/** * @file decaf.hxx * @author Mike Hamburg * * @copyright * Copyright (c) 2015 Cryptography Research, Inc. \n * Released under the MIT License. See LICENSE.txt for license information. * * @brief A group of prime order p, C++ wrapper. * * The Decaf library implements cryptographic operations on a an elliptic curve * group of prime order p. It accomplishes this by using a twisted Edwards * curve (isogenous to Ed448-Goldilocks) and wiping out the cofactor. * * The formulas are all complete and have no special cases, except that * decaf_448_decode can fail because not every sequence of bytes is a valid group * element. * * The formulas contain no data-dependent branches, timing or memory accesses, * except for decaf_448_base_double_scalarmul_non_secret. */ #ifndef __DECAF_448_HXX__ #define __DECAF_448_HXX__ 1 /** This code uses posix_memalign. */ #define _XOPEN_SOURCE 600 #include #include /* for memcpy */ #include "decaf.h" #include #include #include /* TODO: This is incomplete */ /* TODO: attribute nonnull */ /** @cond internal */ #if __cplusplus >= 201103L #define NOEXCEPT noexcept #define EXPLICIT_CON explicit #define GET_DATA(str) ((const unsigned char *)&(str)[0]) #else #define NOEXCEPT throw() #define EXPLICIT_CON #define GET_DATA(str) ((const unsigned char *)((str).data())) #endif /** @endcond */ namespace decaf { /** * Securely erase contents of memory. */ void really_bzero(void *data, size_t size); /** * @brief Group with prime order. * @todo Move declarations of functions up here? */ template struct decaf; /** * @brief Ed448-Goldilocks/Decaf instantiation of group. */ template<> struct decaf<448> { /** @brief An exception for when crypto (i.e. point decode) has failed. */ class CryptoException : public std::exception { public: /** @return "CryptoException" */ virtual const char * what() const NOEXCEPT { return "CryptoException"; } }; /** @cond internal */ class Point; class Precomputed; /** @endcond */ /** * @brief A scalar modulo the curve order. * Supports the usual arithmetic operations, all in constant time. */ class Scalar { public: /** @brief access to the underlying scalar object */ decaf_448_scalar_t s; /** @brief Set to an unsigned word */ inline Scalar(const decaf_word_t w=0) NOEXCEPT { *this = w; } /** @brief Set to a signed word */ inline Scalar(const int w) NOEXCEPT { *this = w; } /** @brief Construct from decaf_scalar_t object. */ inline Scalar(const decaf_448_scalar_t &t) NOEXCEPT { decaf_448_scalar_copy(s,t); } /** @brief Copy constructor. */ inline Scalar(const Scalar &x) NOEXCEPT { decaf_448_scalar_copy(s,x.s); } /** @brief Construct from arbitrary-length little-endian byte sequence. */ inline explicit Scalar(const std::string &str) NOEXCEPT { *this = str; } /** @brief Construct from arbitrary-length little-endian byte sequence. */ inline Scalar(const unsigned char *buffer, size_t n) NOEXCEPT { decaf_448_scalar_decode_long(s,buffer,n); } /** @brief Construct from arbitrary-length little-endian byte sequence. */ inline Scalar(const char *buffer, size_t n) NOEXCEPT { decaf_448_scalar_decode_long(s,(const unsigned char *)buffer,n); } /** @brief Construct from arbitrary-length little-endian byte sequence. */ inline Scalar(const void *buffer, size_t n) NOEXCEPT { decaf_448_scalar_decode_long(s,(const unsigned char *)buffer,n); } /** @brief Assignment. */ inline Scalar& operator=(const Scalar &x) NOEXCEPT { decaf_448_scalar_copy(s,x.s); return *this; } /** @brief Assign from unsigned word. */ inline Scalar& operator=(decaf_word_t w) NOEXCEPT { decaf_448_scalar_set(s,w); return *this; } /** @brief Assign from signed int. */ inline Scalar& operator=(int w) { Scalar t(-(decaf_word_t)INT_MIN); decaf_448_scalar_set(s,(decaf_word_t)w - (decaf_word_t)INT_MIN); *this -= t; return *this; } /** Destructor securely erases the scalar. */ inline ~Scalar() NOEXCEPT { decaf_448_scalar_destroy(s); } /** @brief Assign from arbitrary-length little-endian byte sequence in C++ string. */ inline Scalar &operator=(const std::string &str) NOEXCEPT { decaf_448_scalar_decode_long(s,GET_DATA(str),str.length()); return *this; } /** * @brief Decode from correct-length little-endian byte sequence. * @return DECAF_FAILURE if the scalar is greater than or equal to the group order q. */ static inline decaf_bool_t __attribute__((warn_unused_result)) decode ( Scalar &sc, const unsigned char buffer[DECAF_448_SCALAR_BYTES] ) NOEXCEPT { return decaf_448_scalar_decode(sc.s,buffer); } /** @brief Decode from correct-length little-endian byte sequence in C++ string. */ static inline decaf_bool_t __attribute__((warn_unused_result)) decode ( Scalar &sc, const std::string buffer ) NOEXCEPT { if (buffer.size() != DECAF_448_SCALAR_BYTES) return DECAF_FAILURE; return decaf_448_scalar_decode(sc.s,GET_DATA(buffer)); } /** @brief Encode to fixed-length string */ inline EXPLICIT_CON operator std::string() const NOEXCEPT { unsigned char buffer[DECAF_448_SCALAR_BYTES]; decaf_448_scalar_encode(buffer, s); return std::string((char*)buffer,sizeof(buffer)); } /** @brief Encode to fixed-length buffer */ inline void encode(unsigned char buffer[DECAF_448_SCALAR_BYTES]) const NOEXCEPT{ decaf_448_scalar_encode(buffer, s); } /** Add. */ inline Scalar operator+ (const Scalar &q) const NOEXCEPT { Scalar r; decaf_448_scalar_add(r.s,s,q.s); return r; } /** Add to this. */ inline Scalar operator+=(const Scalar &q) NOEXCEPT { decaf_448_scalar_add(s,s,q.s); return *this; } /** Subtract. */ inline Scalar operator- (const Scalar &q) const NOEXCEPT { Scalar r; decaf_448_scalar_sub(r.s,s,q.s); return r; } /** Subtract from this. */ inline Scalar operator-=(const Scalar &q) NOEXCEPT { decaf_448_scalar_sub(s,s,q.s); return *this; } /** Multiply */ inline Scalar operator* (const Scalar &q) const NOEXCEPT { Scalar r; decaf_448_scalar_mul(r.s,s,q.s); return r; } /** Multiply into this. */ inline Scalar operator*=(const Scalar &q) NOEXCEPT { decaf_448_scalar_mul(s,s,q.s); return *this; } /** Negate */ inline Scalar operator- () const NOEXCEPT { Scalar r; decaf_448_scalar_sub(r.s,decaf_448_scalar_zero,s); return r; } /** @brief Invert with Fermat's Little Theorem (slow!). If *this == 0, return 0. */ inline Scalar inverse() const NOEXCEPT { Scalar r; decaf_448_scalar_invert(r.s,s); return r; } /** @brief Divide by inverting q. If q == 0, return 0. */ inline Scalar operator/ (const Scalar &q) const NOEXCEPT { Scalar r; decaf_448_scalar_mul(r.s,s,q.inverse().s); return r; } /** @brief Divide by inverting q. If q == 0, return 0. */ inline Scalar operator/=(const Scalar &q) NOEXCEPT { decaf_448_scalar_mul(s,s,q.inverse().s); return *this; } /** @brief Compare in constant time */ inline bool operator!