Browse Source

remove files used by goldilocks/master, leaving only decaf

master
Michael Hamburg 9 years ago
parent
commit
f18cf359c6
41 changed files with 61 additions and 9964 deletions
  1. +14
    -57
      Makefile
  2. +0
    -380
      include/goldilocks.h
  3. +0
    -376
      include/ridinghood.h
  4. +0
    -87
      src/arithmetic.c
  5. +0
    -349
      src/barrett_field.c
  6. +4
    -4
      src/bat/api_dh.h
  7. +3
    -3
      src/bat/api_sign.h
  8. +14
    -13
      src/bat/dh.c
  9. +22
    -23
      src/bat/sign.c
  10. +0
    -488
      src/crandom.c
  11. +0
    -1
      src/decaf_crypto.c
  12. +0
    -1222
      src/ec_point.c
  13. +0
    -576
      src/goldilocks.c
  14. +0
    -190
      src/include/barrett_field.h
  15. +0
    -76
      src/include/config.h
  16. +0
    -143
      src/include/crandom.h
  17. +0
    -697
      src/include/ec_point.h
  18. +0
    -276
      src/include/intrinsics.h
  19. +0
    -95
      src/include/magic.h
  20. +0
    -373
      src/include/scalarmul.h
  21. +0
    -49
      src/include/sha512.h
  22. +1
    -1
      src/p448/arch_x86_64/p448.h
  23. +1
    -1
      src/p448/f_arithmetic.c
  24. +0
    -30
      src/p448/f_magic.h
  25. +0
    -81
      src/p448/magic.c
  26. +1
    -1
      src/p480/f_arithmetic.c
  27. +0
    -30
      src/p480/f_magic.h
  28. +0
    -68
      src/p480/magic.c
  29. +1
    -1
      src/p521/f_arithmetic.c
  30. +0
    -30
      src/p521/f_magic.h
  31. +0
    -111
      src/p521/magic.c
  32. +0
    -987
      src/scalarmul.c
  33. +0
    -177
      src/sha512.c
  34. +0
    -780
      test/bench.c
  35. +0
    -152
      test/test.c
  36. +0
    -51
      test/test.h
  37. +0
    -392
      test/test_arithmetic.c
  38. +0
    -195
      test/test_goldilocks.c
  39. +0
    -648
      test/test_pointops.c
  40. +0
    -480
      test/test_scalarmul.c
  41. +0
    -270
      test/test_sha512.c

+ 14
- 57
Makefile View File

@@ -28,7 +28,7 @@ endif
FIELD ?= p448

WARNFLAGS = -pedantic -Wall -Wextra -Werror -Wunreachable-code \
-Wmissing-declarations -Wunused-function -Wno-overlength-strings $(EXWARN)
-Wmissing-declarations -Wunused-function $(EXWARN)
INCFLAGS = -Isrc/include -Iinclude -Isrc/$(FIELD) -Isrc/$(FIELD)/$(ARCH)
@@ -55,26 +55,17 @@ ifeq ($(CC),clang)
WARNFLAGS += -Wgcc-compat
endif

ifeq (,$(findstring 64,$(ARCH))$(findstring gcc,$(CC)))
# ARCHFLAGS += -m32
XCFLAGS += -DGOLDI_FORCE_32_BIT=1
endif

ARCHFLAGS += $(XARCHFLAGS)
CFLAGS = $(LANGFLAGS) $(WARNFLAGS) $(INCFLAGS) $(OFLAGS) $(ARCHFLAGS) $(GENFLAGS) $(XCFLAGS)
CXXFLAGS = $(LANGXXFLAGS) $(WARNFLAGS) $(INCFLAGS) $(OFLAGS) $(ARCHFLAGS) $(GENFLAGS) $(XCXXFLAGS)
LDFLAGS = $(ARCHFLAGS) $(XLDFLAGS)
ASFLAGS = $(ARCHFLAGS) $(XASFLAGS)

.PHONY: clean all test bench test_decaf bench_decaf todo doc lib bat
.PHONY: clean all test bench todo doc lib bat
.PRECIOUS: build/%.s

HEADERS= Makefile $(shell find . -name "*.h") $(shell find . -name "*.hxx") build/timestamp

LIBCOMPONENTS= build/goldilocks.o build/barrett_field.o build/crandom.o \
build/$(FIELD).o build/ec_point.o build/scalarmul.o build/sha512.o build/magic.o \
build/f_arithmetic.o build/arithmetic.o


DECAFCOMPONENTS= build/$(DECAF).o build/shake.o build/decaf_crypto.o \
build/$(FIELD).o build/f_arithmetic.o # TODO
@@ -82,19 +73,12 @@ ifeq ($(DECAF),decaf_fast)
DECAFCOMPONENTS += build/decaf_tables.o
endif

TESTCOMPONENTS=build/test.o build/test_scalarmul.o build/test_sha512.o \
build/test_pointops.o build/test_arithmetic.o build/test_goldilocks.o build/magic.o \
build/shake.o

TESTDECAFCOMPONENTS=build/test_decaf.o
BENCHDECAFCOMPONENTS=build/bench_decaf.o

BENCHCOMPONENTS = build/bench.o build/shake.o

BATBASE=ed448goldilocks-bats-$(TODAY)
BATBASE=ed448goldilocks-decaf-bats-$(TODAY)
BATNAME=build/$(BATBASE)

all: lib decaf_lib build/test build/bench build/shakesum
all: lib build/test build/bench build/shakesum

scan: clean
scan-build --use-analyzer=`which clang` \
@@ -102,36 +86,16 @@ scan: clean
-enable-checker osx -enable-checker security -enable-checker unix \
make build/bench build/test all

build/bench: $(LIBCOMPONENTS) $(BENCHCOMPONENTS) $(DECAFCOMPONENTS)
$(LD) $(LDFLAGS) -o $@ $^

build/test: $(LIBCOMPONENTS) $(TESTCOMPONENTS) $(DECAFCOMPONENTS)
$(LD) $(LDFLAGS) -o $@ $^ -lgmp

build/test_decaf: $(TESTDECAFCOMPONENTS) decaf_lib
$(LDXX) $(LDFLAGS) -o $@ $< -Lbuild -Wl,-rpath=`pwd`/build -ldecaf
build/test: build/test_decaf.o lib
$(LDXX) $(LDFLAGS) -o $@ $< -Lbuild -ldecaf

build/bench_decaf: $(BENCHDECAFCOMPONENTS) decaf_lib
$(LDXX) $(LDFLAGS) -o $@ $< -Lbuild -Wl,-rpath=`pwd`/build -ldecaf
build/bench: build/bench_decaf.o lib
$(LDXX) $(LDFLAGS) -o $@ $< -Lbuild -ldecaf
build/shakesum: build/shakesum.o build/shake.o
$(LD) $(LDFLAGS) -o $@ $^

lib: build/libgoldilocks.so

decaf_lib: build/libdecaf.so

build/libgoldilocks.so: $(LIBCOMPONENTS)
rm -f $@
ifeq ($(UNAME),Darwin)
libtool -macosx_version_min 10.6 -dynamic -dead_strip -lc -x -o $@ \
$(LIBCOMPONENTS)
else
$(LD) $(LDFLAGS) -shared -Wl,-soname,libgoldilocks.so.1 -Wl,--gc-sections -o $@ $(LIBCOMPONENTS)
strip --discard-all $@
ln -sf `basename $@` build/libgoldilocks.so.1
endif

lib: build/libdecaf.so

build/libdecaf.so: $(DECAFCOMPONENTS)
rm -f $@
@@ -190,18 +154,17 @@ bat: $(BATNAME)
$(BATNAME): include/* src/* src/*/* test/batarch.map
rm -fr $@
for prim in dh sign; do \
targ="$@/crypto_$$prim/ed448goldilocks"; \
targ="$@/crypto_$$prim/ed448goldilocks-decaf"; \
(while read arch where; do \
mkdir -p $$targ/`basename $$arch`; \
cp include/*.h src/*.c src/include/*.h src/bat/$$prim.c src/p448/$$where/*.c src/p448/$$where/*.h src/p448/*.c src/p448/*.h $$targ/`basename $$arch`; \
cp src/bat/api_$$prim.h $$targ/`basename $$arch`/api.h; \
perl -p -i -e 's/.*endif.*GOLDILOCKS_CONFIG_H/#define SUPERCOP_WONT_LET_ME_OPEN_FILES 1\n\n$$&/' $$targ/`basename $$arch`/config.h; \
perl -p -i -e 's/SYSNAME/'`basename $(BATNAME)`_`basename $$arch`'/g' $$targ/`basename $$arch`/api.h; \
perl -p -i -e 's/__TODAY__/'$(TODAY)'/g' $$targ/`basename $$arch`/api.h; \
done \
) < test/batarch.map; \
echo 'Mike Hamburg' > $$targ/designers; \
echo 'Ed448-Goldilocks sign and dh' > $$targ/description; \
echo 'Ed448-Goldilocks Decaf sign and dh' > $$targ/description; \
done
(cd build && tar czf $(BATBASE).tgz $(BATBASE) )
@@ -223,17 +186,11 @@ todo::
bench: build/bench
./$<

test: build/test test_decaf
test: build/test
build/test
test_decaf: build/test_decaf
build/test_decaf
bench_decaf: build/bench_decaf
build/bench_decaf
microbench_decaf: build/bench_decaf
build/bench_decaf --micro
microbench: build/bench
./$< --micro

clean:
rm -fr build doc $(BATNAME)

+ 0
- 380
include/goldilocks.h View File

@@ -1,380 +0,0 @@
/* Copyright (c) 2014-2015 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/

/**
* @file goldilocks.h
* @author Mike Hamburg
* @brief Goldilocks high-level functions.
*/
#ifndef __GOLDILOCKS_H__
#define __GOLDILOCKS_H__ 1

#include <stdint.h>

#ifndef GOLDI_IMPLEMENT_PRECOMPUTED_KEYS
/** If nonzero, implement precomputation for verify and ECDH. */
#define GOLDI_IMPLEMENT_PRECOMPUTED_KEYS 1
#endif

#ifndef GOLDI_IMPLEMENT_SIGNATURES
/** If nonzero, implement signatures. */
#define GOLDI_IMPLEMENT_SIGNATURES 1
#endif

/** The size of the Goldilocks field, in bits.
* Ifdef'd so you can override when testing experimental Ed480-Ridinghood or E-521.
*/
#ifndef GOLDI_FIELD_BITS
#define GOLDI_FIELD_BITS 448
#endif

/** The size of the Goldilocks scalars, in bits. */
#define GOLDI_SCALAR_BITS (GOLDI_FIELD_BITS-2)

/** The same size, in bytes. */
#define GOLDI_FIELD_BYTES ((GOLDI_FIELD_BITS+7)/8)

/** The size of a Goldilocks public key, in bytes. */
#define GOLDI_PUBLIC_KEY_BYTES GOLDI_FIELD_BYTES

/** The extra bytes in a Goldilocks private key for the symmetric key. */
#define GOLDI_SYMKEY_BYTES 32

/** The size of a shared secret. */
#define GOLDI_SHARED_SECRET_BYTES 64

/** The size of a Goldilocks private key, in bytes. */
#define GOLDI_PRIVATE_KEY_BYTES (2*GOLDI_FIELD_BYTES + GOLDI_SYMKEY_BYTES)

/** The size of a Goldilocks signature, in bytes. */
#define GOLDI_SIGNATURE_BYTES (2*GOLDI_FIELD_BYTES)

/**
* @brief Serialized form of a Goldilocks public key.
*
* @warning This isn't even my final form!
*/
struct goldilocks_public_key_t {
uint8_t opaque[GOLDI_PUBLIC_KEY_BYTES]; /**< Serialized data. */
};

/**
* @brief Serialized form of a Goldilocks private key.
*
* Contains 56 bytes of actual private key, 56 bytes of
* public key, and 32 bytes of symmetric key for randomization.
*
* @warning This isn't even my final form!
*/
struct goldilocks_private_key_t {
uint8_t opaque[GOLDI_PRIVATE_KEY_BYTES]; /**< Serialized data. */
};

#ifdef __cplusplus
extern "C" {
#endif

/** @brief No error. */
static const int GOLDI_EOK = 0;

/** @brief Error: your key or other state is corrupt. */
static const int GOLDI_ECORRUPT = 44801;

/** @brief Error: other party's key is corrupt. */
static const int GOLDI_EINVAL = 44802;

/** @brief Error: not enough entropy. */
static const int GOLDI_ENODICE = 44804;

/** @brief Error: you need to initialize the library first. */
static const int GOLDI_EUNINIT = 44805;

/** @brief Error: called init() but we are already initialized. */
static const int GOLDI_EALREADYINIT = 44805;

/**
* @brief Initialize Goldilocks' precomputed tables and
* random number generator. This function must be called before
* any of the other Goldilocks routines (except
* goldilocks_shared_secret in the current version) and should be
* called only once per process.
*
* There is currently no way to tear down this state. It is possible
* that a future version of this library will not require this function.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_EALREADYINIT Already initialized.
* @retval GOLDI_ECORRUPT Memory is corrupted, or another thread is already init'ing.
* @retval Nonzero An error occurred.
*/
int
goldilocks_init (void)
__attribute__((warn_unused_result,visibility ("default")));


/**
* @brief Generate a new random keypair.
* @param [out] privkey The generated private key.
* @param [out] pubkey The generated public key.
*
* @warning This isn't even my final form!
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_ENODICE Insufficient entropy.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_keygen (
struct goldilocks_private_key_t *privkey,
struct goldilocks_public_key_t *pubkey
) __attribute__((warn_unused_result,nonnull(1,2),visibility ("default")));

/**
* @brief Derive a key from its compressed form.
* @param [out] privkey The derived private key.
* @param [in] proto The compressed or proto-key, which must be 32 random bytes.
*
* @warning This isn't even my final form!
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_derive_private_key (
struct goldilocks_private_key_t *privkey,
const unsigned char proto[GOLDI_SYMKEY_BYTES]
) __attribute__((nonnull(1,2),visibility ("default")));

/**
* @brief Compress a private key (by copying out the proto-key)
* @param [out] proto The proto-key.
* @param [in] privkey The private key.
*
* @warning This isn't even my final form!
* @todo test.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
void
goldilocks_underive_private_key (
unsigned char proto[GOLDI_SYMKEY_BYTES],
const struct goldilocks_private_key_t *privkey
) __attribute__((nonnull(1,2),visibility ("default")));

/**
* @brief Extract the public key from a private key.
*
* This is essentially a memcpy from the public part of the privkey.
*
* @param [out] pubkey The extracted private key.
* @param [in] privkey The private key.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_ECORRUPT The private key is corrupt.
*/
int
goldilocks_private_to_public (
struct goldilocks_public_key_t *pubkey,
const struct goldilocks_private_key_t *privkey
) __attribute__((nonnull(1,2),visibility ("default")));

/**
* @brief Generate a Diffie-Hellman shared secret in constant time.
*
* This function uses some compile-time flags whose merit remains to
* be decided.
*
* If the flag EXPERIMENT_ECDH_OBLITERATE_CT is set, prepend 40 bytes
* of zeros to the secret before hashing. In the case that the other
* party's key is detectably corrupt, instead the symmetric part
* of the secret key is used to produce a pseudorandom value.
*
* If EXPERIMENT_ECDH_STIR_IN_PUBKEYS is set, the sum and product of
* the two parties' public keys is prepended to the hash.
*
* In the current version, this function can safely be run even without
* goldilocks_init(). But this property is not guaranteed for future
* versions, so call it anyway.
*
* @warning This isn't even my final form!
*
* @param [out] shared The shared secret established with the other party.
* @param [in] my_privkey My private key.
* @param [in] your_pubkey The other party's public key.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_ECORRUPT My key is corrupt.
* @retval GOLDI_EINVAL The other party's key is corrupt.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_shared_secret (
uint8_t shared[GOLDI_SHARED_SECRET_BYTES],
const struct goldilocks_private_key_t *my_privkey,
const struct goldilocks_public_key_t *your_pubkey
) __attribute__((warn_unused_result,nonnull(1,2,3),visibility ("default")));

#if GOLDI_IMPLEMENT_SIGNATURES
/**
* @brief Sign a message.
*
* The signature is deterministic, using the symmetric secret found in the
* secret key to form a nonce.
*
* The technique used in signing is a modified Schnorr system, like EdDSA.
*
* @warning This isn't even my final form!
*
* @param [out] signature_out Space for the output signature.
* @param [in] message The message to be signed.
* @param [in] message_len The length of the message to be signed.
* @param [in] privkey My private key.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_ECORRUPT My key is corrupt.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_sign (
uint8_t signature_out[GOLDI_SIGNATURE_BYTES],
const uint8_t *message,
uint64_t message_len,
const struct goldilocks_private_key_t *privkey
) __attribute__((nonnull(1,2,4),visibility ("default")));

/**
* @brief Verify a signature.
*
* This function is fairly strict. It will correctly detect when
* the signature has the wrong cofactor component, or when the sig
* values aren't less than p or q.
*
* Currently this function does not detect when the public key is weird,
* eg 0, has cofactor, etc. As a result, a party with a bogus public
* key could create signatures that succeed on some systems and fail on
* others.
*
* @warning This isn't even my final form!
*
* @param [in] signature The signature.
* @param [in] message The message to be verified.
* @param [in] message_len The length of the message to be verified.
* @param [in] pubkey The signer's public key.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_EINVAL The public key or signature is corrupt.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_verify (
const uint8_t signature[GOLDI_SIGNATURE_BYTES],
const uint8_t *message,
uint64_t message_len,
const struct goldilocks_public_key_t *pubkey
) __attribute__((warn_unused_result,nonnull(1,2,4),visibility ("default")));
#endif

#if GOLDI_IMPLEMENT_PRECOMPUTED_KEYS

/** A public key which has been expanded by precomputation for higher speed. */
struct goldilocks_precomputed_public_key_t;

/**
* @brief Expand a public key by precomputation.
*
* @todo Give actual error returns, instead of ambiguous NULL.
*
* @warning This isn't even my final form!
*
* @param [in] pub The public key.
* @retval NULL We ran out of memory, or the
*/
struct goldilocks_precomputed_public_key_t *
goldilocks_precompute_public_key (
const struct goldilocks_public_key_t *pub
) __attribute__((warn_unused_result,nonnull(1),visibility ("default")));

/**
* @brief Overwrite an expanded public key with zeros, then destroy it.
*
* If the input is NULL, this function does nothing.
*
* @param [in] precom The public key.
*/
void
goldilocks_destroy_precomputed_public_key (
struct goldilocks_precomputed_public_key_t *precom
) __attribute__((visibility ("default")));

/**
* @brief Verify a signature.
*
* This function is fairly strict. It will correctly detect when
* the signature has the wrong cofactor component, or when the sig
* values aren't less than p or q.
*
* @warning This isn't even my final form!
*
* @param [in] signature The signature.
* @param [in] message The message to be verified.
* @param [in] message_len The length of the message to be verified.
* @param [in] pubkey The signer's public key, expanded by precomputation.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_EINVAL The public key or signature is corrupt.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_verify_precomputed (
const uint8_t signature[GOLDI_SIGNATURE_BYTES],
const uint8_t *message,
uint64_t message_len,
const struct goldilocks_precomputed_public_key_t *pubkey
) __attribute__((warn_unused_result,nonnull(1,2,4),visibility ("default")));
/**
* @brief Generate a Diffie-Hellman shared secret in constant time.
* Uses a precomputation on the other party's public key for efficiency.
*
* This function uses some compile-time flags whose merit remains to
* be decided.
*
* If the flag EXPERIMENT_ECDH_OBLITERATE_CT is set, prepend 40 bytes
* of zeros to the secret before hashing. In the case that the other
* party's key is detectably corrupt, instead the symmetric part
* of the secret key is used to produce a pseudorandom value.
*
* If EXPERIMENT_ECDH_STIR_IN_PUBKEYS is set, the sum and product of
* the two parties' public keys is prepended to the hash.
*
* In the current version, this function can safely be run even without
* goldilocks_init(). But this property is not guaranteed for future
* versions, so call it anyway.
*
* @warning This isn't even my final form!
*
* @param [out] shared The shared secret established with the other party.
* @param [in] my_privkey My private key.
* @param [in] your_pubkey The other party's precomputed public key.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_ECORRUPT My key is corrupt.
* @retval GOLDI_EINVAL The other party's key is corrupt.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_shared_secret_precomputed (
uint8_t shared[GOLDI_SHARED_SECRET_BYTES],
const struct goldilocks_private_key_t *my_privkey,
const struct goldilocks_precomputed_public_key_t *your_pubkey
) __attribute__((warn_unused_result,nonnull(1,2,3),visibility ("default")));

#endif /* GOLDI_IMPLEMENT_PRECOMPUTED_KEYS */

#ifdef __cplusplus
}; /* extern "C" */
#endif

#endif /* __GOLDILOCKS_H__ */

+ 0
- 376
include/ridinghood.h View File

@@ -1,376 +0,0 @@
/* Copyright (c) 2014 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/

/**
* @file goldilocks.h
* @author Mike Hamburg
* @brief Goldilocks high-level functions.
*/
#ifndef __GOLDILOCKS_H__
#define __GOLDILOCKS_H__ 1

#include <stdint.h>

#ifndef GOLDI_IMPLEMENT_PRECOMPUTED_KEYS
/** If nonzero, implement precomputation for verify and ECDH. */
#define GOLDI_IMPLEMENT_PRECOMPUTED_KEYS 1
#endif

#ifndef GOLDI_IMPLEMENT_SIGNATURES
/** If nonzero, implement signatures. */
#define GOLDI_IMPLEMENT_SIGNATURES 1
#endif

/** The size of the Goldilocks field, in bits. */
#define GOLDI_FIELD_BITS 448

/** The size of the Goldilocks scalars, in bits. */
#define GOLDI_SCALAR_BITS 446

/** The same size, in bytes. */
#define GOLDI_FIELD_BYTES (GOLDI_FIELD_BITS/8)

/** The size of a Goldilocks public key, in bytes. */
#define GOLDI_PUBLIC_KEY_BYTES GOLDI_FIELD_BYTES

/** The extra bytes in a Goldilocks private key for the symmetric key. */
#define GOLDI_SYMKEY_BYTES 32

/** The size of a shared secret. */
#define GOLDI_SHARED_SECRET_BYTES 64

/** The size of a Goldilocks private key, in bytes. */
#define GOLDI_PRIVATE_KEY_BYTES (2*GOLDI_FIELD_BYTES + GOLDI_SYMKEY_BYTES)

/** The size of a Goldilocks signature, in bytes. */
#define GOLDI_SIGNATURE_BYTES (2*GOLDI_FIELD_BYTES)

/**
* @brief Serialized form of a Goldilocks public key.
*
* @warning This isn't even my final form!
*/
struct goldilocks_public_key_t {
uint8_t opaque[GOLDI_PUBLIC_KEY_BYTES]; /**< Serialized data. */
};

/**
* @brief Serialized form of a Goldilocks private key.
*
* Contains 56 bytes of actual private key, 56 bytes of
* public key, and 32 bytes of symmetric key for randomization.
*
* @warning This isn't even my final form!
*/
struct goldilocks_private_key_t {
uint8_t opaque[GOLDI_PRIVATE_KEY_BYTES]; /**< Serialized data. */
};

#ifdef __cplusplus
extern "C" {
#endif

/** @brief No error. */
static const int GOLDI_EOK = 0;

/** @brief Error: your key or other state is corrupt. */
static const int GOLDI_ECORRUPT = 44801;

/** @brief Error: other party's key is corrupt. */
static const int GOLDI_EINVAL = 44802;

/** @brief Error: not enough entropy. */
static const int GOLDI_ENODICE = 44804;

/** @brief Error: you need to initialize the library first. */
static const int GOLDI_EUNINIT = 44805;

/** @brief Error: called init() but we are already initialized. */
static const int GOLDI_EALREADYINIT = 44805;

/**
* @brief Initialize Goldilocks' precomputed tables and
* random number generator. This function must be called before
* any of the other Goldilocks routines (except
* goldilocks_shared_secret in the current version) and should be
* called only once per process.
*
* There is currently no way to tear down this state. It is possible
* that a future version of this library will not require this function.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_EALREADYINIT Already initialized.
* @retval GOLDI_ECORRUPT Memory is corrupted, or another thread is already init'ing.
* @retval Nonzero An error occurred.
*/
int
goldilocks_init (void)
__attribute__((warn_unused_result,visibility ("default")));


/**
* @brief Generate a new random keypair.
* @param [out] privkey The generated private key.
* @param [out] pubkey The generated public key.
*
* @warning This isn't even my final form!
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_ENODICE Insufficient entropy.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_keygen (
struct goldilocks_private_key_t *privkey,
struct goldilocks_public_key_t *pubkey
) __attribute__((warn_unused_result,nonnull(1,2),visibility ("default")));

/**
* @brief Derive a key from its compressed form.
* @param [out] privkey The derived private key.
* @param [in] proto The compressed or proto-key, which must be 32 random bytes.
*
* @warning This isn't even my final form!
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_derive_private_key (
struct goldilocks_private_key_t *privkey,
const unsigned char proto[GOLDI_SYMKEY_BYTES]
) __attribute__((nonnull(1,2),visibility ("default")));

/**
* @brief Compress a private key (by copying out the proto-key)
* @param [out] proto The proto-key.
* @param [in] privkey The private key.
*
* @warning This isn't even my final form!
* @todo test.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
void
goldilocks_underive_private_key (
unsigned char proto[GOLDI_SYMKEY_BYTES],
const struct goldilocks_private_key_t *privkey
) __attribute__((nonnull(1,2),visibility ("default")));

/**
* @brief Extract the public key from a private key.
*
* This is essentially a memcpy from the public part of the privkey.
*
* @param [out] pubkey The extracted private key.
* @param [in] privkey The private key.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_ECORRUPT The private key is corrupt.
*/
int
goldilocks_private_to_public (
struct goldilocks_public_key_t *pubkey,
const struct goldilocks_private_key_t *privkey
) __attribute__((nonnull(1,2),visibility ("default")));

/**
* @brief Generate a Diffie-Hellman shared secret in constant time.
*
* This function uses some compile-time flags whose merit remains to
* be decided.
*
* If the flag EXPERIMENT_ECDH_OBLITERATE_CT is set, prepend 40 bytes
* of zeros to the secret before hashing. In the case that the other
* party's key is detectably corrupt, instead the symmetric part
* of the secret key is used to produce a pseudorandom value.
*
* If EXPERIMENT_ECDH_STIR_IN_PUBKEYS is set, the sum and product of
* the two parties' public keys is prepended to the hash.
*
* In the current version, this function can safely be run even without
* goldilocks_init(). But this property is not guaranteed for future
* versions, so call it anyway.
*
* @warning This isn't even my final form!
*
* @param [out] shared The shared secret established with the other party.
* @param [in] my_privkey My private key.
* @param [in] your_pubkey The other party's public key.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_ECORRUPT My key is corrupt.
* @retval GOLDI_EINVAL The other party's key is corrupt.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_shared_secret (
uint8_t shared[GOLDI_SHARED_SECRET_BYTES],
const struct goldilocks_private_key_t *my_privkey,
const struct goldilocks_public_key_t *your_pubkey
) __attribute__((warn_unused_result,nonnull(1,2,3),visibility ("default")));

