/** * @file test_decaf.cxx * @author Mike Hamburg * * @copyright * Copyright (c) 2015 Cryptography Research, Inc. \n * Released under the MIT License. See LICENSE.txt for license information. * * @brief C++ tests, because that's easier. */ #include #include #include #include #include #include using namespace decaf; static bool passing = true; static const long NTESTS = 10000; class Test { public: bool passing_now; Test(const char *test) { passing_now = true; printf("%s...", test); if (strlen(test) < 27) printf("%*s",int(27-strlen(test)),""); fflush(stdout); } ~Test() { if (std::uncaught_exception()) { fail(); printf(" due to uncaught exception.\n"); } if (passing_now) printf("[PASS]\n"); } void fail() { if (!passing_now) return; passing_now = passing = false; printf("[FAIL]\n"); } }; static uint64_t leint(const SecureBuffer &xx) { uint64_t out = 0; for (unsigned int i=0; i struct Tests { typedef typename Group::Scalar Scalar; typedef typename Group::Point Point; typedef typename Group::DhLadder DhLadder; typedef typename Group::Precomputed Precomputed; static void print(const char *name, const Scalar &x) { unsigned char buffer[Scalar::SER_BYTES]; x.serialize_into(buffer); printf(" %s = 0x", name); for (int i=sizeof(buffer)-1; i>=0; i--) { printf("%02x", buffer[i]); } printf("\n"); } static void hexprint(const char *name, const SecureBuffer &buffer) { printf(" %s = 0x", name); for (int i=buffer.size()-1; i>=0; i--) { printf("%02x", buffer[i]); } printf("\n"); } static void print(const char *name, const Point &x) { unsigned char buffer[Point::SER_BYTES]; x.serialize_into(buffer); printf(" %s = 0x", name); for (int i=Point::SER_BYTES-1; i>=0; i--) { printf("%02x", buffer[i]); } printf("\n"); } static bool arith_check( Test &test, const Scalar &x, const Scalar &y, const Scalar &z, const Scalar &l, const Scalar &r, const char *name ) { if (l == r) return true; test.fail(); printf(" %s", name); print("x", x); print("y", y); print("z", z); print("lhs", l); print("rhs", r); return false; } static bool point_check( Test &test, const Point &p, const Point &q, const Point &R, const Scalar &x, const Scalar &y, const Point &l, const Point &r, const char *name ) { bool good = l==r; if (!p.validate()) { good = false; printf(" p invalid\n"); } if (!q.validate()) { good = false; printf(" q invalid\n"); } if (!r.validate()) { good = false; printf(" r invalid\n"); } if (!l.validate()) { good = false; printf(" l invalid\n"); } if (good) return true; test.fail(); printf(" %s", name); print("x", x); print("y", y); print("p", p); print("q", q); print("r", R); print("lhs", r); print("rhs", l); return false; } static void test_arithmetic() { SpongeRng rng(Block("test_arithmetic"),SpongeRng::DETERMINISTIC); Test test("Arithmetic"); Scalar x(0),y(0),z(0); arith_check(test,x,y,z,INT_MAX,(decaf_word_t)INT_MAX,"cast from max"); arith_check(test,x,y,z,INT_MIN,-Scalar(1+(decaf_word_t)INT_MAX),"cast from min"); for (int i=0; i Point::HASH_BYTES) memcpy(&(*alts[j])[Point::HASH_BYTES], &b1[Point::HASH_BYTES], len-Point::HASH_BYTES); if (len > Point::HASH_BYTES) memcpy(&(*alts2[j])[Point::HASH_BYTES], &b1[Point::HASH_BYTES], len-Point::HASH_BYTES); successes[j] = decaf_successful( s.invert_elligator(*alts[j], j)); successes2[j] = decaf_successful(ss.invert_elligator(*alts2[j],j)); if (successes[j] != successes2[j] || (successes[j] && successes2[j] && *alts[j] != *alts2[j]) ) { test.fail(); printf(" Unscalable Elligator inversion: i=%d, hint=%d, s=%d,%d\n",i,j, -int(successes[j]),-int(successes2[j])); hexprint("x",b1); hexprint("X",*alts[j]); hexprint("X",*alts2[j]); } if (successes[j]) { good = good || (b1 == *alts[j]); for (int