=(const Scalar &q) const NOEXCEPT { return ! decaf_448_scalar_eq(s,q.s); } /** @brief Compare in constant time */ inline bool operator==(const Scalar &q) const NOEXCEPT { return !!decaf_448_scalar_eq(s,q.s); } /** @brief Scalarmul with scalar on left. */ inline Point operator* (const Point &q) const NOEXCEPT { return q * (*this); } /** @brief Scalarmul-precomputed with scalar on left. */ inline Point operator* (const Precomputed &q) const NOEXCEPT { return q * (*this); } }; /** * @brief Element of prime-order group. */ class Point { public: /** The c-level object. */ decaf_448_point_t p; /** @brief Constructor sets to identity by default. */ inline Point(const decaf_448_point_t &q = decaf_448_point_identity) { decaf_448_point_copy(p,q); } /** @brief Copy constructor. */ inline Point(const Point &q) { decaf_448_point_copy(p,q.p); } /** @brief Assignment. */ inline Point& operator=(const Point &q) { decaf_448_point_copy(p,q.p); return *this; } /** @brief Destructor securely erases the point. */ inline ~Point() { decaf_448_point_destroy(p); } /** * @brief Initialize from C++ fixed-length byte string. * The all-zero string maps to the identity. * * @throw CryptoException the string was the wrong length, or wasn't the encoding of a point, * or was the identity and allow_identity was DECAF_FALSE. */ inline explicit Point(const std::string &s, decaf_bool_t allow_identity=DECAF_TRUE) throw(CryptoException) { if (!decode(*this,s,allow_identity)) throw CryptoException(); } /** * @brief Initialize from C fixed-length byte string. * The all-zero string maps to the identity. * * @throw CryptoException the string was the wrong length, or wasn't the encoding of a point, * or was the identity and allow_identity was DECAF_FALSE. */ inline explicit Point(const unsigned char buffer[DECAF_448_SER_BYTES], decaf_bool_t allow_identity=DECAF_TRUE) throw(CryptoException) { if (!decode(*this,buffer,allow_identity)) throw CryptoException(); } /** * @brief Initialize from C fixed-length byte string. * The all-zero string maps to the identity. * * @retval DECAF_SUCCESS the string was successfully decoded. * @return DECAF_FAILURE the string wasn't the encoding of a point, or was the identity * and allow_identity was DECAF_FALSE. Contents of the buffer are undefined. */ static inline decaf_bool_t __attribute__((warn_unused_result)) decode ( Point &p, const unsigned char buffer[DECAF_448_SER_BYTES], decaf_bool_t allow_identity=DECAF_TRUE ) NOEXCEPT { return decaf_448_point_decode(p.p,buffer,allow_identity); } /** * @brief Initialize from C++ fixed-length byte string. * The all-zero string maps to the identity. * * @retval DECAF_SUCCESS the string was successfully decoded. * @return DECAF_FAILURE the string was the wrong length, or wasn't the encoding of a point, * or was the identity and allow_identity was DECAF_FALSE. Contents of the buffer are undefined. */ static inline decaf_bool_t __attribute__((warn_unused_result)) decode ( Point &p, const std::string &buffer, decaf_bool_t allow_identity=DECAF_TRUE ) NOEXCEPT { if (buffer.size() != DECAF_448_SER_BYTES) return DECAF_FAILURE; return decaf_448_point_decode(p.p,GET_DATA(buffer),allow_identity); } /** * @brief Map to the curve from a C buffer. * The all-zero buffer maps to the identity, as does the buffer {1,0...} */ static inline Point from_hash_nonuniform ( const unsigned char buffer[DECAF_448_SER_BYTES] ) NOEXCEPT { Point p; decaf_448_point_from_hash_nonuniform(p.p,buffer); return p; } /** * @brief Map to the curve from a C++ string buffer. * The empty or all-zero string maps to the identity, as does the string "\x01". * If the buffer is shorter than (TODO) DECAF_448_SER_BYTES, it will be zero-padded on the right. */ static inline Point from_hash_nonuniform ( const std::string &s ) NOEXCEPT { std::string t = s; if (t.size() < DECAF_448_SER_BYTES) t.insert(t.size(),DECAF_448_SER_BYTES-t.size(),0); Point p; decaf_448_point_from_hash_nonuniform(p.p,GET_DATA(t)); return p; } /** * @brief Map uniformly to the curve from a C buffer. * The all-zero buffer maps to the identity, as does the buffer {1,0...