#if GOLDI_IMPLEMENT_SIGNATURES
/**
* @brief Sign a message.
*
* The signature is deterministic, using the symmetric secret found in the
* secret key to form a nonce.
*
* The technique used in signing is a modified Schnorr system, like EdDSA.
*
* @warning This isn't even my final form!
*
* @param [out] signature_out Space for the output signature.
* @param [in] message The message to be signed.
* @param [in] message_len The length of the message to be signed.
* @param [in] privkey My private key.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_ECORRUPT My key is corrupt.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_sign (
uint8_t signature_out[GOLDI_SIGNATURE_BYTES],
const uint8_t *message,
uint64_t message_len,
const struct goldilocks_private_key_t *privkey
) __attribute__((nonnull(1,2,4),visibility ("default")));

/**
* @brief Verify a signature.
*
* This function is fairly strict. It will correctly detect when
* the signature has the wrong cofactor component, or when the sig
* values aren't less than p or q.
*
* Currently this function does not detect when the public key is weird,
* eg 0, has cofactor, etc. As a result, a party with a bogus public
* key could create signatures that succeed on some systems and fail on
* others.
*
* @warning This isn't even my final form!
*
* @param [in] signature The signature.
* @param [in] message The message to be verified.
* @param [in] message_len The length of the message to be verified.
* @param [in] pubkey The signer's public key.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_EINVAL The public key or signature is corrupt.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_verify (
const uint8_t signature[GOLDI_SIGNATURE_BYTES],
const uint8_t *message,
uint64_t message_len,
const struct goldilocks_public_key_t *pubkey
) __attribute__((warn_unused_result,nonnull(1,2,4),visibility ("default")));
#endif

#if GOLDI_IMPLEMENT_PRECOMPUTED_KEYS

/** A public key which has been expanded by precomputation for higher speed. */
struct goldilocks_precomputed_public_key_t;

/**
* @brief Expand a public key by precomputation.
*
* @todo Give actual error returns, instead of ambiguous NULL.
*
* @warning This isn't even my final form!
*
* @param [in] pub The public key.
* @retval NULL We ran out of memory, or the
*/
struct goldilocks_precomputed_public_key_t *
goldilocks_precompute_public_key (
const struct goldilocks_public_key_t *pub
) __attribute__((warn_unused_result,nonnull(1),visibility ("default")));

/**
* @brief Overwrite an expanded public key with zeros, then destroy it.
*
* If the input is NULL, this function does nothing.
*
* @param [in] precom The public key.
*/
void
goldilocks_destroy_precomputed_public_key (
struct goldilocks_precomputed_public_key_t *precom
) __attribute__((visibility ("default")));

/**
* @brief Verify a signature.
*
* This function is fairly strict. It will correctly detect when
* the signature has the wrong cofactor component, or when the sig
* values aren't less than p or q.
*
* @warning This isn't even my final form!
*
* @param [in] signature The signature.
* @param [in] message The message to be verified.
* @param [in] message_len The length of the message to be verified.
* @param [in] pubkey The signer's public key, expanded by precomputation.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_EINVAL The public key or signature is corrupt.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_verify_precomputed (
const uint8_t signature[GOLDI_SIGNATURE_BYTES],
const uint8_t *message,
uint64_t message_len,
const struct goldilocks_precomputed_public_key_t *pubkey
) __attribute__((warn_unused_result,nonnull(1,2,4),visibility ("default")));
/**
* @brief Generate a Diffie-Hellman shared secret in constant time.
* Uses a precomputation on the other party's public key for efficiency.
*
* This function uses some compile-time flags whose merit remains to
* be decided.
*
* If the flag EXPERIMENT_ECDH_OBLITERATE_CT is set, prepend 40 bytes
* of zeros to the secret before hashing. In the case that the other
* party's key is detectably corrupt, instead the symmetric part
* of the secret key is used to produce a pseudorandom value.
*
* If EXPERIMENT_ECDH_STIR_IN_PUBKEYS is set, the sum and product of
* the two parties' public keys is prepended to the hash.
*
* In the current version, this function can safely be run even without
* goldilocks_init(). But this property is not guaranteed for future
* versions, so call it anyway.
*
* @warning This isn't even my final form!
*
* @param [out] shared The shared secret established with the other party.
* @param [in] my_privkey My private key.
* @param [in] your_pubkey The other party's precomputed public key.
*
* @retval GOLDI_EOK Success.
* @retval GOLDI_ECORRUPT My key is corrupt.
* @retval GOLDI_EINVAL The other party's key is corrupt.
* @retval GOLDI_EUNINIT You must call goldilocks_init() first.
*/
int
goldilocks_shared_secret_precomputed (
uint8_t shared[GOLDI_SHARED_SECRET_BYTES],
const struct goldilocks_private_key_t *my_privkey,
const struct goldilocks_precomputed_public_key_t *your_pubkey
) __attribute__((warn_unused_result,nonnull(1,2,3),visibility ("default")));

#endif /* GOLDI_IMPLEMENT_PRECOMPUTED_KEYS */

#ifdef __cplusplus
}; /* extern "C" */
#endif

#endif /* __GOLDILOCKS_H__ */

+ 0
- 87
src/arithmetic.c View File

@@ -1,87 +0,0 @@
/**
* @cond internal
* @file field.c
* @copyright
* Copyright (c) 2014 Cryptography Research, Inc. \n
* Released under the MIT License. See LICENSE.txt for license information.
* @author Mike Hamburg
* @brief High-level arithmetic routines, independent of field (except 3 mod 4).
*/

#include "field.h"
#include "ec_point.h"

mask_t
field_eq (
const field_a_t a,
const field_a_t b
) {
field_a_t ra, rb;
field_copy(ra, a);
field_copy(rb, b);
field_weak_reduce(ra);
field_weak_reduce(rb);
field_sub_RAW(ra, ra, rb);
field_bias(ra, 2);
return field_is_zero(ra);
}

void
field_inverse (
field_a_t a,
const field_a_t x
) {
field_a_t L0, L1;
field_isr ( L0, x );
field_sqr ( L1, L0 );
field_sqr ( L0, L1 );
field_mul ( a, x, L0 );
}

mask_t
field_is_square (
const field_a_t x
) {
field_a_t L0, L1;
field_isr ( L0, x );
field_sqr ( L1, L0 );
field_mul ( L0, x, L1 );
field_subw( L0, 1 );
return field_is_zero( L0 ) | field_is_zero( x );
}

void
field_simultaneous_invert (
field_a_t *__restrict__ out,
const field_a_t *in,
unsigned int n
) {
if (n==0) {
return;
} else if (n==1) {
field_inverse(out[0],in[0]);
return;
}
field_copy(out[1], in[0]);
int i;
for (i=1; i<(int) (n-1); i++) {
field_mul(out[i+1], out[i], in[i]);
}
field_mul(out[0], out[n-1], in[n-1]);
field_a_t tmp;
field_inverse(tmp, out[0]);
field_copy(out[0], tmp);
/* at this point, out[0] = product(in[i]) ^ -1
* out[i] = product(in[0]..in[i-1]) if i != 0
*/
for (i=n-1; i>0; i--) {
field_mul(tmp, out[i], out[0]);
field_copy(out[i], tmp);
field_mul(tmp, out[0], in[i]);
field_copy(out[0], tmp);
}
}

+ 0
- 349
src/barrett_field.c View File

@@ -1,349 +0,0 @@
/* Copyright (c) 2014 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/

#include "barrett_field.h"
#include <string.h>
#include <assert.h>

word_t
add_nr_ext_packed(
word_t *out,
const word_t *a,
uint32_t nwords_a,
const word_t *c,
uint32_t nwords_c,
word_t mask
) {
uint32_t i;
dword_t carry = 0;
for (i=0; i<nwords_c; i++) {
out[i] = carry = carry + a[i] + (c[i]&mask);
carry >>= WORD_BITS;
}
for (; i<nwords_a; i++) {
out[i] = carry = carry + a[i];
carry >>= WORD_BITS;
}
return carry;
}

static __inline__ word_t
add_nr_packed(
word_t *a,
const word_t *c,
uint32_t nwords
) {
uint32_t i;
dword_t carry = 0;
for (i=0; i<nwords; i++) {
a[i] = carry = carry + a[i] + c[i];
carry >>= WORD_BITS;
}
return carry;
}

word_t
sub_nr_ext_packed(
word_t *out,
const word_t *a,
uint32_t nwords_a,
const word_t *c,
uint32_t nwords_c,
word_t mask
) {
uint32_t i;
dsword_t carry = 0;
for (i=0; i<nwords_c; i++) {
out[i] = carry = carry + a[i] - (c[i]&mask);
carry >>= WORD_BITS;
}
for (; i<nwords_a; i++) {
out[i] = carry = carry + a[i];
carry >>= WORD_BITS;
}
return carry;
}

static word_t
widemac(
word_t *accum,
uint32_t nwords_accum,
const word_t *mier,
uint32_t nwords_mier,
word_t mand,
word_t carry
) {
uint32_t i;
assert(nwords_mier <= nwords_accum);
for (i=0; i<nwords_mier; i++) {
#ifdef __clang_analyzer__
/* always true, but this satisfies scan-build (bug in scan-build?) */
assert(i<nwords_accum);
#endif
/* UMAAL chain for the wordy part of p */
dword_t product = ((dword_t)mand) * mier[i];
product += accum[i];
product += carry;
accum[i] = product;
carry = product >> WORD_BITS;
}
for (; i<nwords_accum; i++) {
dword_t sum = ((dword_t)carry) + accum[i];
accum[i] = sum;
carry = sum >> WORD_BITS;
}
return carry;
}

void
barrett_negate (
word_t *a,
uint32_t nwords_a,
const struct barrett_prime_t *prime
) {
uint32_t i;
dsword_t carry = 0;
barrett_reduce(a,nwords_a,0,prime);
/* Have p = 2^big - p_lo. Want p - a = 2^big - p_lo - a */
for (i=0; i<prime->nwords_lo; i++) {
a[i] = carry = carry - prime->p_lo[i] - a[i];
carry >>= WORD_BITS;
}
for (; i<prime->nwords_p; i++) {
a[i] = carry = carry - a[i];
if (i<prime->nwords_p-1) {
carry >>= WORD_BITS;
}
}
a[prime->nwords_p-1] = carry = carry + (((word_t)1) << prime->p_shift);
for (; i<nwords_a; i++) {
assert(!a[i]);
}
assert(!(carry>>WORD_BITS));
}

void
barrett_reduce(
word_t *a,
uint32_t nwords_a,
word_t a_carry,
const struct barrett_prime_t *prime
) {
uint32_t repeat, nwords_left_in_a=nwords_a;
/* Is there a point to this a_carry business? */
assert(a_carry < ((word_t)1) << prime->p_shift);
assert(nwords_a >= prime->nwords_p);
assert(prime->nwords_p > 0); /* scan-build: prevent underflow */
for (; nwords_left_in_a >= prime->nwords_p; nwords_left_in_a--) {
for (repeat=0; repeat<2; repeat++) {
/* PERF: surely a more careful implementation could
* avoid this double round
*/
word_t mand = a[nwords_left_in_a-1] >> prime->p_shift;
a[nwords_left_in_a-1] &= (((word_t)1)<<prime->p_shift)-1;
if (prime->p_shift && !repeat) {
/* collect high bits when there are any */
if (nwords_left_in_a < nwords_a) {
mand |= a[nwords_left_in_a] << (WORD_BITS-prime->p_shift);
a[nwords_left_in_a] = 0;
} else {
mand |= a_carry << (WORD_BITS-prime->p_shift);
}
}
word_t carry = widemac(
a+nwords_left_in_a-prime->nwords_p,
prime->nwords_p,
prime->p_lo,
prime->nwords_lo,
mand,
0
);
assert(!carry);
(void)carry;
}
}
assert(nwords_left_in_a == prime->nwords_p-1);
/* OK, but it still isn't reduced. Add and subtract p_lo. */
word_t cout = add_nr_ext_packed(a,a,prime->nwords_p,prime->p_lo,prime->nwords_lo,-1);
if (prime->p_shift) {
cout = (cout<<(WORD_BITS-prime->p_shift)) + (a[prime->nwords_p-1]>>prime->p_shift);
a[prime->nwords_p-1] &= (((word_t)1)<<prime->p_shift)-1;
}
/* mask = carry-1: if no carry then do sub, otherwise don't */
sub_nr_ext_packed(a,a,prime->nwords_p,prime->p_lo,prime->nwords_lo,cout-1);
}

/* PERF: This function is horribly slow. Enough to break 1%. */
void
barrett_mul_or_mac(
word_t *accum,
uint32_t nwords_accum,
const word_t *a,
uint32_t nwords_a,
const word_t *b,
uint32_t nwords_b,
const struct barrett_prime_t *prime,
mask_t doMac
) {
assert(nwords_accum >= prime->nwords_p);
/* nwords_tmp = max(nwords_a + 1, nwords_p + 1, nwords_accum if doMac); */
uint32_t nwords_tmp = (nwords_a > prime->nwords_p) ? nwords_a : prime->nwords_p;
nwords_tmp++;
assert(nwords_tmp > 0); /* scan-build: prevent underflow. */
if (nwords_tmp < nwords_accum && doMac)
nwords_tmp = nwords_accum;
word_t tmp[nwords_tmp];
int bpos, idown;
uint32_t i;
for (i=0; i<nwords_tmp; i++) {
tmp[i] = 0;
}
for (bpos=nwords_b-1; bpos >= 0; bpos--) {
/* Invariant at the beginning of the loop: the high word is unused. */
assert(tmp[nwords_tmp-1] == 0);
/* shift up */
for (idown=nwords_tmp-2; idown>=0; idown--) {
tmp[idown+1] = tmp[idown];
}
tmp[0] = 0;

/* mac and reduce */
word_t carry = widemac(tmp, nwords_tmp, a, nwords_a, b[bpos], 0);
/* the mac can't carry, because nwords_tmp >= nwords_a+1 and its high word is clear */
assert(!carry);
barrett_reduce(tmp, nwords_tmp, carry, prime);
/* at this point, the number of words used is nwords_p <= nwords_tmp-1,
* so the high word is again clear */
}
if (doMac) {
word_t cout = add_nr_packed(tmp, accum, nwords_accum);
barrett_reduce(tmp, nwords_tmp, cout, prime);
}
for (i=0; i<nwords_tmp && i<nwords_accum; i++) {
accum[i] = tmp[i];
}
for (; i<nwords_tmp; i++) {
assert(tmp[i] == 0);
}
for (; i<nwords_accum; i++) {
accum[i] = 0;
}
}
mask_t
barrett_deserialize (
word_t *x,
const uint8_t *serial,
const struct barrett_prime_t *prime
) {
unsigned int i,j,nserial = prime->nwords_p * sizeof(word_t);
if (prime->p_shift) {
nserial -= (WORD_BITS - prime->p_shift) / 8;
}

/* Track x < p, p = 2^k - p_lo <==> x + p_lo < 2^k */
dword_t carry = 0;
for (i=0; i*sizeof(word_t)<nserial; i++) {
carry >>= WORD_BITS;
word_t the = 0;
for (j=0; j<sizeof(word_t) && sizeof(word_t)*i+j < nserial; j++) {
the |= ((word_t)serial[sizeof(word_t)*i+j]) << (8*j);
}
x[i] = the;
carry += the;
if (i < prime->nwords_lo) carry += prime->p_lo[i];
}
/* check for reduction */
if (prime->p_shift) {
carry >>= prime->p_shift;
} else {
carry >>= WORD_BITS;
}
/* at this point, carry > 0 indicates failure */
dsword_t scarry = carry;
scarry = -scarry;
scarry >>= WORD_BITS;
scarry >>= WORD_BITS;
return (mask_t) ~scarry;
}
void
barrett_deserialize_and_reduce (
word_t *x,
const uint8_t *serial,
uint32_t nserial,
const struct barrett_prime_t *prime
) {
unsigned int size = (nserial + sizeof(word_t) - 1)/sizeof(word_t);
if (size < prime->nwords_p) {
size = prime->nwords_p;
}
word_t tmp[size];
memset(tmp,0,sizeof(tmp));
unsigned int i,j;
for (i=0; i*sizeof(word_t)<nserial; i++) {
word_t the = 0;
for (j=0; j<sizeof(word_t) && sizeof(word_t)*i+j < nserial; j++) {
the |= ((word_t)serial[sizeof(word_t)*i+j]) << (8*j);
}
tmp[i] = the;
}
barrett_reduce(tmp,size,0,prime);
for (i=0; i<prime->nwords_p; i++) {
x[i] = tmp[i];
}
for (; i<size; i++) {
assert(!tmp[i]);
}
}

void
barrett_serialize (
uint8_t *serial,
const word_t *x,
uint32_t nserial
) {
unsigned int i,j;
for (i=0; i*sizeof(word_t)<nserial; i++) {
for (j=0; j<sizeof(word_t); j++) {
serial[sizeof(word_t)*i+j] = x[i]>>(8*j);
}
}
}

+ 4
- 4
src/bat/api_dh.h View File

@@ -8,11 +8,11 @@
*/

#include <string.h>
#include "goldilocks.h"
#include "decaf_crypto.h"

#define PUBLICKEY_BYTES GOLDI_PUBLIC_KEY_BYTES
#define SECRETKEY_BYTES GOLDI_PRIVATE_KEY_BYTES
#define SHAREDSECRET_BYTES GOLDI_SHARED_SECRET_BYTES
#define PUBLICKEY_BYTES (sizeof(decaf_448_public_key_t))
#define SECRETKEY_BYTES (sizeof(decaf_448_private_key_t))
#define SHAREDSECRET_BYTES 32

#define CRYPTO_PUBLICKEYBYTES PUBLICKEY_BYTES
#define CRYPTO_SECRETKEYBYTES SECRETKEY_BYTES


+ 3
- 3
src/bat/api_sign.h View File

@@ -10,9 +10,9 @@
#include <string.h>
#include "goldilocks.h"

#define PUBLICKEY_BYTES GOLDI_PUBLIC_KEY_BYTES
#define SECRETKEY_BYTES GOLDI_PRIVATE_KEY_BYTES
#define SIGNATURE_BYTES GOLDI_SIGNATURE_BYTES
#define PUBLICKEY_BYTES (sizeof(decaf_448_public_key_t))
#define SECRETKEY_BYTES (sizeof(decaf_448_private_key_t))
#define SIGNATURE_BYTES (sizeof(decaf_448_signature_t))

#define CRYPTO_PUBLICKEYBYTES PUBLICKEY_BYTES
#define CRYPTO_SECRETKEYBYTES SECRETKEY_BYTES


+ 14
- 13
src/bat/dh.c View File

@@ -11,20 +11,20 @@
#include <stdlib.h>
#include "api.h"
#include "crypto_dh.h"
#include "randombytes.h"

int crypto_dh_keypair (
unsigned char pk[SECRETKEY_BYTES],
unsigned char sk[PUBLICKEY_BYTES]
) {
int ret;
ret = goldilocks_init();
if (ret && ret != GOLDI_EALREADYINIT)
return ret;
if ((ret = goldilocks_keygen(
(struct goldilocks_private_key_t *)sk,
(struct goldilocks_public_key_t *)pk
))) abort();
return ret;
decaf_448_symmetric_key_t proto;
randombytes(proto,sizeof(proto));
decaf_448_derive_private_key((decaf_448_private_key_s *)sk,proto);
decaf_448_private_to_public(
(decaf_448_public_key_s *)pk,
(decaf_448_private_key_s *)sk
);
return 0;
}

int crypto_dh (
@@ -32,9 +32,10 @@ int crypto_dh (
const unsigned char pk[PUBLICKEY_BYTES],
const unsigned char sk[SECRETKEY_BYTES]
) {
return goldilocks_shared_secret (
return !decaf_448_shared_secret (
s,
(const struct goldilocks_private_key_t *)sk,
(const struct goldilocks_public_key_t *)pk
);
SHAREDSECRET_BYTES,
(const decaf_448_private_key_s *)sk,
(const decaf_448_public_key_s *)pk
);
}

+ 22
- 23
src/bat/sign.c View File

@@ -16,15 +16,14 @@ int crypto_sign_keypair (
unsigned char pk[SECRETKEY_BYTES],
unsigned char sk[PUBLICKEY_BYTES]
) {
int ret;
ret = goldilocks_init();
if (ret && ret != GOLDI_EALREADYINIT)
return ret;
if ((ret = goldilocks_keygen(
(struct goldilocks_private_key_t *)sk,
(struct goldilocks_public_key_t *)pk
))) abort();
return ret;
decaf_448_symmetric_key_t proto;
randombytes(proto,sizeof(proto));
decaf_448_derive_private_key((decaf_448_private_key_s *)sk,proto);
decaf_448_private_to_public(
(decaf_448_public_key_s *)pk,
(decaf_448_private_key_s *)sk
);
return 0;
}

int crypto_sign (
@@ -35,16 +34,15 @@ int crypto_sign (
const unsigned char sk[SECRETKEY_BYTES]
) {
unsigned char sig[SIGNATURE_BYTES];
int ret = goldilocks_sign(
sig, m, mlen,
(const struct goldilocks_private_key_t *)sk
decaf_448_sign(
sig,
(const struct goldilocks_private_key_t *)sk,
m, mlen
);
if (!ret) {
memmove(sm + SIGNATURE_BYTES, m, mlen);
memcpy(sm, sig, SIGNATURE_BYTES);
*smlen = mlen + SIGNATURE_BYTES;
}
return ret ? -1 : 0;
memmove(sm + SIGNATURE_BYTES, m, mlen);
memcpy(sm, sig, SIGNATURE_BYTES);
*smlen = mlen + SIGNATURE_BYTES;
return 0;
}

int crypto_sign_open (
@@ -54,13 +52,14 @@ int crypto_sign_open (
unsigned long long smlen,
const unsigned char pk[PUBLICKEY_BYTES]
) {
int ret = goldilocks_verify(
sm, sm + SIGNATURE_BYTES, smlen - SIGNATURE_BYTES,
(const struct goldilocks_public_key_t *)pk
int ret = decaf_448_verify(
sm,
(const struct goldilocks_public_key_t *)pk,
sm + SIGNATURE_BYTES, smlen - SIGNATURE_BYTES
);
if (!ret) {
if (ret) {
*mlen = smlen - SIGNATURE_BYTES;
memmove(m, sm + SIGNATURE_BYTES, *mlen);
}
return ret ? -1 : 0;
return ret ? 0 : -1;
}

+ 0
- 488
src/crandom.c View File

@@ -1,488 +0,0 @@
/* Copyright (c) 2011 Stanford University.
* Copyright (c) 2014 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/

/* Chacha random number generator code copied from crandom */

#include "crandom.h"
#include "intrinsics.h"
#include "config.h"
#include "magic.h"

#include <stdio.h>

volatile unsigned int crandom_features = 0;

unsigned int crandom_detect_features(void) {
unsigned int out = GEN;
# if (defined(__i386__) || defined(__x86_64__))
u_int32_t a,b,c,d;
a=1; __asm__("cpuid" : "+a"(a), "=b"(b), "=c"(c), "=d"(d));
out |= GEN;
if (d & 1<<26) out |= SSE2;
if (d & 1<< 9) out |= SSSE3;
if (c & 1<<25) out |= AESNI;
if (c & 1<<28) out |= AVX;
if (b & 1<<5) out |= AVX2;
if (c & 1<<30) out |= RDRAND;
a=0x80000001; __asm__("cpuid" : "+a"(a), "=b"(b), "=c"(c), "=d"(d));
if (c & 1<<11) out |= XOP;
# endif
return out;
}



INTRINSIC u_int64_t rdrand(int abort_on_fail) {
uint64_t out = 0;
int tries = 1000;
if (HAVE(RDRAND)) {
# if defined(__x86_64__)
u_int64_t out, a=0;
for (; tries && !a; tries--) {
__asm__ __volatile__ (
"rdrand %0\n\tsetc %%al"
: "=r"(out), "+a"(a) :: "cc"
);
}
# elif (defined(__i386__))
u_int32_t reg, a=0;
uint64_t out;
for (; tries && !a; tries--) {
__asm__ __volatile__ (
"rdrand %0\n\tsetc %%al"
: "=r"(reg), "+a"(a) :: "cc"
);
}
out = reg; a = 0;
for (; tries && !a; tries--) {
__asm__ __volatile__ (
"rdrand %0\n\tsetc %%al"
: "=r"(reg), "+a"(a) :: "cc"
);
}
out = out << 32 | reg;
return out;
# else
abort(); /* whut */
# endif
} else {
tries = 0;
}
if (abort_on_fail && !tries) {
abort();
}
return out;
}


/* ------------------------------- Vectorized code ------------------------------- */
#define shuffle(x,i) _mm_shuffle_epi32(x, \
i + ((i+1)&3)*4 + ((i+2)&3)*16 + ((i+3)&3)*64)

#define add _mm_add_epi32
#define add64 _mm_add_epi64

#define NEED_XOP (MIGHT_HAVE(XOP))
#define NEED_SSSE3 (MIGHT_HAVE(SSSE3) && !MUST_HAVE(XOP))
#define NEED_SSE2 (MIGHT_HAVE(SSE2) && !MUST_HAVE(SSSE3))
#define NEED_CONV (!MUST_HAVE(SSE2))

#if NEED_XOP
static __inline__ void
quarter_round_xop(
ssereg *a,
ssereg *b,
ssereg *c,
ssereg *d
) {
*a = add(*a,*b); *d = xop_rotate(16, *d ^ *a);
*c = add(*c,*d); *b = xop_rotate(12, *b ^ *c);
*a = add(*a,*b); *d = xop_rotate(8, *d ^ *a);
*c = add(*c,*d); *b = xop_rotate(7, *b ^ *c);
}
#endif

#if NEED_SSSE3
static const ssereg shuffle8 = { 0x0605040702010003ull, 0x0E0D0C0F0A09080Bull };
static const ssereg shuffle16 = { 0x0504070601000302ull, 0x0D0C0F0E09080B0Aull };
INTRINSIC ssereg ssse3_rotate_8(ssereg a) {
return _mm_shuffle_epi8(a, shuffle8);
}
INTRINSIC ssereg ssse3_rotate_16(ssereg a) {
return _mm_shuffle_epi8(a, shuffle16);
}
static __inline__ void
quarter_round_ssse3(
ssereg *a,
ssereg *b,
ssereg *c,
ssereg *d
) {
*a = add(*a,*b); *d = ssse3_rotate_16(*d ^ *a);
*c = add(*c,*d); *b = sse2_rotate(12, *b ^ *c);
*a = add(*a,*b); *d = ssse3_rotate_8( *d ^ *a);
*c = add(*c,*d); *b = sse2_rotate(7, *b ^ *c);
}
#endif /* MIGHT_HAVE(SSSE3) && !MUST_HAVE(XOP) */

#if NEED_SSE2
static __inline__ void
quarter_round_sse2(
ssereg *a,
ssereg *b,
ssereg *c,
ssereg *d
) {
*a = add(*a,*b); *d = sse2_rotate(16, *d ^ *a);
*c = add(*c,*d); *b = sse2_rotate(12, *b ^ *c);
*a = add(*a,*b); *d = sse2_rotate(8, *d ^ *a);
*c = add(*c,*d); *b = sse2_rotate(7, *b ^ *c);
}
#endif