k=0; k(enc)),id,"decode [0]"); try { enc[0] = 1; Point f((FixedBlock(enc))); test.fail(); printf(" Allowed deserialize of [1]: %d", f==id); } catch (CryptoException) { /* ok */ } if (sqrt_minus_one.size()) { try { Point f(sqrt_minus_one); test.fail(); printf(" Allowed deserialize of [i]: %d", f==id); } catch (CryptoException) { /* ok */ } } if (minus_sqrt_minus_one.size()) { try { Point f(minus_sqrt_minus_one); test.fail(); printf(" Allowed deserialize of [-i]: %d", f==id); } catch (CryptoException) { /* ok */ } } for (int i=0; i priv1(rng), priv2(rng); PublicKey pub1(priv1), pub2(priv2); SecureBuffer message = rng.read(i); SecureBuffer sig(priv1.sign(message)); pub1.verify(message, sig); SecureBuffer s1(priv1.shared_secret(pub2,32,true)); SecureBuffer s2(priv2.shared_secret(pub1,32,false)); if (!memeq(s1,s2)) { test.fail(); printf(" Shared secrets disagree on iteration %d.\n",i); } } catch (CryptoException) { test.fail(); printf(" Threw CryptoException.\n"); } } } static const uint8_t rfc7748_1[DhLadder::PUBLIC_BYTES]; static const uint8_t rfc7748_1000[DhLadder::PUBLIC_BYTES]; static const uint8_t rfc7748_1000000[DhLadder::PUBLIC_BYTES]; static void test_cfrg_crypto() { Test test("CFRG crypto"); SpongeRng rng(Block("test_cfrg_crypto"),SpongeRng::DETERMINISTIC); for (int i=0; i base(rng); FixedArrayBuffer s1(rng), s2(rng); SecureBuffer p1 = DhLadder::shared_secret(base,s1); SecureBuffer p2 = DhLadder::shared_secret(base,s2); SecureBuffer ss1 = DhLadder::shared_secret(p2,s1); SecureBuffer ss2 = DhLadder::shared_secret(p1,s2); if (!memeq(ss1,ss2)) { test.fail(); printf(" Shared secrets disagree on iteration %d.\n",i); } if (!memeq( DhLadder::shared_secret(DhLadder::base_point(),s1), DhLadder::generate_key(s1) )) { test.fail(); printf(" Generated keys disagree on iteration %d.\n",i); } } } static const Block eddsa_sk[], eddsa_pk[], eddsa_message[], eddsa_context[], eddsa_sig[]; static void test_cfrg_vectors() { Test test("CFRG test vectors"); SecureBuffer k = DhLadder::base_point(); SecureBuffer u = DhLadder::base_point(); int the_ntests = (NTESTS < 1000000) ? 1000 : 1000000; /* EdDSA */ for (unsigned int t=0; eddsa_sk[t].size(); t++) { typename EdDSA::PrivateKey priv(eddsa_sk[t]); SecureBuffer eddsa_pk2 = priv.pub().serialize(); if (!memeq(SecureBuffer(eddsa_pk[t]), eddsa_pk2)) { test.fail(); printf(" EdDSA PK vectors disagree."); printf("\n Correct: "); for (unsigned i=0; i(rfc7748_1)))) { test.fail(); printf(" Test vectors disagree at 1."); } } else if (i==1000-1) { if (!memeq(k,SecureBuffer(FixedBlock(rfc7748_1000)))) { test.fail(); printf(" Test vectors disagree at 1000."); } } else if (i==1000000-1) { if (!memeq(k,SecureBuffer(FixedBlock(rfc7748_1000000)))) { test.fail(); printf(" Test vectors disagree at 1000000."); } } } } static void test_eddsa() { Test test("EdDSA"); SpongeRng rng(Block("test_eddsa"),SpongeRng::DETERMINISTIC); for (int i=0; i::PrivateKey priv(rng); typename EdDSA::PublicKey pub(priv); SecureBuffer message(i); rng.read(message); SecureBuffer context(priv.SUPPORTS_CONTEXTS ? i%256 : 0); rng.read(message); SecureBuffer sig = priv.sign(message,i%2,context); try { pub.verify(sig,message,i%2,context); } catch(CryptoException) { test.fail(); printf(" Signature validation failed on sig %d\n", i); } } } static void run() { printf("Testing %s:\n",Group::name()); test_arithmetic(); test_elligator(); test_ec(); test_eddsa(); test_cfrg_crypto(); test_cfrg_vectors(); test_crypto(); printf("\n"); } }; /* template struct Tests */ #include "vectors.inc.c" int main(int argc, char **argv) { (void) argc; (void) argv; run_for_all_curves(); if (passing) printf("Passed all tests.\n"); return passing ? 0 : 1; }