(__attribute__) #define __attribute__((x)) #endif #define API_VIS __attribute__((visibility("default"))) #define NOINLINE __attribute__((noinline)) #define WARN_UNUSED __attribute__((warn_unused_result)) #define NONNULL1 __attribute__((nonnull(1))) #define NONNULL2 __attribute__((nonnull(1,2))) #define NONNULL3 __attribute__((nonnull(1,2,3))) #define NONNULL4 __attribute__((nonnull(1,2,3,4))) #define NONNULL5 __attribute__((nonnull(1,2,3,4,5))) /* Internal word types */ #if (defined(__ILP64__) || defined(__amd64__) || defined(__x86_64__) || (((__UINT_FAST32_MAX__)>>30)>>30)) \ && !defined(DECAF_FORCE_32_BIT) #define DECAF_WORD_BITS 64 typedef uint64_t decaf_word_t, decaf_bool_t; typedef __uint128_t decaf_dword_t; #else #define DECAF_WORD_BITS 32 typedef uint32_t decaf_word_t, decaf_bool_t; typedef uint64_t decaf_dword_t; #endif #define DECAF_255_LIMBS (320/DECAF_WORD_BITS) #define DECAF_255_SCALAR_BITS 254 // Curve25519: 253 #define DECAF_255_SCALAR_LIMBS (256/DECAF_WORD_BITS) /** Galois field element internal structure */ typedef struct gf_s { decaf_word_t limb[DECAF_255_LIMBS]; } gf_s, gf[1]; /** @endcond */ /** Number of bytes in a serialized point. */ #define DECAF_255_SER_BYTES 32 /** Number of bytes in a serialized scalar. */ #define DECAF_255_SCALAR_BYTES 32 /** Twisted Edwards (-1,d-1) extended homogeneous coordinates */ typedef struct decaf_255_point_s { /**@cond internal*/gf x,y,z,t;/**@endcond*/ } decaf_255_point_t[1]; /** Precomputed table based on a point. Can be trivial implementation. */ struct decaf_255_precomputed_s; /** Precomputed table based on a point. Can be trivial implementation. */ typedef struct decaf_255_precomputed_s decaf_255_precomputed_s; /** Size and alignment of precomputed point tables. */ extern const size_t sizeof_decaf_255_precomputed_s API_VIS, alignof_decaf_255_precomputed_s API_VIS; /** Scalar is stored packed, because we don't need the speed. */ typedef struct decaf_255_scalar_s { /** @cond internal */ decaf_word_t limb[DECAF_255_SCALAR_LIMBS]; /** @endcond */ } decaf_255_scalar_t[1]; /** DECAF_TRUE = -1 so that DECAF_TRUE & x = x */ static const decaf_bool_t DECAF_TRUE = -(decaf_bool_t)1, DECAF_FALSE = 0; /** NB Success is -1, failure is 0. TODO: see if people would rather the reverse. */ static const decaf_bool_t DECAF_SUCCESS = -(decaf_bool_t)1 /*DECAF_TRUE*/, DECAF_FAILURE = 0 /*DECAF_FALSE*/; /** A scalar equal to 1. */ extern const decaf_255_scalar_t decaf_255_scalar_one API_VIS; /** A scalar equal to 0. */ extern const decaf_255_scalar_t decaf_255_scalar_zero API_VIS; /** The identity point on the curve. */ extern const decaf_255_point_t decaf_255_point_identity API_VIS; /** * An arbitrarily chosen base point on the curve. * Equal to Ed255-Goldilocks base point defined by DJB, except of course that * it's on the twist in this case. TODO: choose a base point with nice encoding? */ extern const decaf_255_point_t decaf_255_point_base API_VIS; /** Precomputed table for the base point on the curve. */ extern const struct decaf_255_precomputed_s *decaf_255_precomputed_base API_VIS; #ifdef __cplusplus extern "C" { #endif /** * @brief Read a scalar from wire format or from bytes. * * @param [in] ser Serialized form of a scalar. * @param [out] out Deserialized form. * * @retval DECAF_SUCCESS The scalar was correctly encoded. * @retval DECAF_FAILURE The scalar was greater than the modulus, * and has been reduced modulo that modulus. */ decaf_bool_t decaf_255_scalar_decode ( decaf_255_scalar_t out, const unsigned char ser[DECAF_255_SCALAR_BYTES] ) API_VIS WARN_UNUSED NONNULL2 NOINLINE; /** * @brief Read a scalar from wire