#define DOUBLE_ROUND(qrf) { \
qrf(&a1,&b1,&c1,&d1); \
qrf(&a2,&b2,&c2,&d2); \
b1 = shuffle(b1,1); \
c1 = shuffle(c1,2); \
d1 = shuffle(d1,3); \
b2 = shuffle(b2,1); \
c2 = shuffle(c2,2); \
d2 = shuffle(d2,3); \
\
qrf(&a1,&b1,&c1,&d1); \
qrf(&a2,&b2,&c2,&d2); \
b1 = shuffle(b1,3); \
c1 = shuffle(c1,2); \
d1 = shuffle(d1,1); \
b2 = shuffle(b2,3); \
c2 = shuffle(c2,2); \
d2 = shuffle(d2,1); \
}
#define OUTPUT_FUNCTION { \
output[0] = add(a1,aa); \
output[1] = add(b1,bb); \
output[2] = add(c1,cc); \
output[3] = add(d1,dd); \
output[4] = add(a2,aa); \
output[5] = add(b2,bb); \
output[6] = add(c2,add(cc,p)); \
output[7] = add(d2,dd); \
\
output += 8; \
\
cc = add64(add64(cc,p), p); \
a1 = a2 = aa; \
b1 = b2 = bb; \
c1 = cc; c2 = add64(cc,p);\
d1 = d2 = dd; \
}
/* ------------------------------------------------------------------------------- */

INTRINSIC u_int32_t rotate(int r, u_int32_t a) {
return a<<r ^ a>>(32-r);
}

static __inline__ __attribute__((unused)) void
quarter_round(u_int32_t *a, u_int32_t *b, u_int32_t *c, u_int32_t *d) {
*a = *a + *b; *d = rotate(16, *d^*a);
*c = *c + *d; *b = rotate(12, *b^*c);
*a = *a + *b; *d = rotate(8, *d^*a);
*c = *c + *d; *b = rotate(7, *b^*c);
}

static void
crandom_chacha_expand(u_int64_t iv,
u_int64_t ctr,
int nr,
int output_size,
const unsigned char *key_,
unsigned char *output_) {
# if MIGHT_HAVE_SSE2
if (HAVE(SSE2)) {
ssereg *key = (ssereg *)key_;
ssereg *output = (ssereg *)output_;
ssereg a1 = key[0], a2 = a1, aa = a1,
b1 = key[1], b2 = b1, bb = b1,
c1 = {iv, ctr}, c2 = {iv, ctr+1}, cc = c1,
d1 = {0x3320646e61707865ull, 0x6b20657479622d32ull},
d2 = d1, dd = d1,
p = {0, 1};
int i,r;
# if (NEED_XOP)
if (HAVE(XOP)) {
for (i=0; i<output_size; i+=128) {
for (r=nr; r>0; r-=2)
DOUBLE_ROUND(quarter_round_xop);
OUTPUT_FUNCTION;
}
return;
}
# endif
# if (NEED_SSSE3)
if (HAVE(SSSE3)) {
for (i=0; i<output_size; i+=128) {
for (r=nr; r>0; r-=2)
DOUBLE_ROUND(quarter_round_ssse3);
OUTPUT_FUNCTION;
}
return;
}
# endif
# if (NEED_SSE2)
if (HAVE(SSE2)) {
for (i=0; i<output_size; i+=128) {
for (r=nr; r>0; r-=2)
DOUBLE_ROUND(quarter_round_sse2);
OUTPUT_FUNCTION;
}
return;
}
# endif
}
# endif

# if NEED_CONV
{
const u_int32_t *key = (const u_int32_t *)key_;
u_int32_t
x[16],
input[16] = {
key[0], key[1], key[2], key[3],
key[4], key[5], key[6], key[7],
iv, iv>>32, ctr, ctr>>32,
0x61707865, 0x3320646e, 0x79622d32, 0x6b206574
},
*output = (u_int32_t *)output_;
int i, r;

for (i=0; i<output_size; i+= 64) {
for (r=0; r<16; r++) {
x[r] = input[r];
}
for (r=nr; r>0; r-=2) {
quarter_round(&x[0], &x[4], &x[8], &x[12]);
quarter_round(&x[1], &x[5], &x[9], &x[13]);
quarter_round(&x[2], &x[6], &x[10], &x[14]);
quarter_round(&x[3], &x[7], &x[11], &x[15]);

quarter_round(&x[0], &x[5], &x[10], &x[15]);
quarter_round(&x[1], &x[6], &x[11], &x[12]);
quarter_round(&x[2], &x[7], &x[8], &x[13]);
quarter_round(&x[3], &x[4], &x[9], &x[14]);
}
for (r=0; r<16; r++) {
output[r] = x[r] + input[r];
}

output += 16;
input[11] ++;
if (!input[11]) input[12]++;
}
}
#endif /* NEED_CONV */
}

int
crandom_init_from_file(
crandom_state_a_t state,
const char *filename,
int reseed_interval,
int reseeds_mandatory
) {
state->fill = 0;
state->reseed_countdown = reseed_interval;
state->reseed_interval = reseed_interval;
state->ctr = 0;

state->randomfd = open(filename, O_RDONLY);
if (state->randomfd == -1) {
int err = errno;
return err ? err : -1;
}

ssize_t offset = 0, red;
do {
red = read(state->randomfd, state->seedBuffer + offset, 32 - offset);
if (red > 0) offset += red;
} while (red > 0 && offset < 32);

if (offset < 32) {
int err = errno;
return err ? err : -1;
}

memset(state->seedBuffer+32, 0, 96);

state->magic = CRANDOM_MAGIC;
state->reseeds_mandatory = reseeds_mandatory;

return 0;
}

void
crandom_init_from_buffer(
crandom_state_a_t state,
const char initial_seed[32]
) {
memcpy(state->seedBuffer, initial_seed, 32);
memset(state->seedBuffer+32, 0, 96);
state->reseed_countdown = state->reseed_interval = state->fill = state->ctr = state->reseeds_mandatory = 0;
state->randomfd = -1;
state->magic = CRANDOM_MAGIC;
}

int
crandom_generate(
crandom_state_a_t state,
unsigned char *output,
unsigned long long length
) {
/* the generator isn't seeded; maybe they ignored the return value of init_from_file */
if (unlikely(state->magic != CRANDOM_MAGIC)) {
abort();
}

int ret = 0;

/*
* Addition 5/21/2014.
*
* If this is used in an application inside a VM, and the VM
* is snapshotted and restored, then crandom_generate() would
* produce the same output.
*
* Of course, the real defense against this is "don't do that",
* but we mitigate it by the RDRAND and/or rdtsc() in the refilling
* code. Since chacha is pseudorandom, when the attacker doesn't
* know the state, it's good enough if RDRAND/rdtsc() return
* different results. However, if (part of) the request is filled
* from the buffer, this won't help.
*
* So, add a flag EXPERIMENT_CRANDOM_BUFFER_CUTOFF_BYTES which
* disables the buffer for requests larger than this size.
*
* Suggest EXPERIMENT_CRANDOM_BUFFER_CUTOFF_BYTES = 0, which
* disables the buffer. But instead you can set it to say 16,
* so that pulls of at least 128 bits will be stirred. This
* could still be a problem for eg 64-bit nonces, but those
* aren't entirely collision-resistant anyway.
*
* Heuristic: large requests are more likely to be
* cryptographically important, and the buffer doesn't impact
* their performance as much. So if the request is bigger
* than a certain size, just drop the buffer on the floor.
*
* This code isn't activated if state->reseed_interval == 0,
* because then the PRNG is deterministic anyway.
*
* TODO: sample 128 bits out of RDRAND() instead of 64 bits.
* TODO: option to completely remove the buffer and fill?
* FUTURE: come up with a less band-aid-y solution to this problem.
*/
#ifdef EXPERIMENT_CRANDOM_BUFFER_CUTOFF_BYTES
if (state->reseed_interval
#if EXPERIMENT_CRANDOM_CUTOFF_BYTES > 0
/* #if'd to a warning from -Wtype-limits in GCC when it's zero */
&& length >= EXPERIMENT_CRANDOM_BUFFER_CUTOFF_BYTES
#endif
) {
state->fill = 0;
}
#endif
while (length) {
if (unlikely(state->fill <= 0)) {
uint64_t iv = 0;
if (state->reseed_interval) {
/* it's nondeterministic, stir in some rdrand() or rdtsc() */
if (HAVE(RDRAND)) {
iv = rdrand(0);
if (!iv) iv = rdtsc();
} else {
iv = rdtsc();
}

state->reseed_countdown--;
if (unlikely(state->reseed_countdown <= 0)) {
/* reseed by xoring in random state */
state->reseed_countdown = state->reseed_interval;
ssize_t offset = 0, red;
do {
red = read(state->randomfd, state->seedBuffer + 32 + offset, 32 - offset);
if (red > 0) offset += red;
} while (red > 0 && offset < 32);

if (offset < 32) {
/* The read failed. Signal an error with the return code.
*
* If reseeds are mandatory, crash.
*
* If not, the generator is still probably safe to use, because reseeding
* is basically over-engineering for caution. Also, the user might ignore
* the return code, so we still need to fill the request.
*
* Set reseed_countdown = 1 so we'll try again later. If the user's
* performance sucks as a result of ignoring the error code while calling
* us in a loop, well, that's life.
*/
if (state->reseeds_mandatory) {
abort();
}

ret = errno;
if (ret == 0) ret = -1;
state->reseed_countdown = 1;
}

int i;
for (i=0; i<32; i++) {
/* Stir in the buffer. If somehow the read failed, it'll be zeros. */
state->seedBuffer[i] ^= state->seedBuffer[i+32];
}
}
}
crandom_chacha_expand(iv,state->ctr,20,128,state->seedBuffer,state->seedBuffer);
state->ctr++;
state->fill = sizeof(state->seedBuffer)-32;
}

unsigned long long copy = (length > state->fill) ? state->fill : length;
state->fill -= copy;
memcpy(output, state->seedBuffer + 32 + state->fill, copy);
really_memset(state->seedBuffer + 32 + state->fill, 0, copy);
output += copy; length -= copy;
}

return ret;
}

void
crandom_destroy(
crandom_state_a_t state
) {
if (state->magic == CRANDOM_MAGIC && state->randomfd) {
(void) close(state->randomfd);
/* Ignore the return value from close(), because what would it mean?
* "Your random device, which you were reading over NFS, lost some data"?
*/
}

really_memset(state, 0, sizeof(*state));
}

+ 0
- 1
src/decaf_crypto.c View File

@@ -10,7 +10,6 @@

#include "decaf_crypto.h"
#include <string.h>
#include "sha512.h"

static const unsigned int DECAF_448_SCALAR_OVERKILL_BYTES = DECAF_448_SCALAR_BYTES + 8;



+ 0
- 1222
src/ec_point.c
File diff suppressed because it is too large
View File


+ 0
- 576
src/goldilocks.c View File

@@ -1,576 +0,0 @@
/* Copyright (c) 2014 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/

#include "config.h"
#include "word.h"

#include <errno.h>

#if GOLDILOCKS_USE_PTHREAD
#include <pthread.h>
#endif

#include "goldilocks.h"
#include "ec_point.h"
#include "scalarmul.h"
#include "barrett_field.h"
#include "crandom.h"
#include "sha512.h"
#include "intrinsics.h"

#ifndef GOLDILOCKS_RANDOM_INIT_FILE
#define GOLDILOCKS_RANDOM_INIT_FILE "/dev/urandom"
#endif

#ifndef GOLDILOCKS_RANDOM_RESEED_INTERVAL
#define GOLDILOCKS_RANDOM_RESEED_INTERVAL 10000
#endif

/* We'll check it ourselves */
#ifndef GOLDILOCKS_RANDOM_RESEEDS_MANDATORY
#define GOLDILOCKS_RANDOM_RESEEDS_MANDATORY 0
#endif

#define GOLDI_DIVERSIFY_BYTES 8


#if FIELD_BYTES <= SHA512_OUTPUT_BYTES
#define FIELD_HASH_BYTES SHA512_OUTPUT_BYTES
#define field_hash_final sha512_final
#else
#define FIELD_HASH_BYTES (SHA512_OUTPUT_BYTES * ((FIELD_BYTES-1)/SHA512_OUTPUT_BYTES + 1))
static inline void field_hash_final (
sha512_ctx_a_t ctx,
unsigned char out[FIELD_HASH_BYTES]
) {
/* SHA PRNG I guess? I really should have used SHAKE */
int i;
for (i=0; i<= (FIELD_BYTES-1) / SHA512_OUTPUT_BYTES; i++) {
if (i)
sha512_update(ctx, &out[(i-1)*SHA512_OUTPUT_BYTES], SHA512_OUTPUT_BYTES);
sha512_final(ctx, &out[i*SHA512_OUTPUT_BYTES]);
}
}
#endif


/* These are just unique identifiers */
static const char *G_INITING = "initializing";
static const char *G_INITED = "initialized";
static const char *G_FAILED = "failed to initialize";

struct goldilocks_precomputed_public_key_t {
struct goldilocks_public_key_t pub;
struct fixed_base_table_t table;
};

/* FUTURE: auto. */
static struct {
const char * volatile status;
#if GOLDILOCKS_USE_PTHREAD
pthread_mutex_t mutex;
#endif
tw_niels_a_t combs[COMB_N << (COMB_T-1)];
struct fixed_base_table_t fixed_base;
tw_niels_a_t wnafs[1<<WNAF_PRECMP_BITS];
crandom_state_a_t rand;
} goldilocks_global;

static inline mask_t
goldilocks_check_init(void) {
if (likely(goldilocks_global.status == G_INITED)) {
return MASK_SUCCESS;
} else {
return MASK_FAILURE;
}
}

int
goldilocks_init (void) {
const char *res = compare_and_swap(&goldilocks_global.status, NULL, G_INITING);
if (res == G_INITED) return GOLDI_EALREADYINIT;
else if (res) {
return GOLDI_ECORRUPT;
}

#if GOLDILOCKS_USE_PTHREAD
int ret = pthread_mutex_init(&goldilocks_global.mutex, NULL);
if (ret) goto fail;
#endif
extensible_a_t ext;
tw_extensible_a_t text;
/* Sanity check: the base point is on the curve. */
assert(validate_affine(goldilocks_base_point));
/* Convert it to twisted Edwards. */
convert_affine_to_extensible(ext, goldilocks_base_point);
twist_even(text, ext);
/* Precompute the tables. */
mask_t succ;

succ = precompute_fixed_base(&goldilocks_global.fixed_base, text,
COMB_N, COMB_T, COMB_S, goldilocks_global.combs);
succ &= precompute_fixed_base_wnaf(goldilocks_global.wnafs, text, WNAF_PRECMP_BITS);
int criff_res = crandom_init_from_file(goldilocks_global.rand,
GOLDILOCKS_RANDOM_INIT_FILE,
GOLDILOCKS_RANDOM_RESEED_INTERVAL,
GOLDILOCKS_RANDOM_RESEEDS_MANDATORY);
#ifdef SUPERCOP_WONT_LET_ME_OPEN_FILES
if (criff_res == EMFILE) {
crandom_init_from_buffer(goldilocks_global.rand, "SUPERCOP won't let me open files");
criff_res = 0;
}
#endif
if (succ & !criff_res) {
if (!bool_compare_and_swap(&goldilocks_global.status, G_INITING, G_INITED)) {
abort();
}
return 0;
}
/* it failed! fall though... */

fail:
if (!bool_compare_and_swap(&goldilocks_global.status, G_INITING, G_FAILED)) {
/* ok something is seriously wrong */
abort();
}
return -1;
}

int
goldilocks_derive_private_key (
struct goldilocks_private_key_t *privkey,
const unsigned char proto[GOLDI_SYMKEY_BYTES]
) {
if (!goldilocks_check_init()) {
return GOLDI_EUNINIT;
}
memcpy(&privkey->opaque[2*GOLDI_FIELD_BYTES], proto, GOLDI_SYMKEY_BYTES);
unsigned char skb[FIELD_HASH_BYTES];
word_t sk[GOLDI_FIELD_WORDS];
assert(sizeof(skb) >= sizeof(sk));
sha512_ctx_a_t ctx;
tw_extensible_a_t exta;
field_a_t pk;
sha512_init(ctx);
sha512_update(ctx, (const unsigned char *)"derivepk", GOLDI_DIVERSIFY_BYTES);
sha512_update(ctx, proto, GOLDI_SYMKEY_BYTES);
field_hash_final(ctx, (unsigned char *)skb);

barrett_deserialize_and_reduce(sk, skb, sizeof(skb), &curve_prime_order);
barrett_serialize(privkey->opaque, sk, GOLDI_FIELD_BYTES);

scalarmul_fixed_base(exta, sk, GOLDI_SCALAR_BITS, &goldilocks_global.fixed_base);
untwist_and_double_and_serialize(pk, exta);
field_serialize(&privkey->opaque[GOLDI_FIELD_BYTES], pk);
return GOLDI_EOK;
}

void
goldilocks_underive_private_key (
unsigned char proto[GOLDI_SYMKEY_BYTES],
const struct goldilocks_private_key_t *privkey
) {
memcpy(proto, &privkey->opaque[2*GOLDI_FIELD_BYTES], GOLDI_SYMKEY_BYTES);
}

int
goldilocks_keygen (
struct goldilocks_private_key_t *privkey,
struct goldilocks_public_key_t *pubkey
) {
if (!goldilocks_check_init()) {
return GOLDI_EUNINIT;
}
unsigned char proto[GOLDI_SYMKEY_BYTES];

#if GOLDILOCKS_USE_PTHREAD
int ml_ret = pthread_mutex_lock(&goldilocks_global.mutex);
if (ml_ret) return ml_ret;
#endif

int ret = crandom_generate(goldilocks_global.rand, proto, sizeof(proto));

#if GOLDILOCKS_USE_PTHREAD
ml_ret = pthread_mutex_unlock(&goldilocks_global.mutex);
if (ml_ret) abort();
#endif
int ret2 = goldilocks_derive_private_key(privkey, proto);
if (!ret) ret = ret2;
ret2 = goldilocks_private_to_public(pubkey, privkey);
if (!ret) ret = ret2;
return ret ? GOLDI_ENODICE : GOLDI_EOK;
}

int
goldilocks_private_to_public (
struct goldilocks_public_key_t *pubkey,
const struct goldilocks_private_key_t *privkey
) {
field_a_t pk;
mask_t msucc = field_deserialize(pk,&privkey->opaque[GOLDI_FIELD_BYTES]);
if (msucc) {
field_serialize(pubkey->opaque, pk);
return GOLDI_EOK;
} else {
return GOLDI_ECORRUPT;
}
}

static int
goldilocks_shared_secret_core (
uint8_t shared[GOLDI_SHARED_SECRET_BYTES],
const struct goldilocks_private_key_t *my_privkey,
const struct goldilocks_public_key_t *your_pubkey,
const struct goldilocks_precomputed_public_key_t *pre
) {
uint8_t gxy[GOLDI_FIELD_BYTES];
/* This function doesn't actually need anything in goldilocks_global,
* so it doesn't check init.
*/
assert(GOLDI_SHARED_SECRET_BYTES == SHA512_OUTPUT_BYTES);
word_t sk[GOLDI_FIELD_WORDS];
field_a_t pk;
mask_t succ = field_deserialize(pk,your_pubkey->opaque), msucc = -1;
#ifdef EXPERIMENT_ECDH_STIR_IN_PUBKEYS
field_a_t sum, prod;
msucc &= field_deserialize(sum,&my_privkey->opaque[GOLDI_FIELD_BYTES]);
field_mul(prod,pk,sum);
field_add(sum,pk,sum);
#endif
msucc &= barrett_deserialize(sk,my_privkey->opaque,&curve_prime_order);
#if GOLDI_IMPLEMENT_PRECOMPUTED_KEYS
if (pre) {
tw_extensible_a_t tw;
succ &= scalarmul_fixed_base(tw, sk, GOLDI_SCALAR_BITS, &pre->table);
untwist_and_double_and_serialize(pk, tw);
} else {
succ &= montgomery_ladder(pk,pk,sk,GOLDI_SCALAR_BITS,1);
}
#else
(void)pre;
succ &= montgomery_ladder(pk,pk,sk,GOLDI_SCALAR_BITS,1);
#endif
field_serialize(gxy,pk);
/* obliterate records of our failure by adjusting with obliteration key */
sha512_ctx_a_t ctx;
sha512_init(ctx);

#ifdef EXPERIMENT_ECDH_OBLITERATE_CT
uint8_t oblit[GOLDI_DIVERSIFY_BYTES + GOLDI_SYMKEY_BYTES];
unsigned i;
for (i=0; i<GOLDI_DIVERSIFY_BYTES; i++) {
oblit[i] = "noshared"[i] & ~(succ&msucc);
}
for (i=0; i<GOLDI_SYMKEY_BYTES; i++) {
oblit[GOLDI_DIVERSIFY_BYTES+i] = my_privkey->opaque[2*GOLDI_FIELD_BYTES+i] & ~(succ&msucc);
}
sha512_update(ctx, oblit, sizeof(oblit));
#endif
#ifdef EXPERIMENT_ECDH_STIR_IN_PUBKEYS
/* stir in the sum and product of the pubkeys. */
uint8_t a_pk[GOLDI_FIELD_BYTES];
field_serialize(a_pk, sum);
sha512_update(ctx, a_pk, GOLDI_FIELD_BYTES);
field_serialize(a_pk, prod);
sha512_update(ctx, a_pk, GOLDI_FIELD_BYTES);
#endif
/* stir in the shared key and finish */
sha512_update(ctx, gxy, GOLDI_FIELD_BYTES);
sha512_final(ctx, shared);
return (GOLDI_ECORRUPT & ~msucc)
| (GOLDI_EINVAL & msucc &~ succ)
| (GOLDI_EOK & msucc & succ);
}

int
goldilocks_shared_secret (
uint8_t shared[GOLDI_SHARED_SECRET_BYTES],
const struct goldilocks_private_key_t *my_privkey,
const struct goldilocks_public_key_t *your_pubkey
) {
return goldilocks_shared_secret_core(
shared,
my_privkey,
your_pubkey,
NULL
);
}

#if GOLDI_IMPLEMENT_SIGNATURES
static void
goldilocks_derive_challenge(
word_t challenge[GOLDI_FIELD_WORDS],
const unsigned char pubkey[GOLDI_FIELD_BYTES],
const unsigned char gnonce[GOLDI_FIELD_BYTES],
const unsigned char *message,
uint64_t message_len
) {
/* challenge = H(pk, [nonceG], message). */
unsigned char sha_out[FIELD_HASH_BYTES];
sha512_ctx_a_t ctx;
sha512_init(ctx);
sha512_update(ctx, pubkey, GOLDI_FIELD_BYTES);
sha512_update(ctx, gnonce, GOLDI_FIELD_BYTES);
sha512_update(ctx, message, message_len);
field_hash_final(ctx, sha_out);
barrett_deserialize_and_reduce(challenge, sha_out, sizeof(sha_out), &curve_prime_order);
}

int
goldilocks_sign (
uint8_t signature_out[GOLDI_SIGNATURE_BYTES],
const uint8_t *message,
uint64_t message_len,
const struct goldilocks_private_key_t *privkey
) {
if (!goldilocks_check_init()) {
return GOLDI_EUNINIT;
}
/* challenge = H(pk, [nonceG], message). */
word_t skw[GOLDI_FIELD_WORDS];
mask_t succ = barrett_deserialize(skw,privkey->opaque,&curve_prime_order);
if (!succ) {
really_memset(skw,0,sizeof(skw));
return GOLDI_ECORRUPT;
}
/* Derive a nonce. TODO: use HMAC. FUTURE: factor. */
unsigned char sha_out[FIELD_HASH_BYTES];
word_t tk[GOLDI_FIELD_WORDS];
sha512_ctx_a_t ctx;
sha512_init(ctx);
sha512_update(ctx, (const unsigned char *)"signonce", 8);
sha512_update(ctx, &privkey->opaque[2*GOLDI_FIELD_BYTES], GOLDI_SYMKEY_BYTES);
sha512_update(ctx, message, message_len);
sha512_update(ctx, &privkey->opaque[2*GOLDI_FIELD_BYTES], GOLDI_SYMKEY_BYTES);
field_hash_final(ctx, sha_out);
barrett_deserialize_and_reduce(tk, sha_out, sizeof(sha_out), &curve_prime_order);
/* 4[nonce]G */
uint8_t signature_tmp[GOLDI_FIELD_BYTES];
tw_extensible_a_t exta;
field_a_t gsk;
scalarmul_fixed_base(exta, tk, GOLDI_SCALAR_BITS, &goldilocks_global.fixed_base);
double_tw_extensible(exta);
untwist_and_double_and_serialize(gsk, exta);
field_serialize(signature_tmp, gsk);
word_t challenge[GOLDI_FIELD_WORDS];
goldilocks_derive_challenge (
challenge,
&privkey->opaque[GOLDI_FIELD_BYTES],
signature_tmp,
message,
message_len
);
/* reduce challenge and sub. */
barrett_negate(challenge,GOLDI_FIELD_WORDS,&curve_prime_order);

barrett_mac(
tk,GOLDI_FIELD_WORDS,
challenge,GOLDI_FIELD_WORDS,
skw,GOLDI_FIELD_WORDS,
&curve_prime_order
);
word_t carry = add_nr_ext_packed(tk,tk,GOLDI_FIELD_WORDS,tk,GOLDI_FIELD_WORDS,-1);
barrett_reduce(tk,GOLDI_FIELD_WORDS,carry,&curve_prime_order);
memcpy(signature_out, signature_tmp, GOLDI_FIELD_BYTES);
barrett_serialize(signature_out+GOLDI_FIELD_BYTES, tk, GOLDI_FIELD_BYTES);
really_memset((unsigned char *)tk,0,sizeof(tk));
really_memset((unsigned char *)skw,0,sizeof(skw));
really_memset((unsigned char *)challenge,0,sizeof(challenge));
/* response = 2(nonce_secret - sk*challenge)
* Nonce = 8[nonce_secret]*G
* PK = 2[sk]*G, except doubled (TODO)
* so [2] ( [response]G + 2[challenge]PK ) = Nonce
*/
return 0;
}

int
goldilocks_verify (
const uint8_t signature[GOLDI_SIGNATURE_BYTES],
const uint8_t *message,
uint64_t message_len,
const struct goldilocks_public_key_t *pubkey
) {
if (!goldilocks_check_init()) {
return GOLDI_EUNINIT;
}
field_a_t pk;
word_t s[GOLDI_FIELD_WORDS];
mask_t succ = field_deserialize(pk,pubkey->opaque);
if (!succ) return GOLDI_EINVAL;
succ = barrett_deserialize(s, &signature[GOLDI_FIELD_BYTES], &curve_prime_order);
if (!succ) return GOLDI_EINVAL;
word_t challenge[GOLDI_FIELD_WORDS];
goldilocks_derive_challenge(challenge, pubkey->opaque, signature, message, message_len);
field_a_t eph;
tw_extensible_a_t pk_text;
/* deserialize [nonce]G */
succ = field_deserialize(eph, signature);
if (!succ) return GOLDI_EINVAL;
succ = deserialize_and_twist_approx(pk_text, pk);
if (!succ) return GOLDI_EINVAL;
linear_combo_var_fixed_vt( pk_text,
challenge, GOLDI_SCALAR_BITS,
s, GOLDI_SCALAR_BITS,
(const tw_niels_a_t*)goldilocks_global.wnafs, WNAF_PRECMP_BITS );
untwist_and_double_and_serialize( pk, pk_text );

succ = field_eq(eph, pk);
return succ ? 0 : GOLDI_EINVAL;
}
#endif

#if GOLDI_IMPLEMENT_PRECOMPUTED_KEYS

struct goldilocks_precomputed_public_key_t *
goldilocks_precompute_public_key (
const struct goldilocks_public_key_t *pub
) {
struct goldilocks_precomputed_public_key_t *precom;
precom = (struct goldilocks_precomputed_public_key_t *)
malloc(sizeof(*precom));
if (!precom) return NULL;
tw_extensible_a_t pk_text;
field_a_t pk;
mask_t succ = field_deserialize(pk, pub->opaque);
if (!succ) {
free(precom);
return NULL;
}
succ = deserialize_and_twist_approx(pk_text, pk);
if (!succ) {
free(precom);
return NULL;
}

succ = precompute_fixed_base(&precom->table, pk_text,
COMB_N, COMB_T, COMB_S, NULL);
if (!succ) {
free(precom);
return NULL;
}
memcpy(&precom->pub,pub,sizeof(*pub));
return precom;
}

void
goldilocks_destroy_precomputed_public_key (
struct goldilocks_precomputed_public_key_t *precom
) {
if (!precom) return;
destroy_fixed_base(&precom->table);
really_memset(&precom->pub.opaque, 0, sizeof(precom->pub));
free(precom);
}

int
goldilocks_verify_precomputed (
const uint8_t signature[GOLDI_SIGNATURE_BYTES],
const uint8_t *message,
uint64_t message_len,
const struct goldilocks_precomputed_public_key_t *pubkey
) {
if (!goldilocks_check_init()) {
return GOLDI_EUNINIT;
}

word_t s[GOLDI_FIELD_WORDS];
mask_t succ = barrett_deserialize(s, &signature[GOLDI_FIELD_BYTES], &curve_prime_order);
if (!succ) return GOLDI_EINVAL;
word_t challenge[GOLDI_FIELD_WORDS];
goldilocks_derive_challenge(challenge, pubkey->pub.opaque, signature, message, message_len);
field_a_t eph, pk;
tw_extensible_a_t pk_text;
/* deserialize [nonce]G */
succ = field_deserialize(eph, signature);
if (!succ) return GOLDI_EINVAL;
succ = linear_combo_combs_vt (
pk_text,
challenge, GOLDI_SCALAR_BITS, &pubkey->table,
s, GOLDI_SCALAR_BITS, &goldilocks_global.fixed_base
);
if (!succ) return GOLDI_EINVAL;
untwist_and_double_and_serialize( pk, pk_text );

succ = field_eq(eph, pk);
return succ ? 0 : GOLDI_EINVAL;
}

int
goldilocks_shared_secret_precomputed (
uint8_t shared[GOLDI_SHARED_SECRET_BYTES],
const struct goldilocks_private_key_t *my_privkey,
const struct goldilocks_precomputed_public_key_t *your_pubkey
) {
return goldilocks_shared_secret_core(
shared,
my_privkey,
&your_pubkey->pub,
your_pubkey
);
}