}. */ static inline Point from_hash ( const unsigned char buffer[2*DECAF_448_SER_BYTES] ) NOEXCEPT { Point p; decaf_448_point_from_hash_uniform(p.p,buffer); return p; } /** * @brief Map uniformly to the curve from a C++ buffer. * The empty or all-zero string maps to the identity, as does the string "\x01". * If the buffer is shorter than (TODO) 2*DECAF_448_SER_BYTES, well, it won't be as uniform, * but the buffer will be zero-padded on the right. */ static inline Point from_hash ( const std::string &s ) NOEXCEPT { std::string t = s; if (t.size() < DECAF_448_SER_BYTES) return from_hash_nonuniform(s); if (t.size() < 2*DECAF_448_SER_BYTES) t.insert(t.size(),2*DECAF_448_SER_BYTES-t.size(),0); Point p; decaf_448_point_from_hash_uniform(p.p,GET_DATA(t)); return p; } /** * @brief Encode to string. The identity encodes to the all-zero string. */ inline EXPLICIT_CON operator std::string() const NOEXCEPT { unsigned char buffer[DECAF_448_SER_BYTES]; decaf_448_point_encode(buffer, p); return std::string((char*)buffer,sizeof(buffer)); } /** * @brief Encode to a C buffer. The identity encodes to all zeros. */ inline void encode(unsigned char buffer[DECAF_448_SER_BYTES]) const NOEXCEPT{ decaf_448_point_encode(buffer, p); } /** @brief Point add. */ inline Point operator+ (const Point &q) const NOEXCEPT { Point r; decaf_448_point_add(r.p,p,q.p); return r; } /** @brief Point add. */ inline Point operator+=(const Point &q) NOEXCEPT { decaf_448_point_add(p,p,q.p); return *this; } /** @brief Point subtract. */ inline Point operator- (const Point &q) const NOEXCEPT { Point r; decaf_448_point_sub(r.p,p,q.p); return r; } /** @brief Point subtract. */ inline Point operator-=(const Point &q) NOEXCEPT { decaf_448_point_sub(p,p,q.p); return *this; } /** @brief Point negate. */ inline Point operator- () const NOEXCEPT { Point r; decaf_448_point_negate(r.p,p); return r; } /** @brief Double the point out of place. */ inline Point times_two () const NOEXCEPT { Point r; decaf_448_point_double(r.p,p); return r; } /** @brief Double the point in place. */ inline Point &double_in_place() NOEXCEPT { decaf_448_point_double(p,p); return *this; } /** @brief Constant-time compare. */ inline bool operator!=(const Point &q) const NOEXCEPT { return ! decaf_448_point_eq(p,q.p); } /** @brief Constant-time compare. */ inline bool operator==(const Point &q) const NOEXCEPT { return !!decaf_448_point_eq(p,q.p); } /** @brief Scalar multiply. */ inline Point operator* (const Scalar &s) const NOEXCEPT { Point r; decaf_448_point_scalarmul(r.p,p,s.s); return r; } /** @brief Scalar multiply in place. */ inline Point operator*=(const Scalar &s) NOEXCEPT { decaf_448_point_scalarmul(p,p,s.s); return *this; } /** @brief Multiply by s.inverse(). If s=0, maps to the identity. */ inline Point operator/ (const Scalar &s) const NOEXCEPT { return (*this) * s.inverse(); } /** @brief Double-scalar multiply, equivalent to q*qs + r*rs but faster. */ static inline Point double_scalarmul ( const Point &q, const Scalar &qs, const Point &r, const Scalar &rs ) NOEXCEPT { Point p; decaf_448_point_double_scalarmul(p.p,q.p,qs.s,r.p,rs.s); return p; } /** * @brief Double-scalar multiply, equivalent to q*qs + r*rs but faster. * For those who like their scalars before the point. */ static inline Point double_scalarmul ( const Scalar &qs, const Point &q, const Scalar &rs, const Point &r ) NOEXCEPT { Point p; decaf_448_point_double_scalarmul(p.p,q.p,qs.s,r.p,rs.s); return p; } /** @brief Return the base point */ static inline const