format or from bytes. Reduces mod * scalar prime. * * @param [in] ser Serialized form of a scalar. * @param [in] ser_len Length of serialized form. * @param [out] out Deserialized form. */ void decaf_255_scalar_decode_long ( decaf_255_scalar_t out, const unsigned char *ser, size_t ser_len ) API_VIS NONNULL2 NOINLINE; /** * @brief Serialize a scalar to wire format. * * @param [out] ser Serialized form of a scalar. * @param [in] s Deserialized scalar. */ void decaf_255_scalar_encode ( unsigned char ser[DECAF_255_SCALAR_BYTES], const decaf_255_scalar_t s ) API_VIS NONNULL2 NOINLINE NOINLINE; /** * @brief Add two scalars. The scalars may use the same memory. * @param [in] a One scalar. * @param [in] b Another scalar. * @param [out] out a+b. */ void decaf_255_scalar_add ( decaf_255_scalar_t out, const decaf_255_scalar_t a, const decaf_255_scalar_t b ) API_VIS NONNULL3 NOINLINE; /** * @brief Compare two scalars. * @param [in] a One scalar. * @param [in] b Another scalar. * @retval DECAF_TRUE The scalars are equal. * @retval DECAF_FALSE The scalars are not equal. */ decaf_bool_t decaf_255_scalar_eq ( const decaf_255_scalar_t a, const decaf_255_scalar_t b ) API_VIS WARN_UNUSED NONNULL2 NOINLINE; /** * @brief Subtract two scalars. The scalars may use the same memory. * @param [in] a One scalar. * @param [in] b Another scalar. * @param [out] out a-b. */ void decaf_255_scalar_sub ( decaf_255_scalar_t out, const decaf_255_scalar_t a, const decaf_255_scalar_t b ) API_VIS NONNULL3 NOINLINE; /** * @brief Multiply two scalars. The scalars may use the same memory. * @param [in] a One scalar. * @param [in] b Another scalar. * @param [out] out a*b. */ void decaf_255_scalar_mul ( decaf_255_scalar_t out, const decaf_255_scalar_t a, const decaf_255_scalar_t b ) API_VIS NONNULL3 NOINLINE; /** * @brief Invert a scalar. When passed zero, return 0. The input and output may alias. * @param [in] a A scalar. * @param [out] out 1/a. * @return DECAF_TRUE The input is nonzero. */ decaf_bool_t decaf_255_scalar_invert ( decaf_255_scalar_t out, const decaf_255_scalar_t a ) API_VIS NONNULL2 NOINLINE; /** * @brief Copy a scalar. The scalars may use the same memory, in which * case this function does nothing. * @param [in] a A scalar. * @param [out] out Will become a copy of a. */ static inline void NONNULL2 decaf_255_scalar_copy ( decaf_255_scalar_t out, const decaf_255_scalar_t a ) { *out = *a; } /** * @brief Set a scalar to an integer. * @param [in] a An integer. * @param [out] out Will become equal to a. * @todo Make inline? */ void decaf_255_scalar_set( decaf_255_scalar_t out, decaf_word_t a ) API_VIS NONNULL1; /** * @brief Encode a point as a sequence of bytes. * * @param [out] ser The byte representation of the point. * @param [in] pt The point to encode. */ void decaf_255_point_encode ( uint8_t ser[DECAF_255_SER_BYTES], const decaf_255_point_t pt ) API_VIS NONNULL2 NOINLINE; /** * @brief Decode a point from a sequence of bytes. * * Every point has a unique encoding, so not every * sequence of bytes is a valid encoding. If an invalid * encoding is given, the output is undefined. * * @param [out] pt The decoded point. * @param [in] ser The serialized version of the point. * @param [in] allow_identity DECAF_TRUE if the identity is a legal input. * @retval DECAF_SUCCESS The decoding succeeded. * @retval DECAF_FAILURE The decoding didn't succeed, because * ser does not represent a point. */ decaf_bool_t decaf_255_point_decode ( decaf_255_point_t pt, const uint8_t ser[DECAF_255_SER_BYTES], decaf_bool_t allow_identity ) API_VIS WARN_UNUSED NONNULL2 NOINLINE; /** * @brief Copy a point. The input