#endif /* GOLDI_IMPLEMENT_PRECOMPUTED_KEYS */


+ 0
- 190
src/include/barrett_field.h View File

@@ -1,190 +0,0 @@
/* Copyright (c) 2014 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/
#ifndef __BARRETT_FIELD_H__
#define __BARRETT_FIELD_H__ 1

/**
* @file barrett_field.h
* @brief Slow routines for generic primes in Barrett form.
*
* @warning These routines are very slow, roughly implemented, and should be made more
* flexible in the future. I might even outright switch to Montgomery form.
*/

#include "word.h"

#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief A Barrett-form prime, 2^k - c.
* @todo Support primes of other forms.
*/
struct barrett_prime_t {
uint32_t nwords_p; /**< The number of bits in p, i.e. ceiling((k-1) / WORD_BITS) */
uint32_t p_shift; /**< c mod WORD_BITS. */
uint32_t nwords_lo; /**< The number of nonzero low words. */
const word_t *p_lo; /**< The low words. */
};

/**
* The Goldilocks prime. I'm not sure this is the right place for it, but oh well.
*/
extern const struct barrett_prime_t curve_prime_order;

/**
* Reduce a number (with optional high carry word) mod p.
*
* @param [in,out] a The value to be reduced.
* @param [in] nwords_a The number of words in a.
* @param [in] a_carry A high word to be carried into the computation.
* @param [in] prime The Barrett prime.
*/
void
barrett_reduce(
word_t *a,
uint32_t nwords_a,
word_t a_carry,
const struct barrett_prime_t *prime
);
/**
* out = a+(c&mask), returning a carry.
*
* @param [out] out The output, of length nwords_a.
* @param [in] a The "always" addend.
* @param [in] nwords_a The number of words in a.
* @param [in] c The "sometimes" addend.
* @param [in] nwords_c The number of words in c.
* @param [in] mask A mask of whether to add or not.
* @return A carry word.
*/
word_t
add_nr_ext_packed(
word_t *out,
const word_t *a,
uint32_t nwords_a,
const word_t *c,
uint32_t nwords_c,
word_t mask
);
/**
* out = a-(c&mask), returning a borrow.
*
* @param [out] out The output, of length nwords_a.
* @param [in] a The "always" minuend.
* @param [in] nwords_a The number of words in a.
* @param [in] c The "sometimes" subtrahend.
* @param [in] nwords_c The number of words in c.
* @param [in] mask A mask of whether to add or not.
* @return A borrow word.
*/
word_t
sub_nr_ext_packed(
word_t *out,
const word_t *a,
uint32_t nwords_a,
const word_t *c,
uint32_t nwords_c,
word_t mask
);

/**
* a -> reduce(-a) mod p
*
* @param [in] a The value to be reduced and negated.
* @param [in] nwords_a The number of words in a. Must be >= nwords_p.
* @param [in] prime The prime.
*/
void
barrett_negate (
word_t *a,
uint32_t nwords_a,
const struct barrett_prime_t *prime
);

/*
* If doMac, accum = accum + a*b mod p.
* Otherwise, accum = a*b mod p.
*
* This function is not __restrict__; you may pass accum,
* a, b, etc all from the same location.
*/
void
barrett_mul_or_mac(
word_t *accum,
uint32_t nwords_accum,

const word_t *a,
uint32_t nwords_a,

const word_t *b,
uint32_t nwords_b,

const struct barrett_prime_t *prime,
mask_t doMac
);
static inline void
barrett_mul(
word_t *out,
uint32_t nwords_out,

const word_t *a,
uint32_t nwords_a,

const word_t *b,
uint32_t nwords_b,

const struct barrett_prime_t *prime
) {
barrett_mul_or_mac(out,nwords_out,a,nwords_a,b,nwords_b,prime,0);
}
static inline void
barrett_mac(
word_t *out,
uint32_t nwords_out,

const word_t *a,
uint32_t nwords_a,

const word_t *b,
uint32_t nwords_b,

const struct barrett_prime_t *prime
) {
barrett_mul_or_mac(out,nwords_out,a,nwords_a,b,nwords_b,prime,-(mask_t)1);
}

mask_t
barrett_deserialize (
word_t *x,
const uint8_t *serial,
const struct barrett_prime_t *prime
);

void
barrett_serialize (
uint8_t *serial,
const word_t *x,
uint32_t nserial
);
void
barrett_deserialize_and_reduce (
word_t *x,
const uint8_t *serial,
uint32_t nserial,
const struct barrett_prime_t *prime
);

#ifdef __cplusplus
}; /* extern "C" */
#endif

#endif /* __BARRETT_FIELD_H__ */

+ 0
- 76
src/include/config.h View File

@@ -1,76 +0,0 @@
/**
* @file config.h
* @copyright
* Copyright (c) 2014 Cryptography Research, Inc. \n
* Released under the MIT License. See LICENSE.txt for license information.
* @author Mike Hamburg
* @brief Goldilocks top-level configuration flags.
*/

#ifndef __GOLDILOCKS_CONFIG_H__
#define __GOLDILOCKS_CONFIG_H__ 1

/** @brief crandom architecture detection.
* With this flag set to 1, crandom will assume that any flag
* supported by -march and friends (MIGHT_HAVE) will actually
* be available on the target machine (MUST_HAVE), instead of
* trying to detect it.
*
* Without this flag, crandom can detect, eg, that while -mavx
* was passed, the currint machine doesn't support AVX, and can
* fall back to SSE2 or whatever. But the rest of the
* Goldilocks code doesn't support this, so it'll still crash
* with an illegal instruction error.
*
* Setting this flag will make the library smaller.
*/
#define CRANDOM_MIGHT_IS_MUST 1

/**
* @brief Causes crandom to refuse to buffer requests bigger
* than this size. Setting 0 disables buffering for all
* requests, which hurts performance.
*
* The advantage is that if a user process forks or is VM-
* snapshotted, the buffer is not adjusted (FUTURE). However,
* with the buffer disabled, the refresh routines will stir
* in entropy from RDTSC and/or RDRAND, making this operation
* mostly-safe.
*/
#define EXPERIMENT_CRANDOM_BUFFER_CUTOFF_BYTES 0

/**
* @brief Goldilocks uses libpthread mutexes to provide
* thread-safety. If you disable this flag, it won't link
* libpthread, but it won't be thread-safe either.
*/
#define GOLDILOCKS_USE_PTHREAD 1

/**
* @brief Experiment to change the hash inputs for ECDH,
* in a way that obliterates the result -- overwriting it with
* a safe pseudorandom value -- if the public key is invalid.
* That way users who ignore the status result won't be
* exposed to invalid key attacks.
*/
#define EXPERIMENT_ECDH_OBLITERATE_CT 1

/**
* @brief Whether or not define the signing functions, which
* currently require SHA-512.
*/
#define GOLDI_IMPLEMENT_SIGNATURES 1

/**
* @brief Whether or not to define and implement functions
* working with pre-computed keys.
*/
#define GOLDI_IMPLEMENT_PRECOMPUTED_KEYS 1

/**
* @brief ECDH adds public keys into the hash, to prevent
* esoteric attacks.
*/
#define EXPERIMENT_ECDH_STIR_IN_PUBKEYS 1

#endif /* __GOLDILOCKS_CONFIG_H__ */

+ 0
- 143
src/include/crandom.h View File

@@ -1,143 +0,0 @@
/* Copyright (c) 2011 Stanford University.
* Copyright (c) 2014-2015 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/

/**
* @file crandom.h
* @author Mike Hamburg
* @brief A miniature version of the (as of yet incomplete) crandom project.
*/

#ifndef __GOLDI_CRANDOM_H__
#define __GOLDI_CRANDOM_H__ 1

#define _XOPEN_SOURCE 600
#include <stdint.h> /* for uint64_t */
#include <fcntl.h> /* for open */
#include <errno.h> /* for returning errors after open */
#include <stdlib.h> /* for abort */
#include <string.h> /* for memcpy */
#include <strings.h> /* for bzero */
#include <unistd.h> /* for read */

/**
* @brief The state of a crandom generator.
*
* This object is opaque. It is not protected by a lock, and so must
* not be accessed by multiple threads at the same time.
*/
struct crandom_state_t {
/** @privatesection */
/* unsigned char seed[32]; */
/* unsigned char buffer[96]; */
unsigned char seedBuffer[32+96];
uint64_t ctr;
uint64_t magic;
unsigned int fill;
int reseed_countdown;
int reseed_interval;
int reseeds_mandatory;
int randomfd;
} __attribute__((aligned(16))) ;
typedef struct crandom_state_t crandom_state_a_t[1];

#ifdef __cplusplus
extern "C" {
#endif

/**
* Initialize a crandom state from the chosen file.
*
* This function initializes a state from a given state file, or
* from a random device (eg. /dev/random or /dev/urandom).
*
* You must check the return value of this function.
*
* @param [out] state The crandom state variable to initalize.
* @param [in] filename The name of the seed file or random device.
* @param [in] reseed_interval The number of 96-byte blocks which can be
* generated without reseeding. Suggest 10000.
* @param [in] reseeds_mandatory If nonzero, call abort() if a reseed fails.
* Suggest 1.
*
* @retval 0 Success.
* @retval Nonzero An error to be interpreted by strerror().
*/
int
crandom_init_from_file (
crandom_state_a_t state,
const char *filename,
int reseed_interval,
int reseeds_mandatory
) __attribute__((warn_unused_result));


/**
* Initialize a crandom state from a buffer, for deterministic operation.
*
* This function is used to initialize a crandom state deterministically,
* mainly for testing purposes. It can also be used to expand a secret
* random value deterministically.
*
* @warning The crandom implementation is not guaranteed to be stable.
* That is, a later release might produce a different random stream from
* the same seed.
*
* @param [out] state The crandom state variable to initalize.
* @param [in] initial_seed The seed value.
*/
void
crandom_init_from_buffer (
crandom_state_a_t state,
const char initial_seed[32]
);

/**
* Fill the output buffer with random data.
*
* This function uses the given crandom state to produce pseudorandom data
* in the output buffer.
*
* This function may perform reads from the state's random device if it needs
* to reseed. This could block if that file is a blocking source, such as
* a pipe or /dev/random on Linux. If reseeding fails and the state has
* reseeds_mandatory set, this function will call abort(). Otherwise, it will
* return an error code, but it will still randomize the buffer.
*
* If called on a corrupted, uninitialized or destroyed state, this function
* will abort().
*
* @warning This function is not thread-safe with respect to the state. Don't
* call it from multiple threads with the same state at the same time.
*
* @param [inout] state The crandom state to use for generation.
* @param [out] output The buffer to fill with random data.
* @param [in] length The length of the buffer.
*
* @retval 0 Success.
* @retval Nonezero A non-mandatory reseed operation failed.
*/
int
crandom_generate (
crandom_state_a_t state,
unsigned char *output,
unsigned long long length
);

/**
* Destroy the random state. Further calls to crandom_generate() on that state
* will abort().
*
* @param [inout] state The state to be destroyed.
*/
void
crandom_destroy (
crandom_state_a_t state
);

#ifdef __cplusplus
}; /* extern "C" */
#endif

#endif /* __GOLDI_CRANDOM_H__ */

+ 0
- 697
src/include/ec_point.h View File

@@ -1,697 +0,0 @@
/**
* @file ec_point.h
* @copyright
* Copyright (c) 2014 Cryptography Research, Inc. \n
* Released under the MIT License. See LICENSE.txt for license information.
* @author Mike Hamburg
*
* This file contains a huge number of different options for EC point arithmetic,
* but only a few of them will be used by any given library. They are here for
* reference and for consistency checks. The Goldilocks library link step strips
* out unused functions.
*/

#ifndef __CC_INCLUDED_EC_POINT_H__
#define __CC_INCLUDED_EC_POINT_H__

#include "field.h"
#include "constant_time.h"

#ifdef __cplusplus
extern "C" {
#endif

/**
* Affine point on an Edwards curve.
*/
typedef struct affine_t {
field_a_t x, y;
} affine_a_t[1];

/**
* Affine point on a twisted Edwards curve.
*/
typedef struct tw_affine_t {
field_a_t x, y;
} tw_affine_a_t[1];

/**
* Montgomery buffer.
*/
typedef struct montgomery_t {
field_a_t z0, xd, zd, xa, za;
} montgomery_a_t[1];

/**
* Montgomery buffer, augmented version.
*/
typedef struct montgomery_aux_t {
field_a_t s0, xd, zd, xa, za, xs, zs;
} montgomery_aux_a_t[1];

/**
* Extensible coordinates for Edwards curves, suitable for
* accumulators.
*
* Represents the point (x/z, y/z). The extra coordinates
* t,u satisfy xy = tuz, allowing for conversion to Extended
* form by multiplying t and u.
*
* The idea is that you don't have to do this multiplication
* when doubling the accumulator, because the t-coordinate
* isn't used there. At the same time, as long as you only
* have one point in extensible form, additions don't cost
* extra.
*
* This is essentially a lazier version of Hisil et al's
* lookahead trick. It might be worth considering that trick
* instead.
*/
typedef struct extensible_t {
field_a_t x, y, z, t, u;
} extensible_a_t[1];

/**
* Extensible coordinates for twisted Edwards curves,
* suitable for accumulators.
*/
typedef struct tw_extensible_t {
field_a_t x, y, z, t, u;
} tw_extensible_a_t[1];

/**
* Extended coordinates for twisted Edwards curves.
* Jack of all trades, master of none.
*/
typedef struct tw_extended_t {
field_a_t x, y, z, t;
} tw_extended_a_t[1];

/**
* Niels coordinates for twisted Edwards curves.
*
* Good for mixed readdition; suitable for fixed tables.
*/
typedef struct tw_niels_t {
field_a_t a, b, c;
} tw_niels_a_t[1];

/**
* Projective niels coordinates for twisted Edwards curves.
*
* Good for readdition; suitable for temporary tables.
*/
typedef struct tw_pniels_t {
tw_niels_a_t n;
field_a_t z;
} tw_pniels_a_t[1];


/**
* Auto-generated copy method.
*/
static __inline__ void
copy_affine (
affine_a_t a,
const affine_a_t ds
) __attribute__((unused,always_inline));

/**
* Auto-generated copy method.
*/
static __inline__ void
copy_tw_affine (
tw_affine_a_t a,
const tw_affine_a_t ds
) __attribute__((unused,always_inline));

/**
* Auto-generated copy method.
*/
static __inline__ void
copy_montgomery (
montgomery_a_t a,
const montgomery_a_t ds
) __attribute__((unused,always_inline));

/**
* Auto-generated copy method.
*/
static __inline__ void
copy_extensible (
extensible_a_t a,
const extensible_a_t ds
) __attribute__((unused,always_inline));

/**
* Auto-generated copy method.
*/
static __inline__ void
copy_tw_extensible (
tw_extensible_a_t a,
const tw_extensible_a_t ds
) __attribute__((unused,always_inline));

/**
* Auto-generated copy method.
*/
static __inline__ void
copy_tw_extended (
tw_extended_a_t a,
const tw_extended_a_t ds
) __attribute__((unused,always_inline));

/**
* Auto-generated copy method.
*/
static __inline__ void
copy_tw_niels (
tw_niels_a_t a,
const tw_niels_a_t ds
) __attribute__((unused,always_inline));

/**
* Auto-generated copy method.
*/
static __inline__ void
copy_tw_pniels (
tw_pniels_a_t a,
const tw_pniels_a_t ds
) __attribute__((unused,always_inline));

/**
* Add two points on a twisted Edwards curve, one in Extensible form
* and the other in half-Niels form.
*/
void
add_tw_niels_to_tw_extensible (
tw_extensible_a_t d,
const tw_niels_a_t e
);

/**
* Add two points on a twisted Edwards curve, one in Extensible form
* and the other in half-Niels form.
*/
void
sub_tw_niels_from_tw_extensible (
tw_extensible_a_t d,
const tw_niels_a_t e
);

/**
* Add two points on a twisted Edwards curve, one in Extensible form
* and the other in projective Niels form.
*/
void
add_tw_pniels_to_tw_extensible (
tw_extensible_a_t e,
const tw_pniels_a_t a
);

/**
* Add two points on a twisted Edwards curve, one in Extensible form
* and the other in projective Niels form.
*/
void
sub_tw_pniels_from_tw_extensible (
tw_extensible_a_t e,
const tw_pniels_a_t a
);

/**
* Double a point on a twisted Edwards curve, in "extensible" coordinates.
*/
void
double_tw_extensible (
tw_extensible_a_t a
);

/**
* Double a point on an Edwards curve, in "extensible" coordinates.
*/
void
double_extensible (
extensible_a_t a
);

/**
* Double a point, and transfer it to the twisted curve.
*
* That is, apply the 4-isogeny.
*/
void
twist_and_double (
tw_extensible_a_t b,
const extensible_a_t a
);

/**
* Double a point, and transfer it to the untwisted curve.
*
* That is, apply the dual isogeny.
*/
void
untwist_and_double (
extensible_a_t b,
const tw_extensible_a_t a
);

void
convert_tw_affine_to_tw_pniels (
tw_pniels_a_t b,
const tw_affine_a_t a
);

void
convert_tw_affine_to_tw_extensible (
tw_extensible_a_t b,
const tw_affine_a_t a
);

void
convert_affine_to_extensible (
extensible_a_t b,
const affine_a_t a
);

void
convert_tw_extensible_to_tw_pniels (
tw_pniels_a_t b,
const tw_extensible_a_t a
);

void
convert_tw_pniels_to_tw_extensible (
tw_extensible_a_t e,
const tw_pniels_a_t d
);

void
convert_tw_niels_to_tw_extensible (
tw_extensible_a_t e,
const tw_niels_a_t d
);

void
convert_tw_extensible_to_tw_extended (
tw_extended_a_t b,
const tw_extensible_a_t a
);

void
add_tw_extended (
tw_extended_a_t d,
const tw_extended_a_t e
);

void
add_sub_tw_extended (
tw_extended_a_t c,
const tw_extended_a_t d,
const tw_extended_a_t e,
mask_t sub
);

void
montgomery_step (
montgomery_a_t a
);

void
montgomery_aux_step (
montgomery_aux_a_t a
);

void
deserialize_montgomery (
montgomery_a_t a,
const field_a_t sbz
);

mask_t
serialize_montgomery (
field_a_t b,
const montgomery_a_t a,
const field_a_t sbz
);

mask_t
decaf_serialize_montgomery (
field_a_t b,
const montgomery_aux_a_t a,
mask_t swapped
);
void
decaf_deserialize_montgomery (
montgomery_aux_a_t a,
const field_a_t s
);

/**
* Serialize a point on an Edwards curve.
*
* The serialized form would be sqrt((z-y)/(z+y)) with sign of xz.
*
* It would be on 4y^2/(1-d) = x^3 + 2(1+d)/(1-d) * x^2 + x.
*
* But 4/(1-d) isn't square, so we need to twist it:
*
* -x is on 4y^2/(d-1) = x^3 + 2(d+1)/(d-1) * x^2 + x
*/
void
serialize_extensible (
field_a_t b,
const extensible_a_t a
);

/**
*
*/
void
untwist_and_double_and_serialize (
field_a_t b,
const tw_extensible_a_t a
);

/**
* Expensive transfer from untwisted to twisted. Roughly equivalent to halve and isogeny.
* Correctly transfers point of order 2.
*
* Can't have x=+1 (it's not even). There is code to fix the exception that would otherwise
* occur at (0,1).
*
* Input point must be even.
*/
void
twist_even (
tw_extensible_a_t b,
const extensible_a_t a
);

/**
* Expensive transfer from untwisted to twisted. Roughly equivalent to halve and isogeny.
*
* This function is for testing purposes only, because it can return odd points on the
* twist. This can cause exceptions in the point addition formula. What's more, this
* function should be able to return points of order 4, which are at infinity.
*
* This function probably doesn't properly handle special cases, such as the point at
* infinity (FUTURE).
*
* This function probably isn't a homomorphism, in that it probably doesn't consistently
* handle adjustments by the point of order 2 when the input is odd. (FUTURE)
*/
void
test_only_twist (
tw_extensible_a_t b,
const extensible_a_t a
);

mask_t
field_is_square (
const field_a_t x
);

mask_t
is_even_pt (
const extensible_a_t a
);

mask_t
is_even_tw (
const tw_extensible_a_t a
);

/**
* Deserialize a point to an untwisted affine curve.
*/
mask_t
deserialize_affine (
affine_a_t a,
const field_a_t sz
);

/**
* Deserialize a point and transfer it to the twist.
*
* Not guaranteed to preserve the 4-torsion component.
*
* Refuses to deserialize +-1, which are the points of order 2.
*/
mask_t
deserialize_and_twist_approx (
tw_extensible_a_t a,
const field_a_t sz
)
__attribute__((warn_unused_result));

mask_t
decaf_deserialize_affine (
affine_a_t a,
const field_a_t s,
mask_t allow_identity
)
__attribute__((warn_unused_result));
void
decaf_serialize_extensible (
field_a_t b,
const extensible_a_t a
);


mask_t
decaf_deserialize_tw_affine (
tw_affine_a_t a,
const field_a_t s,
mask_t allow_identity
)
__attribute__((warn_unused_result));

void
decaf_serialize_tw_extensible (
field_a_t b,
const tw_extensible_a_t a
);


mask_t
decaf_deserialize_tw_extended (
tw_extended_a_t a,
const field_a_t s,
mask_t allow_identity
)
__attribute__((warn_unused_result));

void
decaf_serialize_tw_extended (
field_a_t b,
const tw_extended_a_t a
);

void
set_identity_extensible (
extensible_a_t a
);

void
set_identity_tw_extensible (
tw_extensible_a_t a
);

void
set_identity_tw_extended (
tw_extended_a_t a
);

void
set_identity_affine (
affine_a_t a
);

mask_t
eq_affine (
const affine_a_t a,
const affine_a_t b
);

mask_t
eq_extensible (
const extensible_a_t a,
const extensible_a_t b
);

mask_t
eq_tw_extensible (
const tw_extensible_a_t a,
const tw_extensible_a_t b
);

void
elligator_2s_inject (
affine_a_t a,
const field_a_t r
);

mask_t
validate_affine (
const affine_a_t a
);

mask_t
decaf_eq_tw_extensible (
const tw_extensible_a_t a,
const tw_extensible_a_t b
)
__attribute__((warn_unused_result));

mask_t
decaf_eq_tw_extended (
const tw_extended_a_t a,
const tw_extended_a_t b
)
__attribute__((warn_unused_result));

mask_t
decaf_eq_extensible (
const extensible_a_t a,
const extensible_a_t b
)
__attribute__((warn_unused_result));

/**
* Check the invariants for struct tw_extensible_t.
* NOTE: This function was automatically generated
* with no regard for speed.
*/
mask_t
validate_tw_extensible (
const tw_extensible_a_t ext
);

/**
* Check the invariants for struct extensible_t.
* NOTE: This function was automatically generated
* with no regard for speed.
*/
mask_t
validate_extensible (
const extensible_a_t ext
);

/**
* If doNegate, then negate a twisted niels point.
*/
static __inline__ void
__attribute__((unused))
cond_negate_tw_niels (
tw_niels_a_t n,
mask_t doNegate
) {
constant_time_cond_swap(n->a, n->b, sizeof(n->a), doNegate);
field_cond_neg(n->c, doNegate);
}

/**
* If doNegate, then negate a twisted projective niels point.
*/
static __inline__ void
__attribute__((unused))
cond_negate_tw_pniels (
tw_pniels_a_t n,
mask_t doNegate
) {
cond_negate_tw_niels(n->n, doNegate);
}

void
copy_affine (
affine_a_t a,
const affine_a_t ds
) {
field_copy ( a->x, ds->x );
field_copy ( a->y, ds->y );
}

void
copy_tw_affine (
tw_affine_a_t a,
const tw_affine_a_t ds
) {
field_copy ( a->x, ds->x );
field_copy ( a->y, ds->y );
}

void
copy_montgomery (
montgomery_a_t a,
const montgomery_a_t ds
) {
field_copy ( a->z0, ds->z0 );
field_copy ( a->xd, ds->xd );
field_copy ( a->zd, ds->zd );
field_copy ( a->xa, ds->xa );
field_copy ( a->za, ds->za );
}

void
copy_extensible (
extensible_a_t a,
const extensible_a_t ds
) {
field_copy ( a->x, ds->x );
field_copy ( a->y, ds->y );
field_copy ( a->z, ds->z );
field_copy ( a->t, ds->t );
field_copy ( a->u, ds->u );
}

void
copy_tw_extensible (
tw_extensible_a_t a,
const tw_extensible_a_t ds
) {
field_copy ( a->x, ds->x );
field_copy ( a->y, ds->y );
field_copy ( a->z, ds->z );
field_copy ( a->t, ds->t );
field_copy ( a->u, ds->u );
}

void
copy_tw_extended (
tw_extended_a_t a,
const tw_extended_a_t ds
) {
field_copy ( a->x, ds->x );
field_copy ( a->y, ds->y );
field_copy ( a->z, ds->z );
field_copy ( a->t, ds->t );
}

void
copy_tw_niels (
tw_niels_a_t a,
const tw_niels_a_t ds
) {
field_copy ( a->a, ds->a );
field_copy ( a->b, ds->b );
field_copy ( a->c, ds->c );
}

void
copy_tw_pniels (
tw_pniels_a_t a,
const tw_pniels_a_t ds
) {
copy_tw_niels( a->n, ds->n );
field_copy ( a->z, ds->z );
}