Point base() NOEXCEPT { return Point(decaf_448_point_base); } /** @brief Return the identity point */ static inline const Point identity() NOEXCEPT { return Point(decaf_448_point_identity); } }; /** * @brief Precomputed table of points. * Minor difficulties arise here because the decaf API doesn't expose, as a constant, how big such an object is. * Therefore we have to call malloc() or friends, but that's probably for the best, because you don't want to * stack-allocate a 15kiB object anyway. */ class Precomputed { private: /** @cond internal */ union { decaf_448_precomputed_s *mine; const decaf_448_precomputed_s *yours; } ours; bool isMine; inline void clear() NOEXCEPT { if (isMine) { decaf_448_precomputed_destroy(ours.mine); free(ours.mine); ours.yours = decaf_448_precomputed_base; isMine = false; } } inline void alloc() throw(std::bad_alloc) { if (isMine) return; int ret = posix_memalign((void**)&ours.mine, alignof_decaf_448_precomputed_s,sizeof_decaf_448_precomputed_s); if (ret || !ours.mine) { isMine = false; throw std::bad_alloc(); } isMine = true; } inline const decaf_448_precomputed_s *get() const NOEXCEPT { return isMine ? ours.mine : ours.yours; } /** @endcond */ public: /** Destructor securely erases the memory. */ inline ~Precomputed() NOEXCEPT { clear(); } /** * @brief Initialize from underlying type, declared as a reference to prevent * it from being called with 0, thereby breaking override. * * The underlying object must remain valid throughout the lifetime of this one. * * By default, initializes to the table for the base point. * * @todo: FIXME Harmonize with Point(), which initializes to the identity. */ inline Precomputed( const decaf_448_precomputed_s &yours = *decaf_448_precomputed_base ) NOEXCEPT { ours.yours = &yours; isMine = false; } /** * @brief Assign. This may require an allocation and memcpy. */ inline Precomputed &operator=(const Precomputed &it) throw(std::bad_alloc) { if (this == &it) return *this; if (it.isMine) { alloc(); memcpy(ours.mine,it.ours.mine,sizeof_decaf_448_precomputed_s); } else { clear(); ours.yours = it.ours.yours; } isMine = it.isMine; return *this; } /** * @brief Initilaize from point. Must allocate memory, and may throw. */ inline Precomputed &operator=(const Point &it) throw(std::bad_alloc) { alloc(); decaf_448_precompute(ours.mine,it.p); return *this; } /** * @brief Copy constructor. */ inline Precomputed(const Precomputed &it) throw(std::bad_alloc) : isMine(false) { *this = it; } /** * @brief Constructor which initializes from point. */ inline explicit Precomputed(const Point &it) throw(std::bad_alloc) : isMine(false) { *this = it; } #if __cplusplus >= 201103L inline Precomputed &operator=(Precomputed &&it) NOEXCEPT { if (this == &it) return *this; clear(); ours = it.ours; isMine = it.isMine; it.isMine = false; it.ours.yours = decaf_448_precomputed_base; return *this; } inline Precomputed(Precomputed &&it) NOEXCEPT : isMine(false) { *this = it; } #endif /** @brief Fixed base scalarmul. */ inline Point operator* (const Scalar &s) const NOEXCEPT { Point r; decaf_448_precomputed_scalarmul(r.p,get(),s.s); return r; } /** @brief Multiply by s.inverse(). If s=0, maps to the identity. */ inline Point operator/ (const Scalar &s) const NOEXCEPT { return (*this) * s.inverse(); } /** @brief Return the table for the base point. */ static inline const Precomputed base() NOEXCEPT { return Precomputed(*decaf_448_precomputed_base); } }; }; /* struct decaf<448> */ #undef NOEXCEPT #undef EXPLICIT_CON #undef GET_DATA } /* namespace decaf */ #endif /* __DECAF_448_HXX__ */