and output may alias, * in which case this function does nothing. * * @param [out] a A copy of the point. * @param [in] b Any point. */ static inline void NONNULL2 decaf_255_point_copy ( decaf_255_point_t a, const decaf_255_point_t b ) { *a=*b; } /** * @brief Test whether two points are equal. If yes, return * DECAF_TRUE, else return DECAF_FALSE. * * @param [in] a A point. * @param [in] b Another point. * @retval DECAF_TRUE The points are equal. * @retval DECAF_FALSE The points are not equal. */ decaf_bool_t decaf_255_point_eq ( const decaf_255_point_t a, const decaf_255_point_t b ) API_VIS WARN_UNUSED NONNULL2 NOINLINE; /** * @brief Add two points to produce a third point. The * input points and output point can be pointers to the same * memory. * * @param [out] sum The sum a+b. * @param [in] a An addend. * @param [in] b An addend. */ void decaf_255_point_add ( decaf_255_point_t sum, const decaf_255_point_t a, const decaf_255_point_t b ) API_VIS NONNULL3; /** * @brief Double a point. Equivalent to * decaf_255_point_add(two_a,a,a), but potentially faster. * * @param [out] two_a The sum a+a. * @param [in] a A point. */ void decaf_255_point_double ( decaf_255_point_t two_a, const decaf_255_point_t a ) API_VIS NONNULL2; /** * @brief Subtract two points to produce a third point. The * input points and output point can be pointers to the same * memory. * * @param [out] diff The difference a-b. * @param [in] a The minuend. * @param [in] b The subtrahend. */ void decaf_255_point_sub ( decaf_255_point_t diff, const decaf_255_point_t a, const decaf_255_point_t b ) API_VIS NONNULL3; /** * @brief Negate a point to produce another point. The input * and output points can use the same memory. * * @param [out] nega The negated input point * @param [in] a The input point. */ void decaf_255_point_negate ( decaf_255_point_t nega, const decaf_255_point_t a ) API_VIS NONNULL2; /** * @brief Multiply a base point by a scalar: scaled = scalar*base. * * @param [out] scaled The scaled point base*scalar * @param [in] base The point to be scaled. * @param [in] scalar The scalar to multiply by. */ void decaf_255_point_scalarmul ( decaf_255_point_t scaled, const decaf_255_point_t base, const decaf_255_scalar_t scalar ) API_VIS NONNULL3 NOINLINE; /** * @brief Multiply a base point by a scalar: scaled = scalar*base. * This function operates directly on serialized forms. * * @warning This function is experimental. It may not be supported * long-term. * * @param [out] scaled The scaled point base*scalar * @param [in] base The point to be scaled. * @param [in] scalar The scalar to multiply by. * @param [in] allow_identity Allow the input to be the identity. * @param [in] short_circuit Allow a fast return if the input is illegal. * * @retval DECAF_SUCCESS The scalarmul succeeded. * @retval DECAF_FAILURE The scalarmul didn't succeed, because * base does not represent a point. */ decaf_bool_t decaf_255_direct_scalarmul ( uint8_t scaled[DECAF_255_SER_BYTES], const uint8_t base[DECAF_255_SER_BYTES], const decaf_255_scalar_t scalar, decaf_bool_t allow_identity, decaf_bool_t short_circuit ) API_VIS NONNULL3 WARN_UNUSED NOINLINE; /** * @brief Precompute a table for fast scalar multiplication. * Some implementations do not include precomputed points; for * those implementations, this implementation simply copies the * point. * * @param [out] a A precomputed table of multiples of the point. * @param [in] b Any point. */ void decaf_255_precompute ( decaf_255_precomputed_s *a, const decaf_255_point_t b ) API_VIS NONNULL2 NOINLINE; /** * @brief Multiply a precomputed base point by a scalar: * scaled = scalar*base. * Some implementations do not include precomputed points; for * those implementations, this function is the same as * decaf_255_point_scalarmul * * @param [out] scaled The scaled point base*scalar * @param [in] base The point to be scaled. * @param [in] scalar The scalar to multiply by. * * @todo precomputed dsmul? const or variable time? */ void decaf_255_precomputed_scalarmul ( decaf_255_point_t scaled, const decaf_255_precomputed_s *base, const decaf_255_scalar_t scalar ) API_VIS NONNULL3 NOINLINE; /** * @brief Multiply two base points by two scalars: * scaled = scalar1*base1 + scalar2*base2. * * Equivalent to two calls to decaf_255_point_scalarmul, but may be * faster. * * @param [out] combo The linear combination scalar1*base1 + scalar2*base2. * @param [in] base1 A first point to be scaled. * @param [in] scalar1 A first scalar to multiply by. * @param [in] base2 A second point to be scaled. * @param [in] scalar2 A second scalar to multiply by. */ void decaf_255_point_double_scalarmul ( decaf_255_point_t combo, const decaf_255_point_t base1, const decaf_255_scalar_t scalar1, const decaf_255_point_t base2, const decaf_255_scalar_t scalar2 ) API_VIS NONNULL5 NOINLINE; /** * @brief Multiply two base points by two scalars: * scaled = scalar1*decaf_255_point_base + scalar2*base2. * * Otherwise equivalent to decaf_255_point_double_scalarmul, but may be * faster at the expense of being variable time. * * @param [out] combo The linear combination scalar1*base + scalar2*base2. * @param [in] scalar1 A first scalar to multiply by. * @param [in] base2 A second point to be scaled. * @param [in] scalar2 A second scalar to multiply by. * * @warning: This function takes variable time, and may leak the scalars * used. It is designed for signature verification. */ void decaf_255_base_double_scalarmul_non_secret ( decaf_255_point_t combo, const decaf_255_scalar_t scalar1, const decaf_255_point_t base2, const decaf_255_scalar_t scalar2 ) API_VIS NONNULL4 NOINLINE; /** * @brief Test that a point is valid, for debugging purposes. * * @param [in] toTest The point to test. * @retval DECAF_TRUE The point is valid. * @retval DECAF_FALSE The point is invalid. */ decaf_bool_t decaf_255_point_valid ( const decaf_255_point_t toTest ) API_VIS WARN_UNUSED NONNULL1 NOINLINE; /** * @brief 2-torque a point, for debugging purposes. * * @param [out] q The point to torque. * @param [in] p The point to torque. */ void decaf_255_point_debugging_torque ( decaf_255_point_t q, const decaf_255_point_t p ) API_VIS NONNULL2 NOINLINE; /** * @brief Almost-Elligator-like hash to curve. * * Call this function with the output of a hash to make a hash to the curve. * * This function runs Elligator2 on the decaf_255 Jacobi quartic model. It then * uses the isogeny to put the result in twisted Edwards form. As a result, * it is safe (cannot produce points of order 4), and would be compatible with * hypothetical other implementations of Decaf using a Montgomery or untwisted * Edwards model. * * Unlike Elligator, this function may be up to 4:1 on [0,(p-1)/2]: * A factor of 2 due to the isogeny. * A factor of 2 because we quotient out the 2-torsion. * * This makes it about 8:1 overall. * * Negating the input (mod q) results in the same point. Inverting the input * (mod q) results in the negative point. This is the same as Elligator. * * This function isn't quite indifferentiable from a random oracle. * However, it is suitable for many protocols, including SPEKE and SPAKE2 EE. * Furthermore, calling it twice with independent seeds and adding the results * is indifferentiable from a random