#ifdef __cplusplus
}; /* extern "C" */
#endif

#endif /* __CC_INCLUDED_EC_POINT_H__ */

+ 0
- 276
src/include/intrinsics.h View File

@@ -1,276 +0,0 @@
/* Copyright (c) 2011 Stanford University.
* Copyright (c) 2014 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/

/** @file intrinsics.h
* @brief cRandom intrinsics header.
*/

#ifndef __CRANDOM_INTRINSICS_H__
#define __CRANDOM_INTRINSICS_H__ 1

#include <sys/types.h>
#include "config.h"

#if defined(__i386__) || defined(__x86_64__)
#include <immintrin.h>
#endif

/** @brief Macro to make a function static, forcibly inlined and possibly unused. */
#define INTRINSIC \
static __inline__ __attribute__((__gnu_inline__, __always_inline__, unused))

#define GEN 1 /**< @brief Intrinsics field has been generated. */
#define SSE2 2 /**< @brief Machine supports SSE2 */
#define SSSE3 4 /**< @brief Machine supports SSSE3 (for shuffles) */
#define AESNI 8 /**< @brief Machine supports Intel AES-NI */
#define XOP 16 /**< @brief Machine supports AMD XOP */
#define AVX 32 /**< @brief Machine supports Intel AVX (for masking) */
#define AVX2 64 /**< @brief Machine supports Intel AVX2 (for bignums) */
#define RDRAND 128 /**< @brief Machine supports Intel RDRAND */

/**
* @brief If on x86, read the timestamp counter. Otherwise, return 0.
*/
#ifndef __has_builtin
#define __has_builtin(X) 0
#endif
#if defined(__clang__) && __has_builtin(__builtin_readcyclecounter)
#define rdtsc __builtin_readcyclecounter
#else
INTRINSIC u_int64_t rdtsc(void) {
u_int64_t out = 0;
# if (defined(__i386__) || defined(__x86_64__))
__asm__ __volatile__ ("rdtsc" : "=A"(out));
# endif
return out;
}
#endif

/**
* Return x unchanged, but confuse the compiler.
*
* This is mainly for use in test scripts, to prevent the value from
* being constant-folded or removed by dead code elimination.
*
* @param x A 64-bit number.
* @return The same number in a register.
*/
INTRINSIC u_int64_t opacify(u_int64_t x) {
__asm__ volatile("mov %0, %0" : "+r"(x));
return x;
}


/** @cond internal */
#ifdef __AVX2__
# define MIGHT_HAVE_AVX2 1
# ifndef MUST_HAVE_AVX2
# define MUST_HAVE_AVX2 0
# endif
#else
# define MIGHT_HAVE_AVX2 0
# define MUST_HAVE_AVX2 0
#endif

#ifdef __AVX__
# define MIGHT_HAVE_AVX 1
# ifndef MUST_HAVE_AVX
# define MUST_HAVE_AVX MUST_HAVE_AVX2
# endif
#else
# define MIGHT_HAVE_AVX 0
# define MUST_HAVE_AVX 0
#endif

#ifdef __SSSE3__
# define MIGHT_HAVE_SSSE3 1
# ifndef MUST_HAVE_SSSE3
# define MUST_HAVE_SSSE3 MUST_HAVE_AVX
# endif
#else
# define MIGHT_HAVE_SSSE3 0
# define MUST_HAVE_SSSE3 0
#endif

#ifdef __SSE2__
# define MIGHT_HAVE_SSE2 1
# ifndef MUST_HAVE_SSE2
# define MUST_HAVE_SSE2 MUST_HAVE_SSSE3
# endif
typedef __m128i ssereg;
# define pslldq _mm_slli_epi32
# define pshufd _mm_shuffle_epi32

#else
# define MIGHT_HAVE_SSE2 0
# define MUST_HAVE_SSE2 0
#endif

#ifdef __AES__
/* don't include intrinsics file, because not all platforms have it */
# define MIGHT_HAVE_AESNI 1
# ifndef MIGHT_HAVE_RDRAND
# define MIGHT_HAVE_RDRAND 1
# endif
# ifndef MUST_HAVE_RDRAND
# define MUST_HAVE_RDRAND 0
# endif
# ifndef MUST_HAVE_AESNI
# define MUST_HAVE_AESNI 0
# endif

#else
# define MIGHT_HAVE_AESNI 0
# define MUST_HAVE_AESNI 0
# define MIGHT_HAVE_RDRAND 0
# define MUST_HAVE_RDRAND 0
#endif

#ifdef __XOP__
/* don't include intrinsics file, because not all platforms have it */
# define MIGHT_HAVE_XOP 1
# ifndef MUST_HAVE_XOP
# define MUST_HAVE_XOP 0
# endif
#else
# define MIGHT_HAVE_XOP 0
# define MUST_HAVE_XOP 0
#endif

#define MIGHT_MASK \
( SSE2 * MIGHT_HAVE_SSE2 \
| SSSE3 * MIGHT_HAVE_SSSE3 \
| AESNI * MIGHT_HAVE_AESNI \
| XOP * MIGHT_HAVE_XOP \
| AVX * MIGHT_HAVE_AVX \
| RDRAND * MIGHT_HAVE_RDRAND \
| AVX2 * MIGHT_HAVE_AVX2)

#if CRANDOM_MIGHT_IS_MUST
#define MUST_MASK MIGHT_MASK
#else
#define MUST_MASK \
( SSE2 * MUST_HAVE_SSE2 \
| SSSE3 * MUST_HAVE_SSSE3 \
| AESNI * MUST_HAVE_AESNI \
| XOP * MUST_HAVE_XOP \
| AVX * MUST_HAVE_AVX \
| RDRAND * MUST_HAVE_RDRAND \
| AVX2 * MUST_HAVE_AVX2 )
#endif
/** @endcond */

#ifdef __SSE2__
/** Rotate a register by some amount using SSE2. */
INTRINSIC ssereg sse2_rotate(int r, ssereg a) {
return _mm_slli_epi32(a, r) ^ _mm_srli_epi32(a, 32-r);
}
#endif
#ifdef __XOP__
/** Rotate a register by some amount using AMD XOP. */
INTRINSIC ssereg xop_rotate(int amount, ssereg x) {
ssereg out;
__asm__ ("vprotd %1, %2, %0" : "=x"(out) : "x"(x), "g"(amount));
return out;
}
#endif

/**
* @brief Macro which detects that targets might support this feature,
* so that we can include code for it.
*/
#define MIGHT_HAVE(feature) ((MIGHT_MASK & feature) == feature)

/**
* @brief Macro which detects that targets must support this feature,
* so we can omit fallback code.
*/
#define MUST_HAVE(feature) ((MUST_MASK & feature) == feature)

/**
* @brief Make a functiona available by C API.
*/
#ifdef __cplusplus
# define extern_c extern "C"
#else
# define extern_c
#endif

/** @cond internal
* @brief Detect platform features and return them as a flagfield int.
*/
extern_c
unsigned int crandom_detect_features();
/** @endcond */

#ifndef likely
# define likely(x) __builtin_expect((x),1) \
/**< @brief Tell the compiler that a branch is likely, for optimization. */
# define unlikely(x) __builtin_expect((x),0) \
/**< @brief Tell the compiler that a branch is unlikely, for optimization. */
#endif
/**
* Atomic compare and swap, return by fetching.
*
* Equivalent to:
* ret = *target; if (*target == old) *target = new; return ret;
*
* @param [inout] target The volatile memory area to be CAS'd
* @param [in] old The expected old value of the target.
* @param [in] new A value to replace the target on success.
*/
INTRINSIC const char *
compare_and_swap (
const char *volatile* target,
const char *old,
const char *new
) {
return __sync_val_compare_and_swap(target,old,new);
}
/**
* Atomic compare and swap. Return whether successful.
*
* Equivalent to:
* if (*target == old) { *target = new; return nonzero; } else { return 0; }
*
* @param [inout] target The volatile memory area to be CAS'd
* @param [in] old The expected old value of the target.
* @param [in] new A value to replace the target on success.
*/
INTRINSIC int
bool_compare_and_swap (
const char *volatile* target,
const char *old,
const char *new
) {
return __sync_bool_compare_and_swap(target,old,new);
}

/**
* Determine whether the current processor supports the given feature.
*
* This function is designed so that it should only have runtime overhead
* if the feature is not known at compile time -- that is, if
* MIGHT_HAVE(feature) is set, but MUST_HAVE(feature) is not.
*/
extern volatile unsigned int crandom_features;

/** @brief Determine if a given CPU feature is available. */
INTRINSIC int HAVE(unsigned int feature);

int HAVE(unsigned int feature) {
unsigned int features;
if (!MIGHT_HAVE(feature)) return 0;
if (MUST_HAVE(feature)) return 1;
features = crandom_features;
if (unlikely(!features))
crandom_features = features = crandom_detect_features();
return likely((features & feature) == feature);
}

#endif /* __CRANDOM_INTRINSICS_H__ */

+ 0
- 95
src/include/magic.h View File

@@ -1,95 +0,0 @@
/**
* @file magic.h
* @copyright
* Copyright (c) 2014 Cryptography Research, Inc. \n
* Released under the MIT License. See LICENSE.txt for license information.
* @author Mike Hamburg
* @brief Curve-independent declarations of magic numbers.
*/

#ifndef __GOLDI_MAGIC_H__
#define __GOLDI_MAGIC_H__ 1

#include "word.h"

/**
* @brief If true, use wider tables for the precomputed combs.
*/
#ifndef USE_BIG_COMBS
#if defined(__ARM_NEON__)
#define USE_BIG_COMBS 1
#else
#define USE_BIG_COMBS (WORD_BITS==64)
#endif
#endif

/* TODO: standardize notation */

/** @brief The number of words in the Goldilocks field. */
#define GOLDI_FIELD_WORDS DIV_CEIL(FIELD_BITS,WORD_BITS)

/** @brief The number of bits in the Goldilocks curve's cofactor (cofactor=4). */
#define COFACTOR_BITS 2

/** @brief The number of bits in a Goldilocks scalar. */
#define SCALAR_BITS (FIELD_BITS - COFACTOR_BITS)

/** @brief The number of bytes in a Goldilocks scalar. */
#define SCALAR_BYTES (1+(SCALAR_BITS)/8)

/** @brief The number of words in the Goldilocks field. */
#define SCALAR_WORDS WORDS_FOR_BITS(SCALAR_BITS)

#include "f_magic.h"

/**
* @brief sqrt(d-1), used for point formats and twisting.
*/
extern const field_a_t sqrt_d_minus_1;

/**
* @brief The base point for Goldilocks.
*/
extern const affine_a_t goldilocks_base_point;

/**
* @brief The Goldilocks prime subgroup order.
*/
extern const struct barrett_prime_t curve_prime_order;

/**
* @brief Window size for fixed-window signed binary scalarmul.
* Table size is 2^(this - 1).
*/
#define SCALARMUL_FIXED_WINDOW_SIZE 5

/**
* @brief Even/odd adjustments for fixed window with
* ROUNDUP(SCALAR_BITS,SCALARMUL_FIXED_WINDOW_SIZE).
*/
extern const word_t SCALARMUL_FIXED_WINDOW_ADJUSTMENT[2*SCALAR_WORDS];

/**
* @brief Table size for wNAF signed binary (variable-time) scalarmul.
* Table size is 2^this.
*/
#define SCALARMUL_WNAF_TABLE_BITS 3

/**
* @brief Table size for wNAF signed binary (variable-time) linear combo.
* Table size is 2^this.
*/
#define SCALARMUL_WNAF_COMBO_TABLE_BITS 4

/**
* @brief The bit width of the precomputed WNAF tables. Size is 2^this elements.
*/
#define WNAF_PRECMP_BITS 5

/**
* @brief crandom magic structure guard constant = "return 4", cf xkcd #221
*/
#define CRANDOM_MAGIC 0x72657475726e2034ull


#endif /* __GOLDI_MAGIC_H__ */

+ 0
- 373
src/include/scalarmul.h View File

@@ -1,373 +0,0 @@
/**
* @file scalarmul.h
* @copyright
* Copyright (c) 2014 Cryptography Research, Inc. \n
* Released under the MIT License. See LICENSE.txt for license information.
* @author Mike Hamburg
*/

#ifndef __P448_ALGO_H__
#define __P448_ALGO_H__ 1

#include "ec_point.h"
#include "field.h"
#include "intrinsics.h"
#include "magic.h"

#ifdef __cplusplus
extern "C" {
#endif

/**
* A word array containing a scalar
*/
typedef word_t scalar_t[SCALAR_WORDS];

/**
* A precomputed table for fixed-base scalar multiplication.
*
* This uses a signed combs format.
*/
struct fixed_base_table_t {
/** Comb tables containing multiples of the base point. */
tw_niels_a_t *table;
/** Adjustments to the scalar in even and odd cases, respectively. */
word_t scalar_adjustments[2*SCALAR_WORDS];
/** The number of combs in the table. */
unsigned int n;
/** The number of teeth in each comb. */
unsigned int t;
/** The spacing between the teeth. */
unsigned int s;
/** If nonzero, the table was malloc'd by precompute_for_combs. */
unsigned int own_table;
};
/**
* Full Montgomery ladder in inverse square root format.
*
* Out = [2^n_extra_doubles * scalar] * in, where
* scalar is little-endian and has length $nbits$ bits.
*
* If the scalar is even and/or n_extra_doubles >= 1,
* then this function will reject points which are not
* on the curve by returning MASK_FAILURE.
*
* This function will also reject multiplies which output
* the identity or the point of order 2. It may be worth
* revisiting this decision in the FUTURE. The idea is that
* this can only happen when: the input is the identity or the
* point of order 2; or the input is the point of order 4 on
* the twist; or the scalar is 0 or a multiple of the curve
* order; or the scalar is a multiple of the twist order and
* the input point is on the twist.
*
* This function takes constant time with respect to $*in$
* and $*scalar$, but not of course with respect to nbits or
* n_extra_doubles.
*
* For security, we recommend setting n_extra_doubles = 1.
* Because the cofactor of Goldilocks is 4 and input points
* are always even (when on the curve), this will cancel the
* cofactor.
*
* @param [out] out The output point.
* @param [in] in The base point.
* @param [in] scalar The scalar's little-endian representation.
* @param [in] nbits The number of bits in the scalar. Note that
* unlike in Curve25519, we do not require the top bit to be set.
* @param [in] n_extra_doubles The number of extra doubles to do at
* the end.
*
* @retval MASK_SUCCESS The operation was successful.
* @retval MASK_FAILURE The input point was invalid, or the output
* would be the identity or the point of order 2.
*/
mask_t
montgomery_ladder (
field_a_t out,
const field_a_t in,
const word_t *scalar,
unsigned int nbits,
unsigned int n_extra_doubles
) __attribute__((warn_unused_result));
/**
* Full Montgomery aux ladder in decaf format.
*
* Out = scalar * in, where
* scalar is little-endian and has length $nbits$ bits.
*
* This function (once it's done; TODO) will always reject points
* on the twist.
*
* This function takes constant time with respect to $*in$
* and $*scalar$, but not of course with respect to nbits or
* n_extra_doubles.
*
* @param [out] out The output point.
* @param [in] in The base point.
* @param [in] scalar The scalar's little-endian representation.
* @param [in] nbits The number of bits in the scalar. Note that
* unlike in Curve25519, we do not require the top bit to be set.
*
* @retval MASK_SUCCESS The operation was successful.
* @retval MASK_FAILURE The input point was invalid, or the output
* would be the identity or the point of order 2.
*/
mask_t
decaf_montgomery_ladder (
field_a_t out,
const field_a_t in,
const word_t *scalar,
unsigned int nbits
) __attribute__((warn_unused_result));
/**
* Scalar multiply a twisted Edwards-form point.
*
* This function takes constant time.
*
* Currently the scalar is always exactly 448 bits long.
*
* @param [inout] working The point to multply.
* @param [in] scalar The scalar, in little-endian form.
*/
void
scalarmul (
tw_extensible_a_t working,
const word_t scalar[SCALAR_WORDS]
/* TODO? int nbits */
);
/**
* Scalar multiply a twisted Edwards-form point, simply, in extended coordinates.
*
* This function takes constant time.
*
* Currently the scalar is always exactly 448 bits long.
*
* @param [inout] working The point to multply.
* @param [in] scalar The scalar, in little-endian form.
*/
void
scalarmul_ed (
tw_extended_a_t working,
const word_t scalar[SCALAR_WORDS]
/* TODO? int nbits */
);
/**
* Scalar multiply a twisted Edwards-form point. Use the same
* algorithm as scalarmul(), but uses variable array indices.
*
* Currently the scalar is always exactly 448 bits long.
*
* @warning This function uses variable array indices,
* so it is insecure against cache-timing attacks. It is intended
* for microbenchmarking, to see how much constant-time arithmetic
* costs us.
*
* @param [inout] working The point to multply.
* @param [in] scalar The scalar, in little-endian form.
*/
void
scalarmul_vlook (
tw_extensible_a_t working,
const word_t scalar[SCALAR_WORDS]
);

/**
* Precompute a table to accelerate fixed-point scalar
* multiplication using the "multiple signed combs" approach.
*
* This function computes $n$ "comb" tables, each containing
* 2^(t-1) points in tw_niels_t format. You must have
* n * t * s >= SCALAR_BITS = 446 for complete coverage.
*
* The scalar multiplication algorithm may adjust the scalar by
* a multiple of q. Therefore, we strongly recommend to use base
* points in the q-torsion group (i.e. doubly even points).
*
* @param [out] out The table to compute.
* @param [in] base The base point.
* @param [in] n The number of combs in the table.
* @param [in] t The number of teeth in each comb.
* @param [in] s The spacing between the teeth.
* @param [out] prealloc An optional preallocated array containing
* space for n<<(t-1) values of type tw_niels_t.
*
* @retval MASK_SUCCESS Success.
* @retval MASK_FAILURE Failure, most likely because we are out
* of memory.
*/
mask_t
precompute_fixed_base (
struct fixed_base_table_t *out,
const tw_extensible_a_t base,
unsigned int n,
unsigned int t,
unsigned int s,
tw_niels_a_t *prealloc
) __attribute__((warn_unused_result));

/**
* Destroy a fixed-base table. Frees any memory that we allocated
* for the combs.
*
* @param [in] table The table to destroy.
*/
void
destroy_fixed_base (
struct fixed_base_table_t *table
);

/**
* Scalar multiplication with precomputation. Set working to
* to [scalar] * Base, where Base is the base point passed to
* precompute_for_combs().
*
* The scalar may be adjusted by a multiple of q, so this routine
* can be wrong by a cofactor if the base has cofactor components.
*
* @param [out] out The output point.
* @param [in] scalar The scalar.
* @param [in] nbits The number of bits in the scalar. Must be <= n*t*s.
* @param [in] table The precomputed table.
*
* @retval MASK_SUCCESS Success.
* @retval MASK_FAILURE Failure, because n*t*s < nbits
*/
mask_t
scalarmul_fixed_base (
tw_extensible_a_t out,
const word_t *scalar,
unsigned int nbits,
const struct fixed_base_table_t *table
);

/**
* Variable-time scalar multiplication.
*
* @warning This function takes variable time. It is intended for
* microbenchmarking.
*
* @param [inout] working The input and output point.
* @param [in] scalar The scalar.
* @param [in] nbits The number of bits in the scalar
*/
void
scalarmul_vt (
tw_extensible_a_t working,
const word_t *scalar,
unsigned int nbits
);


/**
* Precompute a table to accelerate fixed-point scalar
* multiplication (and, more importantly, linear combos)
* using the "windowed non-adjacent form" approach.
*
* @param [out] out The output table. Must have room for 1<<i entries.
* @param [in] base The base point.
* @param [in] tbits The number of bits to put in the table.
*
* @retval MASK_SUCCESS Success.
* @retval MASK_FAILURE Failure, most likely because we are out
* of memory.
*/
mask_t
precompute_fixed_base_wnaf (
tw_niels_a_t *out,
const tw_extensible_a_t base,
unsigned int tbits
) __attribute__((warn_unused_result));

/**
* Variable-time scalar multiplication with precomputed WNAF
* tables.
*
* @warning This function takes variable time. It is intended for
* microbenchmarking.
*
* @param [out] out The output point.
* @param [in] scalar The scalar.
* @param [in] nbits The number of bits in the scalar.
* @param [in] precmp The precomputed WNAF table.
* @param [in] table_bits The number of bits in the WNAF table.
*/
void
scalarmul_fixed_base_wnaf_vt (
tw_extensible_a_t out,
const word_t *scalar,
unsigned int nbits,
const tw_niels_a_t *precmp,
unsigned int table_bits
);


/**
* Variable-time scalar linear combination of two points: one
* variable, and one fixed (with fixed-base WNAF tables)
*
* @warning This function takes variable time. It is intended for
* signature verification.
*
* @param [inout] working The output point, and also the variable input.
* @param [in] scalar_var The scalar for the variable input.
* @param [in] nbits_var The number of bits in scalar_var.
* @param [in] scalar_pre The scalar for the fixed input.
* @param [in] nbits_pre The number of bits in scalar_pre.
* @param [in] precmp The precomputed WNAF table.
* @param [in] table_bits_pre The number of bits in the WNAF table.
*/
void
linear_combo_var_fixed_vt (
tw_extensible_a_t working,
const word_t scalar_var[SCALAR_WORDS],
unsigned int nbits_var,
const word_t scalar_pre[SCALAR_WORDS],
unsigned int nbits_pre,
const tw_niels_a_t *precmp,
unsigned int table_bits_pre
);

/**
* Variable-time scalar linear combination of two fixed points.
*
* @warning This function takes variable time. It is intended for
* signature verification.
*
* @param [out] working The output point.
* @param [in] scalar1 The first scalar.
* @param [in] nbits1 The number of bits in the first scalar.
* @param [in] table1 The first precomputed table.
* @param [in] scalar2 The second scalar.
* @param [in] nbits1 The number of bits in the second scalar.
* @param [in] table1 The second precomputed table.
*
* @retval MASK_SUCCESS Success.
* @retval MASK_FAILURE Failure, because eg the tables are too small.
*/
mask_t
linear_combo_combs_vt (
tw_extensible_a_t out,
const word_t scalar1[SCALAR_WORDS],
unsigned int nbits1,
const struct fixed_base_table_t *table1,
const word_t scalar2[SCALAR_WORDS],
unsigned int nbits2,
const struct fixed_base_table_t *table2
);

#ifdef __cplusplus
};
#endif

#endif /* __P448_ALGO_H__ */

+ 0
- 49
src/include/sha512.h View File

@@ -1,49 +0,0 @@
/* Copyright (c) 2014 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/
#ifndef __GOLDI_SHA512_H__
#define __GOLDI_SHA512_H__ 1

#include <stdint.h>

#ifdef __cplusplus
extern "C" {
#endif

#define SHA512_OUTPUT_BYTES 64

/**
* SHA512 hashing context.
*
* This structure is opaque.
*/
typedef struct {
/** @privatesection */
uint64_t chain[8];
uint8_t block[128];
uint64_t nbytes;
} sha512_ctx_a_t[1];

void
sha512_init (
sha512_ctx_a_t ctx
);

void
sha512_update (
sha512_ctx_a_t ctx,
const unsigned char *data,
uint64_t bytes
);
void
sha512_final (
sha512_ctx_a_t ctx,
uint8_t result[SHA512_OUTPUT_BYTES]
);
#ifdef __cplusplus
}; /* extern "C" */
#endif
#endif /* __GOLDI_SHA512_H__ */

+ 1
- 1
src/p448/arch_x86_64/p448.h View File

@@ -75,7 +75,7 @@ mask_t
p448_is_zero (
const p448_t *in
);
static __inline__ void
p448_bias (
p448_t *inout,


+ 1
- 1
src/p448/f_arithmetic.c View File

@@ -8,7 +8,7 @@
* @brief Field-specific arithmetic.
*/

#include "ec_point.h"
#include "field.h"

void
field_isr (


+ 0
- 30
src/p448/f_magic.h View File

@@ -1,30 +0,0 @@
/**
* @file f_magic.h
* @copyright
* Copyright (c) 2014 Cryptography Research, Inc. \n
* Released under the MIT License. See LICENSE.txt for license information.
* @author Mike Hamburg
* @brief Goldilocks magic numbers (group orders, coefficients, algo params etc).
*/

#ifndef __GOLDI_F_MAGIC_H__
#define __GOLDI_F_MAGIC_H__ 1

#include "field.h"
#include "ec_point.h"

/**
* @brief The Edwards "d" term for this curve.
*/
static const int64_t EDWARDS_D = -39081;

/** @brief The number of combs to use for signed comb algo */
#define COMB_N (USE_BIG_COMBS ? 5 : 8)

/** @brief The number of teeth of the combs for signed comb algo */
#define COMB_T (USE_BIG_COMBS ? 5 : 4)

/** @brief The spacing the of combs for signed comb algo */
#define COMB_S (USE_BIG_COMBS ? 18 : 14)

#endif /* __GOLDI_F_MAGIC_H__ */

+ 0
- 81
src/p448/magic.c View File

@@ -1,81 +0,0 @@
/* Copyright (c) 2014 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/

#include "field.h"
#include "magic.h"
#include "barrett_field.h"

/* FUTURE: automatically generate this file? */

const uint8_t FIELD_MODULUS[FIELD_BYTES] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
/*!*/ 0xfe, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};

const word_t SCALARMUL_FIXED_WINDOW_ADJUSTMENT[2*SCALAR_WORDS] = {
U64LE(0xebec9967f5d3f5c2),
U64LE(0x0aa09b49b16c9a02),
U64LE(0x7f6126aec172cd8e),
U64LE(0x00000007b027e54d),
U64LE(0x0000000000000000),
U64LE(0x0000000000000000),
U64LE(0x4000000000000000),
U64LE(0xc873d6d54a7bb0cf),
U64LE(0xe933d8d723a70aad),
U64LE(0xbb124b65129c96fd),
U64LE(0x00000008335dc163),
U64LE(0x0000000000000000),
U64LE(0x0000000000000000),
U64LE(0x0000000000000000)
};

const affine_a_t goldilocks_base_point = {{
#ifdef USE_NEON_PERM
{{{ 0xaed939f,0xc59d070,0xf0de840,0x5f065c3, 0xf4ba0c7,0xdf73324,0xc170033,0x3a6a26a,
0x4c63d96,0x4609845,0xf3932d9,0x1b4faff, 0x6147eaa,0xa2692ff,0x9cecfa9,0x297ea0e
}}},
#else
{{{ U56LE(0xf0de840aed939f), U56LE(0xc170033f4ba0c7),
U56LE(0xf3932d94c63d96), U56LE(0x9cecfa96147eaa),
U56LE(0x5f065c3c59d070), U56LE(0x3a6a26adf73324),
U56LE(0x1b4faff4609845), U56LE(0x297ea0ea2692ff)
}}},
#endif
{{{ 19 }}}
}};

static const word_t curve_prime_order_lo[(224+WORD_BITS-1)/WORD_BITS] = {
U64LE(0xdc873d6d54a7bb0d),
U64LE(0xde933d8d723a70aa),
U64LE(0x3bb124b65129c96f),
0x8335dc16
};
const struct barrett_prime_t curve_prime_order = {
GOLDI_FIELD_WORDS,
62 % WORD_BITS,
sizeof(curve_prime_order_lo)/sizeof(curve_prime_order_lo[0]),
curve_prime_order_lo
};

const field_a_t
sqrt_d_minus_1 = {{{
#ifdef USE_NEON_PERM
0x6749f46,0x24d9770,0xd2e2183,0xa49f7b4,
0xb4f0179,0x8c5f656,0x888db42,0xdcac462,
0xbdeea38,0x748734a,0x5a189aa,0x49443b8,
0x6f14c06,0x0b25b7a,0x51e65ca,0x12fec0c
#else
U56LE(0xd2e21836749f46),
U56LE(0x888db42b4f0179),
U56LE(0x5a189aabdeea38),
U56LE(0x51e65ca6f14c06),
U56LE(0xa49f7b424d9770),
U56LE(0xdcac4628c5f656),
U56LE(0x49443b8748734a),
U56LE(0x12fec0c0b25b7a)
#endif
}}};

+ 1
- 1
src/p480/f_arithmetic.c View File

@@ -8,7 +8,7 @@
* @brief Field-specific arithmetic.
*/

#include "ec_point.h"
#include "field.h"

void
field_isr (


+ 0
- 30
src/p480/f_magic.h View File

@@ -1,30 +0,0 @@
/**
* @file f_magic.h
* @copyright
* Copyright (c) 2014 Cryptography Research, Inc. \n
* Released under the MIT License. See LICENSE.txt for license information.
* @author Mike Hamburg
* @brief Goldilocks magic numbers (group orders, coefficients, algo params etc).
*/

#ifndef __GOLDI_F_MAGIC_H__
#define __GOLDI_F_MAGIC_H__ 1

#include "field.h"
#include "ec_point.h"

/**
* @brief The Edwards "d" term for this curve.
*/
static const int64_t EDWARDS_D = 53825;

/** @brief The number of combs to use for signed comb algo */
#define COMB_N (USE_BIG_COMBS ? 6 : 5)

/** @brief The number of teeth of the combs for signed comb algo */
#define COMB_T (USE_BIG_COMBS ? 5 : 4)

/** @brief The spacing the of combs for signed comb algo */
#define COMB_S (USE_BIG_COMBS ? 16 : 24)

#endif /* __GOLDI_F_MAGIC_H__ */

+ 0
- 68
src/p480/magic.c View File

@@ -1,68 +0,0 @@
/* Copyright (c) 2014 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/

#include "field.h"
#include "magic.h"
#include "barrett_field.h"

/* FUTURE: automatically generate this file? */

const uint8_t FIELD_MODULUS[FIELD_BYTES] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
/*!*/ 0xfe, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};

const word_t SCALARMUL_FIXED_WINDOW_ADJUSTMENT[2*SCALAR_WORDS] = {
U64LE(0x58b51bc56ea8f0c4),
U64LE(0xd361f6a2348b50c9),
U64LE(0x08089c139c0002ae),
U64LE(0x0001d2ac3d9503a0),
U64LE(0x0000000000000000),
U64LE(0x0000000000000000),
U64LE(0x0000000000000000),
0x40000000,
U64LE(0xcb9c25073e36965b),
U64LE(0x6f2d48d8460f1661),
U64LE(0x0ab6256f7aaaae3e),
U64LE(0x00026e3afcc6af80),
U64LE(0x0000000000000000),
U64LE(0x0000000000000000),
U64LE(0x0000000000000000),
0x00000000
};

const affine_a_t goldilocks_base_point = {{
{{{
U60LE(0x849ff7f845c30d3),
U60LE(0x7dda488553a4c5b),
U60LE(0x1d3a2d9844831ea),
U60LE(0xb33ecf6ade470a2),
U60LE(0x8b3cb95210bd3c3),
U60LE(0xfc955e59aeefa65),
U60LE(0x3ab247cd530013c),
U60LE(0x7ca42af3d564280)
}}},
{{{ 5 }}}
}};

static const word_t curve_prime_order_lo[(240+WORD_BITS-1)/WORD_BITS] = {
U64LE(0x72e70941cf8da597),
U64LE(0x9bcb52361183c598),
U64LE(0x02ad895bdeaaab8f),
U64LE(0x9b8ebf31abe0)
};
const struct barrett_prime_t curve_prime_order = {
GOLDI_FIELD_WORDS,
30 % WORD_BITS,
sizeof(curve_prime_order_lo)/sizeof(curve_prime_order_lo[0]),
curve_prime_order_lo
};

const field_a_t
sqrt_d_minus_1 = {{{
232 /* Whoa, it comes out even. */
}}};

+ 1
- 1
src/p521/f_arithmetic.c View File

@@ -8,7 +8,7 @@
* @brief Field-specific arithmetic.
*/

#include "ec_point.h"
#include "field.h"

void
field_isr (


+ 0
- 30
src/p521/f_magic.h View File

@@ -1,30 +0,0 @@
/**
* @file f_magic.h
* @copyright
* Copyright (c) 2014 Cryptography Research, Inc. \n
* Released under the MIT License. See LICENSE.txt for license information.
* @author Mike Hamburg
* @brief Goldilocks magic numbers (group orders, coefficients, algo params etc).
*/

#ifndef __GOLDI_F_MAGIC_H__
#define __GOLDI_F_MAGIC_H__ 1

#include "field.h"
#include "ec_point.h"

/**
* @brief The Edwards "d" term for this curve.
*/
static const int64_t EDWARDS_D = -376014;

/** @brief The number of combs to use for signed comb algo */
#define COMB_N (USE_BIG_COMBS ? 4 : 5)

/** @brief The number of teeth of the combs for signed comb algo */
#define COMB_T (USE_BIG_COMBS ? 5 : 4)

/** @brief The spacing the of combs for signed comb algo */
#define COMB_S (USE_BIG_COMBS ? 26 : 26)

#endif /* __GOLDI_F_MAGIC_H__ */

+ 0
- 111
src/p521/magic.c View File

@@ -1,111 +0,0 @@
/* Copyright (c) 2014 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/

#include "field.h"
#include "magic.h"
#include "barrett_field.h"

/* FUTURE: automatically generate this file? */

const uint8_t FIELD_MODULUS[FIELD_BYTES] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0x01
};

const word_t SCALARMUL_FIXED_WINDOW_ADJUSTMENT[2*SCALAR_WORDS] = {
U64LE(0xbf15dbca0ae7f294),
U64LE(0x04273ba96570e0ba),
U64LE(0xc94750a1813ac0fb),
U64LE(0xea4939b8b9037a08),
U64LE(0x0000000000000002),
U64LE(0x0000000000000000),
U64LE(0x0000000000000000),
U64LE(0x0000000000000000),
0x80,
U64LE(0x7e2bb79415cfe529),
U64LE(0x084e7752cae1c175),
U64LE(0x928ea143027581f6),
U64LE(0xd49273717206f411),
U64LE(0x0000000000000005),
U64LE(0x0000000000000000),
U64LE(0x0000000000000000),
U64LE(0x0000000000000000),
0x0
};

const affine_a_t goldilocks_base_point = {{
{{{
#ifdef USE_P521_3x3_TRANSPOSE
U58LE(0x02a940a2f19ba6c),
U58LE(0x3331c90d2c6ba52),
U58LE(0x2878a3bfd9f42fc),
0,
U58LE(0x03ec4cd920e2a8c),
U58LE(0x0c6203913f6ecc5),
U58LE(0x06277e432c8a5ac),
0,
U58LE(0x1d568fc99c6059d),
U58LE(0x1b2063b22fcf270),
U58LE(0x0752cb45c48648b),
0
#else
U58LE(0x02a940a2f19ba6c),
U58LE(0x03ec4cd920e2a8c),
U58LE(0x1d568fc99c6059d),
U58LE(0x3331c90d2c6ba52),
U58LE(0x0c6203913f6ecc5),
U58LE(0x1b2063b22fcf270),
U58LE(0x2878a3bfd9f42fc),
U58LE(0x06277e432c8a5ac),
U58LE(0x0752cb45c48648b)
#endif
}}},
{{{ 12 }}}
}};

static const word_t curve_prime_order_lo[(261+WORD_BITS-1)/WORD_BITS] = {
U64LE(0xbf15dbca0ae7f295),
U64LE(0x4273ba96570e0ba),
U64LE(0xc94750a1813ac0fb),
U64LE(0xea4939b8b9037a08),
2
};
const struct barrett_prime_t curve_prime_order = {
GOLDI_FIELD_WORDS,
7 % WORD_BITS,
sizeof(curve_prime_order_lo)/sizeof(curve_prime_order_lo[0]),
curve_prime_order_lo
};

const field_a_t
sqrt_d_minus_1 = {{{
#ifdef USE_P521_3x3_TRANSPOSE
U58LE(0x1e2be72c1c81990),
U58LE(0x207dfc238a33e46),
U58LE(0x2264cfb418c4c30),
0,
U58LE(0x1135002ad596c69),
U58LE(0x0e30107cd79d1f6),
U58LE(0x0524b9e715937f5),
0,
U58LE(0x2ab3a257a22666d),
U58LE(0x2d80cc2936a1824),
U58LE(0x0a9ea3ac10d6aed),
0
#else
U58LE(0x1e2be72c1c81990),
U58LE(0x1135002ad596c69),
U58LE(0x2ab3a257a22666d),
U58LE(0x207dfc238a33e46),
U58LE(0x0e30107cd79d1f6),
U58LE(0x2d80cc2936a1824),
U58LE(0x2264cfb418c4c30),
U58LE(0x0524b9e715937f5),
U58LE(0x0a9ea3ac10d6aed)
#endif
}}};

+ 0
- 987
src/scalarmul.c View File

@@ -1,987 +0,0 @@
/* Copyright (c) 2014 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/

#include "word.h"

#include <stdlib.h>
#include <limits.h>
#include <string.h>

#include "intrinsics.h"
#include "scalarmul.h"
#include "barrett_field.h"
#include "constant_time.h"

mask_t
montgomery_ladder (
field_a_t out,
const field_a_t in,
const word_t *scalar,
unsigned int nbits,
unsigned int n_extra_doubles
) {
montgomery_a_t mont;
deserialize_montgomery(mont, in);
int i,j,n=(nbits-1)%WORD_BITS;
mask_t pflip = 0;
for (j=(nbits+WORD_BITS-1)/WORD_BITS-1; j>=0; j--) {
word_t w = scalar[j];
for (i=n; i>=0; i--) {
mask_t flip = -((w>>i)&1);
constant_time_cond_swap(mont->xa,mont->xd,sizeof(mont->xd),flip^pflip);
constant_time_cond_swap(mont->za,mont->zd,sizeof(mont->xd),flip^pflip);
montgomery_step(mont);
pflip = flip;
}
n = WORD_BITS-1;
}
constant_time_cond_swap(mont->xa,mont->xd,sizeof(mont->xd),pflip);
constant_time_cond_swap(mont->za,mont->zd,sizeof(mont->xd),pflip);
assert(n_extra_doubles < INT_MAX);
for (j=0; j<(int)n_extra_doubles; j++) {
montgomery_step(mont);
}
return serialize_montgomery(out, mont, in);
}

mask_t
decaf_montgomery_ladder (
field_a_t out,
const field_a_t in,
const word_t *scalar,
unsigned int nbits
) {
montgomery_aux_a_t mont;
decaf_deserialize_montgomery(mont, in);
int i,j,n=(nbits-1)%WORD_BITS;
mask_t pflip = 0;
for (j=(nbits+WORD_BITS-1)/WORD_BITS-1; j>=0; j--) {
word_t w = scalar[j];
for (i=n; i>=0; i--) {
mask_t flip = -((w>>i)&1);
constant_time_cond_swap(mont->xa,mont->xd,sizeof(mont->xd),flip^pflip);
constant_time_cond_swap(mont->za,mont->zd,sizeof(mont->xd),flip^pflip);
montgomery_aux_step(mont);
pflip = flip;
}
n = WORD_BITS-1;
}
constant_time_cond_swap(mont->xa,mont->xd,sizeof(mont->xd),pflip);
constant_time_cond_swap(mont->za,mont->zd,sizeof(mont->xd),pflip);
return decaf_serialize_montgomery(out, mont, pflip);
}

static __inline__ void
__attribute__((unused,always_inline))
constant_time_lookup_tw_pniels (
tw_pniels_a_t out,
const tw_pniels_a_t *in,
int nin,
int idx
) {
constant_time_lookup(out,in,sizeof(*out),nin,idx);
}

static __inline__ void
__attribute__((unused,always_inline))
constant_time_lookup_tw_extended (
tw_extended_a_t out,
const tw_extended_a_t *in,
int nin,
int idx
) {
constant_time_lookup(out,in,sizeof(*out),nin,idx);
}

static __inline__ void
__attribute__((unused,always_inline))
constant_time_lookup_tw_niels (
tw_niels_a_t out,
const tw_niels_a_t *in,
int nin,
int idx
) {
constant_time_lookup(out,in,sizeof(*out),nin,idx);
}

static void
convert_to_signed_window_form (
word_t *out,
const word_t *scalar,
int nwords_scalar,
const word_t *prepared_data,
int nwords_pd
) {
assert(nwords_pd <= nwords_scalar);
mask_t mask = -(scalar[0]&1);

word_t carry = add_nr_ext_packed(out, scalar, nwords_scalar, prepared_data, nwords_pd, ~mask);
carry += add_nr_ext_packed(out, out, nwords_scalar, prepared_data+nwords_pd, nwords_pd, mask);
assert(!(out[0]&1));
int i;
for (i=0; i<nwords_scalar; i++) {
out[i] >>= 1;
if (i<nwords_scalar-1) {
out[i] |= out[i+1]<<(WORD_BITS-1);
} else {
out[i] |= carry<<(WORD_BITS-1);
}
}
}

void
scalarmul (
tw_extensible_a_t working,
const word_t scalar[SCALAR_WORDS]
) {
const int WINDOW = SCALARMUL_FIXED_WINDOW_SIZE,
WINDOW_MASK = (1<<WINDOW)-1, WINDOW_T_MASK = WINDOW_MASK >> 1,
NTABLE = 1<<(WINDOW-1),
nbits = ROUND_UP(SCALAR_BITS,WINDOW);
word_t scalar2[SCALAR_WORDS];
convert_to_signed_window_form (
scalar2, scalar, SCALAR_WORDS,
SCALARMUL_FIXED_WINDOW_ADJUSTMENT, SCALAR_WORDS
);

/* FIXME: tabulator is redundant */
tw_extensible_a_t tabulator;
copy_tw_extensible(tabulator, working);
double_tw_extensible(tabulator);

tw_pniels_a_t
pn VECTOR_ALIGNED,
multiples[NTABLE] VECTOR_ALIGNED;
convert_tw_extensible_to_tw_pniels(pn, tabulator);
convert_tw_extensible_to_tw_pniels(multiples[0], working);

int i,j;
for (i=1; i<NTABLE; i++) {
add_tw_pniels_to_tw_extensible(working, pn);
convert_tw_extensible_to_tw_pniels(multiples[i], working);
}

i = nbits - WINDOW;
int bits = scalar2[i/WORD_BITS] >> (i%WORD_BITS) & WINDOW_MASK,
inv = (bits>>(WINDOW-1))-1;
bits ^= inv;
constant_time_lookup_tw_pniels(pn, (const tw_pniels_a_t*)multiples, NTABLE, bits & WINDOW_T_MASK);
cond_negate_tw_pniels(pn, inv);
convert_tw_pniels_to_tw_extensible(working, pn);

for (i-=WINDOW; i>=0; i-=WINDOW) {
for (j=0; j<WINDOW; j++) {
double_tw_extensible(working);
}

bits = scalar2[i/WORD_BITS] >> (i%WORD_BITS);
if (i/WORD_BITS < SCALAR_WORDS-1 && i%WORD_BITS >= WORD_BITS-WINDOW) {
bits ^= scalar2[i/WORD_BITS+1] << (WORD_BITS - (i%WORD_BITS));
}
bits &= WINDOW_MASK;
inv = (bits>>(WINDOW-1))-1;
bits ^= inv;
constant_time_lookup_tw_pniels(pn, (const tw_pniels_a_t*)multiples, NTABLE, bits & WINDOW_T_MASK);
cond_negate_tw_pniels(pn, inv);
add_tw_pniels_to_tw_extensible(working, pn);
}
}

void
scalarmul_ed (
tw_extended_a_t working,
const word_t scalar[SCALAR_WORDS]
) {
const int WINDOW = SCALARMUL_FIXED_WINDOW_SIZE,
WINDOW_MASK = (1<<WINDOW)-1, WINDOW_T_MASK = WINDOW_MASK >> 1,
NTABLE = 1<<(WINDOW-1),
nbits = ROUND_UP(SCALAR_BITS,WINDOW);
word_t scalar2[SCALAR_WORDS];
convert_to_signed_window_form (
scalar2, scalar, SCALAR_WORDS,
SCALARMUL_FIXED_WINDOW_ADJUSTMENT, SCALAR_WORDS
);

tw_extended_a_t
tmp VECTOR_ALIGNED,
multiples[NTABLE] VECTOR_ALIGNED;

copy_tw_extended(tmp, working);
add_tw_extended(tmp, tmp);
copy_tw_extended(multiples[0], working);

int i,j;
for (i=1; i<NTABLE; i++) {
add_tw_extended(working, tmp);
copy_tw_extended(multiples[i], working);
}

i = nbits - WINDOW;
int bits, inv;
set_identity_tw_extended(working);

for (; i>=0; i-=WINDOW) {
if (i != nbits-WINDOW) {
for (j=0; j<WINDOW; j++) {
add_tw_extended(working,working);
}
}

bits = scalar2[i/WORD_BITS] >> (i%WORD_BITS);
if (i/WORD_BITS < SCALAR_WORDS-1 && i%WORD_BITS >= WORD_BITS-WINDOW) {
bits ^= scalar2[i/WORD_BITS+1] << (WORD_BITS - (i%WORD_BITS));
}
bits &= WINDOW_MASK;
inv = (bits>>(WINDOW-1))-1;
bits ^= inv;
constant_time_lookup_tw_extended(tmp, (const tw_extended_a_t*)multiples, NTABLE, bits & WINDOW_T_MASK);
add_sub_tw_extended(working, working, tmp, inv);
}
}

void
scalarmul_vlook (
tw_extensible_a_t working,
const word_t scalar[SCALAR_WORDS]
) {
const int WINDOW = SCALARMUL_FIXED_WINDOW_SIZE,
WINDOW_MASK = (1<<WINDOW)-1, WINDOW_T_MASK = WINDOW_MASK >> 1,
NTABLE = 1<<(WINDOW-1),
nbits = ROUND_UP(SCALAR_BITS,WINDOW);
word_t scalar2[SCALAR_WORDS];
convert_to_signed_window_form(
scalar2, scalar, SCALAR_WORDS,
SCALARMUL_FIXED_WINDOW_ADJUSTMENT, SCALAR_WORDS
);


tw_extensible_a_t tabulator;
copy_tw_extensible(tabulator, working);
double_tw_extensible(tabulator);

tw_pniels_a_t
pn VECTOR_ALIGNED,
multiples[NTABLE] VECTOR_ALIGNED;
convert_tw_extensible_to_tw_pniels(pn, tabulator);
convert_tw_extensible_to_tw_pniels(multiples[0], working);

int i,j;
for (i=1; i<NTABLE; i++) {
add_tw_pniels_to_tw_extensible(working, pn);
convert_tw_extensible_to_tw_pniels(multiples[i], working);
}

i = nbits - WINDOW;
int bits = scalar2[i/WORD_BITS] >> (i%WORD_BITS) & WINDOW_MASK,
inv = (bits>>(WINDOW-1))-1;
bits ^= inv;

copy_tw_pniels(pn, multiples[bits & WINDOW_T_MASK]);
cond_negate_tw_pniels(pn, inv);
convert_tw_pniels_to_tw_extensible(working, pn);

for (i-=WINDOW; i>=0; i-=WINDOW) {
for (j=0; j<WINDOW; j++) {
double_tw_extensible(working);
}

bits = scalar2[i/WORD_BITS] >> (i%WORD_BITS);
if (i/WORD_BITS < SCALAR_WORDS-1 && i%WORD_BITS >= WORD_BITS-WINDOW) {
bits ^= scalar2[i/WORD_BITS+1] << (WORD_BITS - (i%WORD_BITS));
}
bits &= WINDOW_MASK;
inv = (bits>>(WINDOW-1))-1;
bits ^= inv;
copy_tw_pniels(pn, multiples[bits & WINDOW_T_MASK]);
cond_negate_tw_pniels(pn, inv);
add_tw_pniels_to_tw_extensible(working, pn);
}
}

static mask_t
schedule_scalar_for_combs (
word_t *scalar2,
const word_t *scalar,
unsigned int nbits,
const struct fixed_base_table_t* table
) {
unsigned int i;
unsigned int n = table->n, t = table->t, s = table->s;
if (n*t*s < nbits || n < 1 || t < 1 || s < 1) {
return MASK_FAILURE;
}
unsigned int scalar_words = (nbits + WORD_BITS - 1)/WORD_BITS,
scalar2_words = scalar_words;
if (scalar2_words < SCALAR_WORDS)
scalar2_words = SCALAR_WORDS;
word_t scalar3[scalar2_words];
/* Copy scalar to scalar3, but clear its high bits (if there are any) */
for (i=0; i<scalar_words; i++) {
scalar3[i] = scalar[i];
}
if (likely(i) && (nbits % WORD_BITS)) {
scalar3[i-1] &= (((word_t)1) << (nbits%WORD_BITS)) - 1;
}
for (; i<scalar2_words; i++) {
scalar3[i] = 0;
}
convert_to_signed_window_form (
scalar2,
scalar3, scalar2_words,
table->scalar_adjustments , SCALAR_WORDS
);
return MASK_SUCCESS;
}

mask_t
scalarmul_fixed_base (
tw_extensible_a_t out,
const word_t scalar[SCALAR_WORDS],
unsigned int nbits,
const struct fixed_base_table_t* table
) {
unsigned int i,j,k;
unsigned int n = table->n, t = table->t, s = table->s;
unsigned int scalar2_words = (nbits + WORD_BITS - 1)/WORD_BITS;
if (scalar2_words < SCALAR_WORDS) scalar2_words = SCALAR_WORDS;
word_t scalar2[scalar2_words];

mask_t succ = schedule_scalar_for_combs(scalar2, scalar, nbits, table);
if (!succ) return MASK_FAILURE;
#ifdef __clang_analyzer__
assert(t >= 1);
#endif
tw_niels_a_t ni;
for (i=0; i<s; i++) {
if (i) double_tw_extensible(out);
for (j=0; j<n; j++) {
int tab = 0;
/*
* PERF: This computation takes about 1.5µs on SBR, i.e. 2-3% of the
* time of a keygen or sign op. Surely it is possible to speed it up.
*/
for (k=0; k<t; k++) {
unsigned int bit = (s-1-i) + k*s + j*(s*t);
if (bit < scalar2_words * WORD_BITS) {
tab |= (scalar2[bit/WORD_BITS] >> (bit%WORD_BITS) & 1) << k;
}
}
mask_t invert = (tab>>(t-1))-1;
tab ^= invert;
tab &= (1<<(t-1)) - 1;
constant_time_lookup_tw_niels(ni, (const tw_niels_a_t*)table->table + (j<<(t-1)), 1<<(t-1), tab);
cond_negate_tw_niels(ni, invert);
if (i||j) {
add_tw_niels_to_tw_extensible(out, ni);
} else {
convert_tw_niels_to_tw_extensible(out, ni);
}
}
}
return MASK_SUCCESS;
}

mask_t
linear_combo_combs_vt (
tw_extensible_a_t out,
const word_t scalar1[SCALAR_WORDS],
unsigned int nbits1,
const struct fixed_base_table_t* table1,
const word_t scalar2[SCALAR_WORDS],
unsigned int nbits2,
const struct fixed_base_table_t* table2
) {
unsigned int i,j,k,sc;
unsigned int s1 = table1->s, s2 = table2->s, smax = (s1 > s2) ? s1 : s2;
unsigned int scalar1b_words = (nbits1 + WORD_BITS - 1)/WORD_BITS;
if (scalar1b_words < SCALAR_WORDS) scalar1b_words = SCALAR_WORDS;
unsigned int scalar2b_words = (nbits2 + WORD_BITS - 1)/WORD_BITS;
if (scalar2b_words < SCALAR_WORDS) scalar2b_words = SCALAR_WORDS;
word_t scalar1b[scalar1b_words], scalar2b[scalar2b_words];

/* Schedule the scalars */
mask_t succ;
succ = schedule_scalar_for_combs(scalar1b, scalar1, nbits1, table1);
if (!succ) return MASK_FAILURE;
succ = schedule_scalar_for_combs(scalar2b, scalar2, nbits2, table2);
if (!succ) return MASK_FAILURE;

#ifdef __clang_analyzer__
assert(table1->t >= 1);
assert(table2->t >= 1);
#endif
const struct tw_niels_t *ni;
unsigned int swords[2] = {scalar1b_words, scalar2b_words};
word_t *scalars[2] = {scalar1b,scalar2b};
set_identity_tw_extensible(out);
for (i=0; i<smax; i++) {
if (i) double_tw_extensible(out);
for (sc=0; sc<2; sc++) {
const struct fixed_base_table_t* table = sc ? table2 : table1;
int ii = i-smax+table->s;
if (ii < 0) continue;
assert(ii < (int)table->s);
for (j=0; j<table->n; j++) {
int tab = 0;

for (k=0; k<table->t; k++) {
unsigned int bit = (table->s-1-ii) + k*table->s + j*(table->s*table->t);
if (bit < swords[sc] * WORD_BITS) {
tab |= (scalars[sc][bit/WORD_BITS] >> (bit%WORD_BITS) & 1) << k;
}
}
mask_t invert = (tab>>(table->t-1))-1;
tab ^= invert;
tab &= (1<<(table->t-1)) - 1;
ni = table->table[tab + (j<<(table->t-1))];
if (invert) sub_tw_niels_from_tw_extensible(out, ni);
else add_tw_niels_to_tw_extensible(out, ni);
}
}
}
return MASK_SUCCESS;
}


mask_t
precompute_fixed_base (
struct fixed_base_table_t* out,
const tw_extensible_a_t base,
unsigned int n,
unsigned int t,
unsigned int s,
tw_niels_a_t *prealloc
) {
if (s < 1 || t < 1 || n < 1 || n*t*s < SCALAR_BITS) {
really_memset(out, 0, sizeof(*out));
return 0;
}
out->n = n;
out->t = t;
out->s = s;
tw_extensible_a_t working, start;
copy_tw_extensible(working, base);
tw_pniels_a_t pn_tmp;
tw_pniels_a_t *doubles = (tw_pniels_a_t *) malloc_vector(sizeof(*doubles) * (t-1));
field_a_t *zs = (field_a_t *) malloc_vector(sizeof(*zs) * (n<<(t-1)));
field_a_t *zis = (field_a_t *) malloc_vector(sizeof(*zis) * (n<<(t-1)));
tw_niels_a_t *table = prealloc;
if (prealloc) {
out->own_table = 0;
} else {
table = (tw_niels_a_t *) malloc_vector(sizeof(*table) * (n<<(t-1)));
out->own_table = 1;
}
out->table = table;
if (!doubles || !zs || !zis || !table) {
free(doubles);
free(zs);
free(zis);
really_memset(out, 0, sizeof(*out));
really_memset(table, 0, sizeof(*table) * (n<<(t-1)));
if (!prealloc) free(table);
return 0;
}
unsigned int i,j,k;
/* Compute the scalar adjustments, equal to 2^nbits-1 mod q */
unsigned int adjustment_size = (n*t*s)/WORD_BITS + 1;
assert(adjustment_size >= SCALAR_WORDS);
word_t adjustment[adjustment_size];
for (i=0; i<adjustment_size; i++) {
adjustment[i] = -1;
}
adjustment[(n*t*s) / WORD_BITS] += ((word_t)1) << ((n*t*s) % WORD_BITS);
/* The low adjustment is 2^nbits - 1 mod q */
barrett_reduce(adjustment, adjustment_size, 0, &curve_prime_order);
word_t *low_adjustment = &out->scalar_adjustments[(SCALAR_WORDS)*(adjustment[0] & 1)],
*high_adjustment = &out->scalar_adjustments[(SCALAR_WORDS)*((~adjustment[0]) & 1)];
for (i=0; i<SCALAR_WORDS; i++) {
low_adjustment[i] = adjustment[i];
}
/* The high adjustment is low + q = low - q_lo + 2^big */
(void)
sub_nr_ext_packed(
high_adjustment,
adjustment, SCALAR_WORDS,
curve_prime_order.p_lo, curve_prime_order.nwords_lo,
-1
);
if (curve_prime_order.p_shift) {
high_adjustment[curve_prime_order.nwords_p - 1] += ((word_t)1)<<curve_prime_order.p_shift;
}
/* OK, now compute the tables */
for (i=0; i<n; i++) {