oracle. * * @param [in] hashed_data Output of some hash function. * @param [out] pt The data hashed to the curve. * @return A "hint" value which can be used to help invert the encoding. */ uint16_t decaf_255_point_from_hash_nonuniform ( decaf_255_point_t pt, const unsigned char hashed_data[DECAF_255_SER_BYTES] ) API_VIS NONNULL2 NOINLINE; /** * @brief Inverse of elligator-like hash to curve. * * This function writes to the buffer, to make it so that * decaf_255_point_from_hash_nonuniform(buffer) = pt,hint * if possible. * * @param [out] recovered_hash Encoded data. * @param [in] pt The point to encode. * @param [in] hint The hint value returned from * decaf_255_point_from_hash_nonuniform. * * @retval DECAF_SUCCESS The inverse succeeded. * @retval DECAF_FAILURE The pt isn't the image of * decaf_255_point_from_hash_nonuniform with the given hint. * * @warning The hinting system is subject to change, especially in corner cases. * @warning FIXME The hinting system doesn't work for certain inputs which have many 0xFF. */ decaf_bool_t decaf_255_invert_elligator_nonuniform ( unsigned char recovered_hash[DECAF_255_SER_BYTES], const decaf_255_point_t pt, uint16_t hint ) API_VIS NONNULL2 NOINLINE WARN_UNUSED; /** * @brief Inverse of elligator-like hash to curve, uniform. * * This function modifies the first DECAF_255_SER_BYTES of the * buffer, to make it so that * decaf_255_point_from_hash_uniform(buffer) = pt,hint * if possible. * * @param [out] recovered_hash Encoded data. * @param [in] pt The point to encode. * @param [in] hint The hint value returned from * decaf_255_point_from_hash_nonuniform. * * @retval DECAF_SUCCESS The inverse succeeded. * @retval DECAF_FAILURE The pt isn't the image of * decaf_255_point_from_hash_uniform with the given hint. * * @warning The hinting system is subject to change, especially in corner cases. * @warning FIXME The hinting system doesn't work for certain inputs which have many 0xFF. */ decaf_bool_t decaf_255_invert_elligator_uniform ( unsigned char recovered_hash[2*DECAF_255_SER_BYTES], const decaf_255_point_t pt, uint16_t hint ) API_VIS NONNULL2 NOINLINE WARN_UNUSED; /** * @brief Indifferentiable hash function encoding to curve. * * Equivalent to calling decaf_255_point_from_hash_nonuniform twice and adding. * * @param [in] hashed_data Output of some hash function. * @param [out] pt The data hashed to the curve. * @return A "hint" value which can be used to help invert the encoding. */ uint16_t decaf_255_point_from_hash_uniform ( decaf_255_point_t pt, const unsigned char hashed_data[2*DECAF_255_SER_BYTES] ) API_VIS NONNULL2 NOINLINE; /** * @brief Overwrite data with zeros. Uses memset_s if available. */ void decaf_bzero ( void *data, size_t size ) NONNULL1 API_VIS NOINLINE; /** * @brief Compare two buffers, returning DECAF_TRUE if they are equal. */ decaf_bool_t decaf_memeq ( const void *data1, const void *data2, size_t size ) NONNULL2 WARN_UNUSED API_VIS NOINLINE; /** * @brief Overwrite scalar with zeros. */ void decaf_255_scalar_destroy ( decaf_255_scalar_t scalar ) NONNULL1 API_VIS; /** * @brief Overwrite point with zeros. * @todo Use this internally. */ void decaf_255_point_destroy ( decaf_255_point_t point ) NONNULL1 API_VIS; /** * @brief Overwrite point with zeros. * @todo Use this internally. */ void decaf_255_precomputed_destroy ( decaf_255_precomputed_s *pre ) NONNULL1 API_VIS; /* TODO: functions to invert point_from_hash?? */ #undef API_VIS #undef WARN_UNUSED #undef NOINLINE #undef NONNULL1 #undef NONNULL2 #undef NONNULL3 #undef NONNULL4 #undef NONNULL5 #ifdef __cplusplus } /* extern "C" */ #endif #endif /* __DECAF_255_H__ */