/* doubling phase */
for (j=0; j<t; j++) {
if (j) {
convert_tw_extensible_to_tw_pniels(pn_tmp, working);
add_tw_pniels_to_tw_extensible(start, pn_tmp);
} else {
copy_tw_extensible(start, working);
}

if (j==t-1 && i==n-1) {
break;
}

double_tw_extensible(working);
if (j<t-1) {
convert_tw_extensible_to_tw_pniels(doubles[j], working);
}

for (k=0; k<s-1; k++) {
double_tw_extensible(working);
}
}

/* Gray-code phase */
for (j=0;; j++) {
int gray = j ^ (j>>1);
int idx = (((i+1)<<(t-1))-1) ^ gray;

convert_tw_extensible_to_tw_pniels(pn_tmp, start);
copy_tw_niels(table[idx], pn_tmp->n);
field_copy(zs[idx], pn_tmp->z);
if (j >= (1u<<(t-1)) - 1) break;
int delta = (j+1) ^ ((j+1)>>1) ^ gray;

for (k=0; delta>1; k++)
delta >>=1;
if (gray & (1<<k)) {
/* start += doubles[k] */
add_tw_pniels_to_tw_extensible(start, doubles[k]);
} else {
/* start -= doubles[k] */
sub_tw_pniels_from_tw_extensible(start, doubles[k]);
}
}
}
field_simultaneous_invert(zis, (const field_a_t*)zs, n<<(t-1));

field_a_t product;
for (i=0; i<n<<(t-1); i++) {
field_mul(product, table[i]->a, zis[i]);
field_strong_reduce(product);
field_copy(table[i]->a, product);
field_mul(product, table[i]->b, zis[i]);
field_strong_reduce(product);
field_copy(table[i]->b, product);
field_mul(product, table[i]->c, zis[i]);
field_strong_reduce(product);
field_copy(table[i]->c, product);
}
mask_t ret = ~field_is_zero(zis[0]);

free(doubles);
free(zs);
free(zis);

if (unlikely(!ret)) {
really_memset(table, 0, sizeof(*table) * (n<<(t-1)));
if (!prealloc) free(table);
really_memset(out, 0, sizeof(*out));
return 0;
}

return ret;
}

void
destroy_fixed_base (
struct fixed_base_table_t* table
) {
if (table->table) {
really_memset(table->table,0,sizeof(*table->table)*(table->n<<(table->t-1)));
}
if (table->own_table) {
free(table->table);
}
really_memset(table,0,sizeof(*table));
}

mask_t
precompute_fixed_base_wnaf (
tw_niels_a_t *out,
const tw_extensible_a_t const_base,
unsigned int tbits
) {
int i;
field_a_t *zs = (field_a_t *) malloc_vector(sizeof(*zs)<<tbits);
field_a_t *zis = (field_a_t *) malloc_vector(sizeof(*zis)<<tbits);

if (!zs || !zis) {
free(zs);
free(zis);
return 0;
}

tw_extensible_a_t base;
copy_tw_extensible(base,const_base);
tw_pniels_a_t twop, tmp;
convert_tw_extensible_to_tw_pniels(tmp, base);
field_copy(zs[0], tmp->z);
copy_tw_niels(out[0], tmp->n);

if (tbits > 0) {
double_tw_extensible(base);
convert_tw_extensible_to_tw_pniels(twop, base);
add_tw_pniels_to_tw_extensible(base, tmp);
convert_tw_extensible_to_tw_pniels(tmp, base);
field_copy(zs[1], tmp->z);
copy_tw_niels(out[1], tmp->n);

for (i=2; i < 1<<tbits; i++) {
add_tw_pniels_to_tw_extensible(base, twop);
convert_tw_extensible_to_tw_pniels(tmp, base);
field_copy(zs[i], tmp->z);
copy_tw_niels(out[i], tmp->n);
}
}
field_simultaneous_invert(zis, (const field_a_t *)zs, 1<<tbits);

field_a_t product;
for (i=0; i<1<<tbits; i++) {
field_mul(product, out[i]->a, zis[i]);
field_strong_reduce(product);
field_copy(out[i]->a, product);
field_mul(product, out[i]->b, zis[i]);
field_strong_reduce(product);
field_copy(out[i]->b, product);
field_mul(product, out[i]->c, zis[i]);
field_strong_reduce(product);
field_copy(out[i]->c, product);
}

free(zs);
free(zis);

return -1;
}

/**
* @cond internal
* Control for variable-time scalar multiply algorithms.
*/
struct smvt_control {
int power, addend;
};

static int
recode_wnaf(
struct smvt_control *control, /* [nbits/(tableBits+1) + 3] */
const word_t *scalar,
unsigned int nbits,
unsigned int tableBits)
{
int current = 0, i, j;
unsigned int position = 0;

/* PERF: negate scalar if it's large
* PERF: this is a pretty simplistic algorithm. I'm sure there's a faster one...
*/
for (i=nbits-1; i >= 0; i--) {
int bit = (scalar[i/WORD_BITS] >> (i%WORD_BITS)) & 1;
current = 2*current + bit;

/*
* Sizing: |current| >= 2^(tableBits+1) -> |current| = 2^0
* So current loses (tableBits+1) bits every time. It otherwise gains
* 1 bit per iteration. The number of iterations is
* (nbits + 2 + tableBits), and an additional control word is added at
* the end. So the total number of control words is at most
* ceil((nbits+1) / (tableBits+1)) + 2 = floor((nbits)/(tableBits+1)) + 2.
* There's also the stopper with power -1, for a total of +3.
*/
if (current >= (2<<tableBits) || current <= -1 - (2<<tableBits)) {
int delta = (current + 1) >> 1; /* |delta| < 2^tablebits */
current = -(current & 1);

for (j=i; (delta & 1) == 0; j++) {
delta >>= 1;
}
control[position].power = j+1;
control[position].addend = delta;
position++;
assert(position <= nbits/(tableBits+1) + 2);
}
}
if (current) {
for (j=0; (current & 1) == 0; j++) {
current >>= 1;
}
control[position].power = j;
control[position].addend = current;
position++;
assert(position <= nbits/(tableBits+1) + 2);
}
control[position].power = -1;
control[position].addend = 0;
return position;
}


static void
prepare_wnaf_table(
tw_pniels_a_t *output,
tw_extensible_a_t working,
unsigned int tbits
) {
int i;
convert_tw_extensible_to_tw_pniels(output[0], working);

if (tbits == 0) return;

double_tw_extensible(working);
tw_pniels_a_t twop;
convert_tw_extensible_to_tw_pniels(twop, working);

add_tw_pniels_to_tw_extensible(working, output[0]);
convert_tw_extensible_to_tw_pniels(output[1], working);

for (i=2; i < 1<<tbits; i++) {
add_tw_pniels_to_tw_extensible(working, twop);
convert_tw_extensible_to_tw_pniels(output[i], working);
}
}

void
scalarmul_vt (
tw_extensible_a_t working,
const word_t scalar[SCALAR_WORDS],
unsigned int nbits
) {
const int table_bits = SCALARMUL_WNAF_TABLE_BITS;
struct smvt_control control[nbits/(table_bits+1)+3];
int control_bits = recode_wnaf(control, scalar, nbits, table_bits);
tw_pniels_a_t precmp[1<<table_bits];
prepare_wnaf_table(precmp, working, table_bits);
if (control_bits > 0) {
assert(control[0].addend > 0);
assert(control[0].power >= 0);
convert_tw_pniels_to_tw_extensible(working, precmp[control[0].addend >> 1]);
} else {
set_identity_tw_extensible(working);
return;
}
int conti = 1, i;
for (i = control[0].power - 1; i >= 0; i--) {
double_tw_extensible(working);

if (i == control[conti].power) {
assert(control[conti].addend);

if (control[conti].addend > 0) {
add_tw_pniels_to_tw_extensible(working, precmp[control[conti].addend >> 1]);
} else {
sub_tw_pniels_from_tw_extensible(working, precmp[(-control[conti].addend) >> 1]);
}
conti++;
assert(conti <= control_bits);
}
}
}

void
scalarmul_fixed_base_wnaf_vt (
tw_extensible_a_t working,
const word_t scalar[SCALAR_WORDS],
unsigned int nbits,
const tw_niels_a_t *precmp,
unsigned int table_bits
) {
struct smvt_control control[nbits/(table_bits+1)+3];
int control_bits = recode_wnaf(control, scalar, nbits, table_bits);
if (control_bits > 0) {
assert(control[0].addend > 0);
assert(control[0].power >= 0);
convert_tw_niels_to_tw_extensible(working, precmp[control[0].addend >> 1]);
} else {
set_identity_tw_extensible(working);
return;
}
int conti = 1, i;
for (; control[conti].power >= 0; conti++) {
assert(conti <= control_bits);
for (i = control[conti-1].power - control[conti].power; i; i--) {
double_tw_extensible(working);
}
assert(control[conti].addend);
if (control[conti].addend > 0) {
add_tw_niels_to_tw_extensible(working, precmp[control[conti].addend >> 1]);
} else {
sub_tw_niels_from_tw_extensible(working, precmp[(-control[conti].addend) >> 1]);
}
}

for (i = control[conti-1].power; i; i--) {
double_tw_extensible(working);
}
}

void
linear_combo_var_fixed_vt(
tw_extensible_a_t working,
const word_t scalar_var[SCALAR_WORDS],
unsigned int nbits_var,
const word_t scalar_pre[SCALAR_WORDS],
unsigned int nbits_pre,
const tw_niels_a_t *precmp,
unsigned int table_bits_pre
) {
const int table_bits_var = SCALARMUL_WNAF_COMBO_TABLE_BITS;
struct smvt_control control_var[nbits_var/(table_bits_var+1)+3];
struct smvt_control control_pre[nbits_pre/(table_bits_pre+1)+3];
int ncb_var = recode_wnaf(control_var, scalar_var, nbits_var, table_bits_var);
int ncb_pre = recode_wnaf(control_pre, scalar_pre, nbits_pre, table_bits_pre);
(void)ncb_var;
(void)ncb_pre;
tw_pniels_a_t precmp_var[1<<table_bits_var];
prepare_wnaf_table(precmp_var, working, table_bits_var);
int contp=0, contv=0, i;
i = control_var[0].power;
if (i > control_pre[0].power) {
convert_tw_pniels_to_tw_extensible(working, precmp_var[control_var[0].addend >> 1]);
contv++;
} else if (i == control_pre[0].power && i >=0 ) {
convert_tw_pniels_to_tw_extensible(working, precmp_var[control_var[0].addend >> 1]);
add_tw_niels_to_tw_extensible(working, precmp[control_pre[0].addend >> 1]);
contv++; contp++;
} else {
i = control_pre[0].power;
convert_tw_niels_to_tw_extensible(working, precmp[control_pre[0].addend >> 1]);
contp++;
}
if (i < 0) {
set_identity_tw_extensible(working);
return;
}
for (i--; i >= 0; i--) {
double_tw_extensible(working);

if (i == control_var[contv].power) {
assert(control_var[contv].addend);

if (control_var[contv].addend > 0) {
add_tw_pniels_to_tw_extensible(working, precmp_var[control_var[contv].addend >> 1]);
} else {
sub_tw_pniels_from_tw_extensible(working, precmp_var[(-control_var[contv].addend) >> 1]);
}
contv++;
}

if (i == control_pre[contp].power) {
assert(control_pre[contp].addend);

if (control_pre[contp].addend > 0) {
add_tw_niels_to_tw_extensible(working, precmp[control_pre[contp].addend >> 1]);
} else {
sub_tw_niels_from_tw_extensible(working, precmp[(-control_pre[contp].addend) >> 1]);
}
contp++;
}
}
assert(contv == ncb_var);
assert(contp == ncb_pre);
}




+ 0
- 177
src/sha512.c View File

@@ -1,177 +0,0 @@
/* Copyright (c) 2011 Stanford University.
* Copyright (c) 2014 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/
#include "word.h"
#include "sha512.h"

#include <string.h>
#include <assert.h>

static inline uint64_t
rotate_r (
uint64_t x,
int d
) {
return (x >> d) | (x << (64-d));
}

static const uint64_t
sha512_init_state[8] = {
0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179
};

static const uint64_t
sha512_k[80] = {
0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc,
0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118,
0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694,
0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4,
0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70,
0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30,
0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8,
0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3,
0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b,
0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178,
0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c,
0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817
};

static inline uint64_t S0 (uint64_t h1) {
return rotate_r(h1, 28) ^ rotate_r(h1, 34) ^ rotate_r(h1, 39);
}

static inline uint64_t S1 (uint64_t h4) {
return rotate_r(h4,14) ^ rotate_r(h4,18) ^ rotate_r(h4,41);
}

static inline uint64_t s0 (uint64_t a) {
return rotate_r(a,1) ^ rotate_r(a,8) ^ a>>7;
}

static inline uint64_t s1 (uint64_t b) {
return rotate_r(b,19) ^ rotate_r(b,61) ^ b>>6;
}

static inline uint64_t ch (uint64_t h4, uint64_t h5, uint64_t h6) {
return h6^(h4 & (h6^h5));
}

static inline uint64_t maj(uint64_t h1, uint64_t h2, uint64_t h3) {
return (h1&h2) ^ (h3&(h1^h2));
}

static void
sha512_process_block (
sha512_ctx_a_t ctx
) {
uint64_t i, tmp, a, b,
*w = (uint64_t *) ctx->block,
*state = ctx->chain,
h0 = state[0], h1 = state[1], h2 = state[2], h3 = state[3],
h4 = state[4], h5 = state[5], h6 = state[6], h7 = state[7];

/* Clang doesn't unswitch this automatically */
for (i=0; i<16; i++) {
/* load up the input word for this round */
tmp = w[i] = htobe64(w[i]);
tmp = tmp + h7 + S1(h4) + ch(h4,h5,h6) + sha512_k[i];
/* shift register */
h7 = h6; h6 = h5; h5 = h4;
h4 = h3 + tmp;
h3 = h2; h2 = h1; h1 = h0;
h0 = tmp + maj(h1,h2,h3) + S0(h1);
}
for (; i<80; i++) {
/* load up the input word for this round */
a = w[(i+1 ) & 15];
b = w[(i+14) & 15];
tmp = w[i&15] = s0(a) + s1(b) + w[i&15] + w[(i+9) & 15];
tmp = tmp + h7 + S1(h4) + ch(h4,h5,h6) + sha512_k[i];
/* shift register */
h7 = h6; h6 = h5; h5 = h4;
h4 = h3 + tmp;
h3 = h2; h2 = h1; h1 = h0;
h0 = tmp + maj(h1,h2,h3) + S0(h1);
}
state[0] += h0;
state[1] += h1;
state[2] += h2;
state[3] += h3;
state[4] += h4;
state[5] += h5;
state[6] += h6;
state[7] += h7;
}

void
sha512_init (
sha512_ctx_a_t ctx
) {
ctx->nbytes = 0;
memcpy(ctx->chain, sha512_init_state, sizeof(sha512_init_state));
memset(ctx->block, 0, sizeof(ctx->block));
}

void
sha512_update (
sha512_ctx_a_t ctx,
const unsigned char *data,
uint64_t bytes
) {
assert(ctx->nbytes < 1ull<<56);
assert(bytes < 1ull<<56);
while (bytes) {
uint64_t fill = ctx->nbytes % 128, accept = 128 - fill;
if (accept > bytes) accept = bytes;
ctx->nbytes += accept;
memcpy(ctx->block + fill, data, accept);
if (fill+accept == 128)
sha512_process_block(ctx);

bytes -= accept;
data += accept;
}
assert(ctx->nbytes < 1ull<<56);
}

void
sha512_final (
sha512_ctx_a_t ctx,
uint8_t result[64]
) {
uint64_t fill = ctx->nbytes % 128, i;
ctx->block[fill++] = 0x80;
if (fill > 112) {
memset(ctx->block + fill, 0, 128-fill);
sha512_process_block(ctx);
fill = 0;
}
memset(ctx->block + fill, 0, 112-fill);
uint64_t highCount = 0, lowCount = htobe64((ctx->nbytes * 8));
memcpy(&ctx->block[112],&highCount,8);
memcpy(&ctx->block[120],&lowCount,8);
sha512_process_block(ctx);
for (i=0; i<8; i++) {
ctx->chain[i] = htobe64(ctx->chain[i]);
}
memcpy(result, ctx->chain, sizeof(ctx->chain));
sha512_init(ctx);
}

+ 0
- 780
test/bench.c View File

@@ -1,780 +0,0 @@
/* Copyright (c) 2014 Cryptography Research, Inc.
* Released under the MIT License. See LICENSE.txt for license information.
*/

#include "word.h"

#include <sys/time.h>
#include <sys/types.h>
#include <stdio.h>
#include <memory.h>

#include "field.h"
#include "ec_point.h"
#include "scalarmul.h"
#include "barrett_field.h"
#include "crandom.h"
#include "goldilocks.h"
#include "sha512.h"
#include "decaf.h"
#include "decaf_crypto.h"
#include "shake.h"

static __inline__ void
ignore_result ( int result ) {
(void)result;
}

static double now(void) {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec + tv.tv_usec/1000000.0;
}

static void field_randomize( struct crandom_state_t *crand, field_a_t a ) {
crandom_generate(crand, (unsigned char *)a, sizeof(*a));
field_strong_reduce(a);
}

static void q448_randomize( struct crandom_state_t *crand, word_t sk[SCALAR_WORDS] ) {
crandom_generate(crand, (unsigned char *)sk, SCALAR_BYTES);
}

static void field_print( const char *descr, const field_a_t a ) {
int j;
unsigned char ser[FIELD_BYTES];
field_serialize(ser,a);
printf("%s = 0x", descr);
for (j=FIELD_BYTES - 1; j>=0; j--) {
printf("%02x", ser[j]);
}
printf("\n");
}

static void __attribute__((unused))
field_print_full (
const char *descr,
const field_a_t a
) {
int j;
printf("%s = 0x", descr);
for (j=15; j>=0; j--) {
printf("%02" PRIxWORD "_" PRIxWORD56 " ",
a->limb[j]>>28, a->limb[j]&((1<<28)-1));
}
printf("\n");
}

#ifndef N_TESTS_BASE
#define N_TESTS_BASE 10000
#endif

int main(int argc, char **argv) {
(void)argc;
(void)argv;

struct tw_extensible_t ext;
struct extensible_t exta;
struct tw_niels_t niels;
struct tw_pniels_t pniels;
struct affine_t affine;
struct montgomery_t mb;
struct montgomery_aux_t mba;
field_a_t a,b,c,d;
double when;
int i;

int nbase = N_TESTS_BASE;
/* Bad randomness so we can debug. */
char initial_seed[32];
for (i=0; i<32; i++) initial_seed[i] = i;
struct crandom_state_t crand;
crandom_init_from_buffer(&crand, initial_seed);
/* For testing the performance drop from the crandom debuffering change.
ignore_result(crandom_init_from_file(&crand, "/dev/urandom", 10000, 1));
*/
word_t sk[SCALAR_WORDS],tk[SCALAR_WORDS];
q448_randomize(&crand, sk);
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(c,0,sizeof(c));
memset(d,0,sizeof(d));
when = now();
for (i=0; i<nbase*5000; i++) {
field_mul(c, b, a);
}
when = now() - when;
printf("mul: %5.1fns\n", when * 1e9 / i);
when = now();
for (i=0; i<nbase*5000; i++) {
field_sqr(c, a);
}
when = now() - when;
printf("sqr: %5.1fns\n", when * 1e9 / i);
when = now();
for (i=0; i<nbase*5000; i++) {
field_mulw(c, b, 1234562);
}
when = now() - when;
printf("mulw: %5.1fns\n", when * 1e9 / i);
when = now();
for (i=0; i<nbase*500; i++) {
field_mul(c, b, a);
field_mul(a, b, c);
}
when = now() - when;
printf("mul dep: %5.1fns\n", when * 1e9 / i / 2);
when = now();
for (i=0; i<nbase*10; i++) {
field_randomize(&crand, a);
}
when = now() - when;
printf("rand448: %5.1fns\n", when * 1e9 / i);
sha512_ctx_a_t sha;
uint8_t hashout[128];
when = now();
for (i=0; i<nbase; i++) {
sha512_init(sha);
sha512_final(sha, hashout);
}
when = now() - when;
printf("sha512 1blk: %5.1fns\n", when * 1e9 / i);
when = now();
for (i=0; i<nbase; i++) {
sha512_update(sha, hashout, 128);
}
when = now() - when;
printf("sha512 blk: %5.1fns (%0.2f MB/s)\n", when * 1e9 / i, 128*i/when/1e6);
when = now();
for (i=0; i<nbase; i++) {
shake256_hash(hashout,128,hashout,128);
}
when = now() - when;
printf("shake 1blk: %5.1fns\n", when * 1e9 / i);
when = now();
for (i=0; i<nbase; i++) {
field_isr(c, a);
}
when = now() - when;
printf("isr auto: %5.1fµs\n", when * 1e6 / i);
for (i=0; i<100; i++) {
field_randomize(&crand, a);
field_isr(d,a);
field_sqr(b,d);
field_mul(c,b,a);
field_sqr(b,c);
field_subw(b,1);
if (!field_is_zero(b)) {
printf("ISR validation failure!\n");
field_print("a", a);
field_print("s", d);
}
}
when = now();
for (i=0; i<nbase; i++) {
elligator_2s_inject(&affine, a);
}
when = now() - when;
printf("elligator: %5.1fµs\n", when * 1e6 / i);
for (i=0; i<100; i++) {
field_randomize(&crand, a);
elligator_2s_inject(&affine, a);
if (!validate_affine(&affine)) {
printf("Elligator validation failure!\n");
field_print("a", a);
field_print("x", affine.x);
field_print("y", affine.y);
}
}
when = now();
for (i=0; i<nbase; i++) {
deserialize_affine(&affine, a);
}
when = now() - when;
printf("decompress: %5.1fµs\n", when * 1e6 / i);
convert_affine_to_extensible(&exta, &affine);
when = now();
for (i=0; i<nbase; i++) {
serialize_extensible(a, &exta);
}
when = now() - when;
printf("compress: %5.1fµs\n", when * 1e6 / i);
int goods = 0;
for (i=0; i<100; i++) {
field_randomize(&crand, a);
mask_t good = deserialize_affine(&affine, a);
if (good & !validate_affine(&affine)) {
printf("Deserialize validation failure!\n");
field_print("a", a);
field_print("x", affine.x);
field_print("y", affine.y);
} else if (good) {
goods++;
convert_affine_to_extensible(&exta,&affine);
serialize_extensible(b, &exta);
field_sub(c,b,a);
if (!field_is_zero(c)) {
printf("Reserialize validation failure!\n");
field_print("a", a);
field_print("x", affine.x);
field_print("y", affine.y);
deserialize_affine(&affine, b);
field_print("b", b);
field_print("x", affine.x);
field_print("y", affine.y);
printf("\n");
}
}
}
if (goods<i/3) {
printf("Deserialization validation failure! Deserialized %d/%d points\n", goods, i);
}
word_t lsk[768/WORD_BITS];
crandom_generate(&crand, (unsigned char *)lsk, sizeof(lsk));
when = now();
for (i=0; i<nbase*100; i++) {
barrett_reduce(lsk,sizeof(lsk)/sizeof(word_t),0,&curve_prime_order);
}
when = now() - when;
printf("barrett red: %5.1fns\n", when * 1e9 / i);
when = now();
for (i=0; i<nbase*10; i++) {
barrett_mac(lsk,SCALAR_WORDS,lsk,SCALAR_WORDS,lsk,SCALAR_WORDS,&curve_prime_order);
}
when = now() - when;
printf("barrett mac: %5.1fns\n", when * 1e9 / i);
decaf_448_scalar_t asc,bsc,csc;
memset(asc,0,sizeof(asc));
memset(bsc,0,sizeof(bsc));
when = now();
for (i=0; i<nbase*10; i++) {
decaf_448_scalar_mul(csc,asc,bsc);
}
when = now() - when;
printf("decaf mulsc: %5.1fns\n", when * 1e9 / i);
when = now();
for (i=0; i<nbase/10; i++) {
decaf_448_scalar_invert(csc,bsc);
}
when = now() - when;
printf("decaf invsc: %5.1fµs\n", when * 1e6 / i);
memset(&ext,0,sizeof(ext));
memset(&niels,0,sizeof(niels)); /* avoid assertions in p521 even though this isn't a valid ext or niels */

tw_extended_a_t ed;
convert_tw_extensible_to_tw_extended(ed,&ext);

when = now();
for (i=0; i<nbase*100; i++) {
add_tw_niels_to_tw_extensible(&ext, &niels);
}
when = now() - when;
printf("exti+niels: %5.1fns\n", when * 1e9 / i);

when = now();
for (i=0; i<nbase*100; i++) {
add_tw_extended(ed,ed);
}
when = now() - when;
printf("txt + txt : %5.1fns\n", when * 1e9 / i);

decaf_448_point_t Da,Db,Dc;
memset(Da,0,sizeof(Da));
memset(Db,0,sizeof(Db));
memset(Dc,0,sizeof(Dc));
when = now();
for (i=0; i<nbase*100; i++) {
decaf_448_point_add(Da,Db,Dc);
}
when = now() - when;
printf("dec + dec: %5.1fns\n", when * 1e9 / i);
convert_tw_extensible_to_tw_pniels(&pniels, &ext);
when = now();
for (i=0; i<nbase*100; i++) {
add_tw_pniels_to_tw_extensible(&ext, &pniels);
}
when = now() - when;
printf("exti+pniels: %5.1fns\n", when * 1e9 / i);
when = now();
for (i=0; i<nbase*100; i++) {
double_tw_extensible(&ext);
}
when = now() - when;
printf("exti dbl: %5.1fns\n", when * 1e9 / i);
when = now();
for (i=0; i<nbase*100; i++) {
untwist_and_double(&exta, &ext);
}
when = now() - when;
printf("i->a isog: %5.1fns\n", when * 1e9 / i);
when = now();
for (i=0; i<nbase*100; i++) {
twist_and_double(&ext, &exta);
}
when = now() - when;
printf("a->i isog: %5.1fns\n", when * 1e9 / i);
memset(&mb,0,sizeof(mb));
when = now();
for (i=0; i<nbase*100; i++) {
montgomery_step(&mb);
}
when = now() - when;
printf("monty step: %5.1fns\n", when * 1e9 / i);
memset(&mba,0,sizeof(mba));
when = now();
for (i=0; i<nbase*100; i++) {
montgomery_aux_step(&mba);
}
when = now() - when;
printf("monty aux: %5.1fns\n", when * 1e9 / i);
when = now();
for (i=0; i<nbase/10; i++) {
ignore_result(montgomery_ladder(a,b,sk,FIELD_BITS,0));
}
when = now() - when;
printf("full ladder: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
ignore_result(decaf_montgomery_ladder(a,b,sk,FIELD_BITS));
}
when = now() - when;
printf("decafladder: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
decaf_448_point_scalarmul(Da,Db,asc);
}
when = now() - when;
printf("decaf slow: %5.1fµs\n", when * 1e6 / i);
uint8_t enc[DECAF_448_SER_BYTES];
memset(enc,4,sizeof(enc));
when = now();
for (i=0; i<nbase/10; i++) {
ignore_result(decaf_448_direct_scalarmul(enc,enc,asc,-1,0));
}
when = now() - when;
printf("decaf dir: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
decaf_448_point_double_scalarmul(Da,Db,bsc,Dc,asc);
}
when = now() - when;
printf("decaf slo2: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
decaf_448_precomputed_scalarmul(Da,decaf_448_precomputed_base,bsc);
}
when = now() - when;
printf("decaf pres: %5.1fµs\n", when * 1e6 / i);

when = now();
for (i=0; i<nbase/10; i++) {
scalarmul(&ext,sk);
}
when = now() - when;
printf("edwards smz: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
scalarmul_vlook(&ext,sk);
}
when = now() - when;
printf("edwards svl: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
scalarmul_ed(ed,sk);
}
when = now() - when;
printf("edwards txt: %5.1fµs\n", when * 1e6 / i);
field_set_ui(a,0);
when = now();
for (i=0; i<nbase/10; i++) {
ignore_result(decaf_deserialize_tw_extended(ed,a,-1));
scalarmul_ed(ed,sk);
decaf_serialize_tw_extended(a,ed);
}
when = now() - when;
printf("simple ECDH: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
scalarmul(&ext,sk);
untwist_and_double_and_serialize(a,&ext);
}
when = now() - when;
printf("edwards smc: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
q448_randomize(&crand, sk);
scalarmul_vt(&ext,sk,SCALAR_BITS);
}
when = now() - when;
printf("edwards vtm: %5.1fµs\n", when * 1e6 / i);
tw_niels_a_t wnaft[1<<6];
when = now();
for (i=0; i<nbase/10; i++) {
ignore_result(precompute_fixed_base_wnaf(wnaft,&ext,6));
}
when = now() - when;
printf("wnaf6 pre: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
q448_randomize(&crand, sk);
scalarmul_fixed_base_wnaf_vt(&ext,sk,SCALAR_BITS,(const tw_niels_a_t*)wnaft,6);
}
when = now() - when;
printf("edwards vt6: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
ignore_result(precompute_fixed_base_wnaf(wnaft,&ext,4));
}
when = now() - when;
printf("wnaf4 pre: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
q448_randomize(&crand, sk);
scalarmul_fixed_base_wnaf_vt(&ext,sk,SCALAR_BITS,(const tw_niels_a_t*)wnaft,4);
}
when = now() - when;
printf("edwards vt4: %5.1fµs\n", when * 1e6 / i);

when = now();
for (i=0; i<nbase/10; i++) {
ignore_result(precompute_fixed_base_wnaf(wnaft,&ext,5));
}
when = now() - when;
printf("wnaf5 pre: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
q448_randomize(&crand, sk);
scalarmul_fixed_base_wnaf_vt(&ext,sk,SCALAR_BITS,(const tw_niels_a_t*)wnaft,5);
}
when = now() - when;
printf("edwards vt5: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
q448_randomize(&crand, sk);
q448_randomize(&crand, tk);
linear_combo_var_fixed_vt(&ext,sk,FIELD_BITS,tk,FIELD_BITS,(const tw_niels_a_t*)wnaft,5);
}
when = now() - when;
printf("vt vf combo: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
deserialize_affine(&affine, a);
convert_affine_to_extensible(&exta,&affine);
twist_and_double(&ext,&exta);
scalarmul(&ext,sk);
untwist_and_double(&exta,&ext);
serialize_extensible(b, &exta);
}
when = now() - when;
printf("edwards sm: %5.1fµs\n", when * 1e6 / i);
struct fixed_base_table_t t_5_5_18, t_3_5_30, t_8_4_14, t_5_3_30, t_15_3_10;

while (1) {
field_randomize(&crand, a);
if (deserialize_affine(&affine, a)) break;
}
convert_affine_to_extensible(&exta,&affine);
twist_and_double(&ext,&exta);
when = now();
for (i=0; i<nbase/10; i++) {
if (i) destroy_fixed_base(&t_5_5_18);
ignore_result(precompute_fixed_base(&t_5_5_18, &ext, 5, 5, 18, NULL));
}
when = now() - when;
printf("pre(5,5,18): %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
if (i) destroy_fixed_base(&t_3_5_30);
ignore_result(precompute_fixed_base(&t_3_5_30, &ext, 3, 5, 30, NULL));
}
when = now() - when;
printf("pre(3,5,30): %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
if (i) destroy_fixed_base(&t_5_3_30);
ignore_result(precompute_fixed_base(&t_5_3_30, &ext, 5, 3, 30, NULL));
}
when = now() - when;
printf("pre(5,3,30): %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
if (i) destroy_fixed_base(&t_15_3_10);
ignore_result(precompute_fixed_base(&t_15_3_10, &ext, 15, 3, 10, NULL));
}
when = now() - when;
printf("pre(15,3,10):%5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase/10; i++) {
if (i) destroy_fixed_base(&t_8_4_14);
ignore_result(precompute_fixed_base(&t_8_4_14, &ext, 8, 4, 14, NULL));
}
when = now() - when;
printf("pre(8,4,14): %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase; i++) {
scalarmul_fixed_base(&ext, sk, FIELD_BITS, &t_5_5_18);
}
when = now() - when;
printf("com(5,5,18): %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase; i++) {
scalarmul_fixed_base(&ext, sk, FIELD_BITS, &t_3_5_30);
}
when = now() - when;
printf("com(3,5,30): %5.1fµs\n", when * 1e6 / i);

when = now();
for (i=0; i<nbase; i++) {
scalarmul_fixed_base(&ext, sk, FIELD_BITS, &t_8_4_14);
}
when = now() - when;
printf("com(8,4,14): %5.1fµs\n", when * 1e6 / i);

when = now();
for (i=0; i<nbase; i++) {
scalarmul_fixed_base(&ext, sk, FIELD_BITS, &t_5_3_30);
}
when = now() - when;
printf("com(5,3,30): %5.1fµs\n", when * 1e6 / i);

when = now();
for (i=0; i<nbase; i++) {
scalarmul_fixed_base(&ext, sk, FIELD_BITS, &t_15_3_10);
}
when = now() - when;
printf("com(15,3,10):%5.1fµs\n", when * 1e6 / i);
printf("\nGoldilocks:\n");
int res = goldilocks_init();
assert(!res);
struct goldilocks_public_key_t gpk,hpk;
struct goldilocks_private_key_t gsk,hsk;
when = now();
for (i=0; i<nbase; i++) {
if (i&1) {
res = goldilocks_keygen(&gsk,&gpk);
} else {
res = goldilocks_keygen(&hsk,&hpk);
}
assert(!res);
}
when = now() - when;
printf("keygen: %5.1fµs\n", when * 1e6 / i);
uint8_t ss1[64],ss2[64];
int gres1=0,gres2=0;
when = now();
for (i=0; i<nbase; i++) {
if (i&1) {
gres1 = goldilocks_shared_secret(ss1,&gsk,&hpk);
} else {
gres2 = goldilocks_shared_secret(ss2,&hsk,&gpk);
}
}
when = now() - when;
printf("ecdh: %5.1fµs\n", when * 1e6 / i);
if (gres1 || gres2 || memcmp(ss1,ss2,64)) {
printf("[FAIL] %d %d\n",gres1,gres2);
printf("sk1 = ");
for (i=0; i<SCALAR_BYTES; i++) {
printf("%02x", gsk.opaque[i]);
}
printf("\nsk2 = ");
for (i=0; i<SCALAR_BYTES; i++) {
printf("%02x", hsk.opaque[i]);
}
printf("\nss1 = ");
for (i=0; i<64; i++) {
printf("%02x", ss1[i]);
}
printf("\nss2 = ");
for (i=0; i<64; i++) {
printf("%02x", ss2[i]);
}
printf("\n");
}
uint8_t sout[FIELD_BYTES*2];
const char *message = "hello world";
size_t message_len = strlen(message);
when = now();
for (i=0; i<nbase; i++) {
res = goldilocks_sign(sout,(const unsigned char *)message,message_len,&gsk);
(void)res;
assert(!res);
}
when = now() - when;
printf("sign: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase; i++) {
int ver = goldilocks_verify(sout,(const unsigned char *)message,message_len,&gpk);
(void)ver;
assert(!ver);
}
when = now() - when;
printf("verify: %5.1fµs\n", when * 1e6 / i);
struct goldilocks_precomputed_public_key_t *pre = NULL;
when = now();
for (i=0; i<nbase; i++) {
goldilocks_destroy_precomputed_public_key(pre);
pre = goldilocks_precompute_public_key(&gpk);
}
when = now() - when;
printf("precompute: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase; i++) {
int ver = goldilocks_verify_precomputed(sout,(const unsigned char *)message,message_len,pre);
(void)ver;
assert(!ver);
}
when = now() - when;
printf("verify pre: %5.1fµs\n", when * 1e6 / i);
when = now();
for (i=0; i<nbase; i++) {
int ret = goldilocks_shared_secret_precomputed(ss1,&gsk,pre);
(void)ret;
assert(!ret);
}
when = now() - when;
printf("ecdh pre: %5.1fµs\n", when * 1e6 / i);
printf("\nDecaf slow:\n");
decaf_448_symmetric_key_t sym[2] = {{0},{1}};
decaf_448_private_key_t dpriv[2];
decaf_448_public_key_t dpub[2];
unsigned char dshared[2][32];
when = now();
for (i=0; i<nbase; i++) {
decaf_448_derive_private_key(dpriv[i&1], sym[i&1]);
}
when = now() - when;
printf("derive priv: %5.1fµs\n", when * 1e6 / i);
decaf_448_private_to_public(dpub[0], dpriv[0]);
decaf_448_private_to_public(dpub[1], dpriv[1]);
when = now();
for (i=0; i<nbase; i++) {
decaf_bool_t ret = decaf_448_shared_secret(dshared[i&1], 32, dpriv[i&1], dpub[(i+1)&1]);
if (ret != DECAF_SUCCESS) {
printf("BUG: shared secret returns failure on %d.\n", i);
break;
}
}
when = now() - when;
printf("ecdh: %5.1fµs\n", when * 1e6 / i);
if (memcmp(dshared[0], dshared[1], 32)) {
printf("BUG: mismatched shared secrets\n");
}
decaf_448_signature_t dsig;
const char *dmessage = "hello world";
const char *dnessage = "Jello world";
when = now();
for (i=0; i<nbase; i++) {
decaf_448_sign(dsig, dpriv[0], (const unsigned char *)dmessage, 11);
}
when = now() - when;
printf("sign: %5.1fµs\n", when * 1e6 / i);
if (memcmp(dshared[0], dshared[1], 32)) {
printf("BUG: mismatched shared secrets\n");
}
when = now();
for (i=0; i<nbase; i++) {
decaf_bool_t ret = decaf_448_verify(dsig, dpub[0],
(const unsigned char *)((i&1) ? dmessage : dnessage), 11);
if ((i&1) && ~ret) {
printf("BUG: verify failed\n");
break;
} else if (!(i&1) && ret) {
printf("BUG: unverify succeeded\n");
break;
}
}
when = now() - when;
printf("verify: %5.1fµs\n", when * 1e6 / i);
decaf_448_precomputed_s *dpre;
ignore_result(posix_memalign((void**)&dpre,
alignof_decaf_448_precomputed_s, sizeof_decaf_448_precomputed_s));
assert(dpre);
when = now();
for (i=0; i<nbase; i++) {
decaf_448_precompute(dpre, Da);
}
when = now() - when;
printf("pre: %5.1fµs\n", when * 1e6 / i);
free(dpre);
return 0;
}

+ 0
- 152
test/test.c View File

@@ -1,152 +0,0 @@
#include "test.h"

#include <stdio.h>
#include <string.h>

#ifndef LIMBPERM
#define LIMBPERM(x) (x)
#endif

int failed_tests, n_tests, failed_this_test, running_a_test;

static void end_test(void) {
if (!failed_this_test) {
printf("[PASS]\n");
}
n_tests ++;
running_a_test = 0;
}

static void begin_test(const char *name) {
if (running_a_test) end_test();
printf("%s...%*s",name,(int)(30-strlen(name)),"");
fflush(stdout);
failed_this_test = 0;
running_a_test = 1;
}

void youfail(void) {
if (failed_this_test) return;
failed_this_test = 1;
failed_tests ++;
printf("[FAIL]\n");
}

static int
hexchar (char c) {
if (c >= '0' && c <= '9') {
return c - '0';
} else if (c >= 'a' && c <= 'f') {
return 10 + c - 'a';
} else if (c >= 'A' && c <= 'F') {
return 10 + c - 'A';
} else {
return -1;
}
}

int
hexdecode (
unsigned char *bytes,
const char *hex,
unsigned int nbytes
) {
if (strlen(hex) != nbytes*2) {
return -1;
}
unsigned int i;
for (i=0; i<nbytes; i++) {
int hi = hexchar(hex[2*i]),
lo = hexchar(hex[2*i+1]);
if (hi<0 || lo<0) return -1;
bytes[i] = hi*16 + lo;
}
return 0;
}

void
hexprint (
const char *descr,
const unsigned char *bytes,
unsigned int nbytes
) {
if (descr) printf("%s = ", descr);
unsigned int i;
for (i=0; i<nbytes; i++) {
printf("%02x", bytes[i]);
}
printf("\n");
}

void field_print (
const char *descr,
const field_a_t a
) {
int j;
unsigned char ser[FIELD_BYTES];
field_serialize(ser,a);
printf("%s = 0x", descr);
for (j=FIELD_BYTES - 1; j>=0; j--) {
printf("%02x", ser[j]);
}
printf("\n");
}

void scalar_print (
const char *descr,
const word_t *scalar,
int nwords
) {
int j;
printf("%s = 0x", descr);
for (j=nwords-1; j>=0; j--) {
printf(PRIxWORDfull, scalar[j]);
}
printf("\n");
}

int main(int argc, char **argv) {
(void) argc;
(void) argv;
n_tests = running_a_test = failed_tests = 0;

begin_test("Arithmetic");
test_arithmetic();

begin_test("EC point operations");
test_pointops();

begin_test("Decaf point encoding");
test_decaf();

begin_test("Decaf pathological cases");
test_decaf_evil();
begin_test("Scalarmul compatibility");
test_scalarmul_compatibility();
begin_test("Scalarmul commutativity");
test_scalarmul_commutativity();
begin_test("Linear combo");
test_linear_combo();
begin_test("SHA-512 NIST Monte Carlo");
test_sha512_monte_carlo();
begin_test("Goldilocks complete system");
test_goldilocks();
if (running_a_test) end_test();
printf("\n");
if (failed_tests) {
printf("Failed %d / %d tests.\n", failed_tests, n_tests);
} else {
printf("Passed all %d tests.\n", n_tests);
}
return failed_tests ? 1 : 0;
}

+ 0
- 51
test/test.h View File

@@ -1,51 +0,0 @@
#ifndef __GOLDILOCKS_TEST_H__
#define __GOLDILOCKS_TEST_H__ 1

#include "word.h"
#include "field.h"

int
hexdecode (
unsigned char *bytes,
const char *hex,
unsigned int nbytes
);

void
hexprint (
const char *descr,
const unsigned char *bytes,
unsigned int nbytes
);
void field_print (
const char *descr,
const field_a_t a
);
void scalar_print (
const char *descr,
const word_t *scalar,
int nwords
);

void youfail(void);

int test_sha512_monte_carlo(void);

int test_linear_combo (void);

int test_scalarmul_compatibility (void);

int test_scalarmul_commutativity (void);

int test_arithmetic (void);

int test_goldilocks (void);

int test_pointops (void);

int test_decaf (void);
int test_decaf_evil (void);

#endif // __GOLDILOCKS_TEST_H__

+ 0
- 392
test/test_arithmetic.c View File

@@ -1,392 +0,0 @@
#include "field.h"
#include "test.h"
#include "decaf.h"
#include <gmp.h>
#include <string.h>
#include <stdio.h>

mpz_t mp_field;
mpz_t mp_scalar_field;

static void decaf_448_scalar_print (
const char *descr,
const decaf_448_scalar_t scalar
) {
int j;
printf("%s = 0x", descr);
for (j=DECAF_448_SCALAR_LIMBS-1; j>=0; j--) {
printf(PRIxWORDfull, scalar->limb[j]);
}
printf("\n");
}

static mask_t mpz_to_field (
field_a_t out,
const mpz_t in
) {
uint8_t ser[FIELD_BYTES];
mpz_t modded;
memset(ser,0,sizeof(ser));
mpz_init(modded);
mpz_mod(modded, in, mp_field);
mpz_export(ser, NULL, -1, 1, -1, 0, modded);
mask_t succ = field_deserialize(out, ser);
return succ;
}

static mask_t mpz_to_scalar (
decaf_448_scalar_t out,
const mpz_t in
) {
uint8_t ser[DECAF_448_SCALAR_BYTES];
mpz_t modded;
memset(ser,0,sizeof(ser));
mpz_init(modded);
mpz_mod(modded, in, mp_scalar_field);
mpz_export(ser, NULL, -1, 1, -1, 0, modded);
mask_t succ = decaf_448_scalar_decode(out, ser);
return succ;
}

static mask_t scalar_assert_eq_gmp(
const char *descr,
const decaf_448_scalar_t a,
const decaf_448_scalar_t b,
const decaf_448_scalar_t x,
const mpz_t ma,
const mpz_t mb,
const mpz_t y
) {
uint8_t xser[FIELD_BYTES], yser[FIELD_BYTES];
mpz_t modded;
memset(yser,0,sizeof(yser));
decaf_448_scalar_encode(xser, x);
mpz_init(modded);
mpz_mod(modded, y, mp_scalar_field);
mpz_export(yser, NULL, -1, 1, -1, 0, modded);
if (memcmp(xser,yser,FIELD_BYTES)) {
youfail();
printf(" Failed arithmetic test %s\n", descr);
decaf_448_scalar_print(" a", a);
decaf_448_scalar_print(" b", b);
decaf_448_scalar_print(" decaf_448", x);
// printf(" gmpa = 0x");
int j;
// mpz_export(yser, NULL, -1, 1, -1, 0, ma);
// for (j=FIELD_BYTES-1; j>=0; j--) {
// printf("%02x", yser[j]);
// }
// printf("\n");
// printf(" gmpb = 0x");
//
//
// mpz_export(yser, NULL, -1, 1, -1, 0, mb);
// for (j=FIELD_BYTES-1; j>=0; j--) {
// printf("%02x", yser[j]);
// }
// printf("\n");
(void)ma; (void)mb;
printf(" gmpy = 0x");

mpz_export(yser, NULL, -1, 1, -1, 0, modded);
for (j=FIELD_BYTES-1; j>=0; j--) {
printf("%02x", yser[j]);
}
printf("\n");
return MASK_FAILURE;
}
mpz_clear(modded);
return MASK_SUCCESS;
}

static inline int BRANCH_ON_CONSTANT(int x) {
__asm__ ("" : "+r"(x));
return x;
}

static mask_t field_assert_eq_gmp(
const char *descr,
const field_a_t a,
const field_a_t b,
const field_a_t x,
const mpz_t y,
float lowBound,
float highBound
) {
uint8_t xser[FIELD_BYTES], yser[FIELD_BYTES];
mpz_t modded;
memset(yser,0,sizeof(yser));
field_serialize(xser, x);
mpz_init(modded);
mpz_mod(modded, y, mp_field);
mpz_export(yser, NULL, -1, 1, -1, 0, modded);
unsigned int i;
for (i=0; i<sizeof(*x)/sizeof(x->limb[0]); i++) {
int radix_bits = 1 + (sizeof(x->limb[0]) * FIELD_BITS - 1) / sizeof(*x);
word_t yardstick;

if (BRANCH_ON_CONSTANT(FIELD_BITS == 521) && BRANCH_ON_CONSTANT(sizeof(*x)==12*8)) {
radix_bits = 58;
}
yardstick = (1ull<<radix_bits) - 1;

if (x->limb[i] < yardstick * lowBound || x->limb[i] > yardstick * highBound) {
youfail();
printf(" Limb %d -> " PRIxWORDfull " is out of bounds (%0.2f, %0.2f) for test %s (yardstick = " PRIxWORDfull ")\n",
i, x->limb[i], lowBound, highBound, descr, yardstick);
break;
}
}
if (memcmp(xser,yser,FIELD_BYTES)) {
youfail();
printf(" Failed arithmetic test %s\n", descr);
field_print(" a", a);
field_print(" b", b);
field_print(" goldi", x);
printf(" gmp = 0x");
int j;
for (j=FIELD_BYTES-1; j>=0; j--) {
printf("%02x", yser[j]);
}
printf("\n");
return MASK_FAILURE;
}
mpz_clear(modded);
return MASK_SUCCESS;
}

static mask_t test_add_sub_RAW (
const mpz_t x,
const mpz_t y,
word_t word
) {
field_a_t xx,yy,tt;
mpz_t t;
mask_t succ = MASK_SUCCESS;
succ = mpz_to_field(xx,x);
succ &= mpz_to_field(yy,y);
mpz_init(t);
field_add_RAW(tt,xx,yy);
mpz_add(t,x,y);
succ &= field_assert_eq_gmp("add",xx,yy,tt,t,0,2.1);
field_sub_RAW(tt,xx,yy);
field_bias(tt,2);
mpz_sub(t,x,y);
succ &= field_assert_eq_gmp("sub",xx,yy,tt,t,0,3.1);
field_copy(tt,xx);
field_addw(tt,word);
mpz_add_ui(t,x,word);
succ &= field_assert_eq_gmp("addw",xx,yy,tt,t,0,2.1);
field_copy(tt,xx);
field_subw(tt,word);
field_bias(tt,1);
mpz_sub_ui(t,x,word);
succ &= field_assert_eq_gmp("subw",xx,yy,tt,t,0,2.1);

/*
if (!succ) {
field_print(" x", &xx);
field_print(" y", &yy);
}
*/
mpz_clear(t);
return succ;
}

static mask_t test_scalar (
const mpz_t x,
const mpz_t y,
int inv
) {
decaf_448_scalar_t xx,yy,tt;
mpz_t t;
mask_t succ = MASK_SUCCESS;
succ = mpz_to_scalar(xx,x);
succ &= mpz_to_scalar(yy,y);
mpz_init(t);
decaf_448_scalar_add(tt,xx,yy);
mpz_add(t,x,y);
succ &= scalar_assert_eq_gmp("scalar add",xx,yy,tt,x,y,t);
decaf_448_scalar_sub(tt,xx,yy);
mpz_sub(t,x,y);
succ &= scalar_assert_eq_gmp("scalar sub",xx,yy,tt,x,y,t);
decaf_448_scalar_mul(tt,xx,yy);
mpz_mul(t,x,y);
succ &= scalar_assert_eq_gmp("scalar mul",xx,yy,tt,x,y,t);
if (inv) {
decaf_bool_t ret = decaf_448_scalar_invert(tt,xx);
if (!mpz_cmp_ui(x,0)) {
mpz_set_ui(t,0);
succ &= (ret == 0) ? MASK_SUCCESS : MASK_FAILURE;
} else {
mpz_invert(t,x,mp_scalar_field);
succ &= (ret == MASK_SUCCESS) ? MASK_SUCCESS : MASK_FAILURE;
}
succ &= scalar_assert_eq_gmp("scalar inv",xx,yy,tt,x,y,t);
}
mpz_clear(t);
return succ;
}

static mask_t test_mul_sqr (
const mpz_t x,
const mpz_t y,
word_t word
) {
ANALYZE_THIS_ROUTINE_CAREFULLY;
field_a_t xx,yy,tt,zz;
mpz_t t, z;
mask_t succ = MASK_SUCCESS;
succ = mpz_to_field(xx,x);
succ &= mpz_to_field(yy,y);
mpz_init(t);
mpz_init(z);
field_mul(tt,xx,yy);
mpz_mul(t,x,y);
succ &= field_assert_eq_gmp("mul",xx,yy,tt,t,0,1.1);
field_mulw(tt,xx,word);
mpz_mul_ui(t,x,word);
succ &= field_assert_eq_gmp("mulw",xx,yy,tt,t,0,1.1);
field_sqr(tt,xx);
mpz_mul(t,x,x);
succ &= field_assert_eq_gmp("sqrx",xx,yy,tt,t,0,1.1);

field_sqr(tt,yy);
mpz_mul(t,y,y);
succ &= field_assert_eq_gmp("sqy",xx,yy,tt,t,0,1.1);
field_add_nr(zz,xx,xx);
mpz_add(z,x,x);
mpz_mul(t,z,z);
field_mul(tt,zz,zz);
succ &= field_assert_eq_gmp("msr4",xx,yy,tt,t,0,1.1);
field_sqr(tt,zz);
succ &= field_assert_eq_gmp("sqr4",xx,yy,tt,t,0,1.1);
if (!succ) {
field_print(" x", xx);
field_print(" y", yy);
}
mpz_clear(t);
mpz_clear(z);
return succ;
}

static mask_t test_isr (
const mpz_t x
) {
field_a_t xx,yy,ss,tt;
mask_t succ = 0;
succ = mpz_to_field(xx,x);
field_isr(ss,xx);
field_sqr(tt,ss);
field_mul(yy,xx,tt);
field_addw(tt,1);
succ |= field_is_zero(tt);
field_subw(tt,2);
field_bias(tt,1);
succ |= field_is_zero(tt);
field_addw(tt,1);
if (~succ) {
youfail();
printf("ISR failure.\n");
field_print(" x", xx);
field_print(" s", ss);
field_print(" t", tt);
}
return succ;
}

void dbg_gmp_printf(const mpz_t x);
void dbg_gmp_printf(const mpz_t x) {
gmp_printf("DEBUG: 0x%Zx\n", x);
}

int test_arithmetic (void) {
int j, ntests = 100000;
gmp_randstate_t state;
gmp_randinit_mt(state);
mpz_init(mp_field);
mpz_import(mp_field, FIELD_BYTES, -1, 1, -1, 0, FIELD_MODULUS);
mpz_import(mp_scalar_field, DECAF_448_SCALAR_LIMBS, -1, sizeof(decaf_word_t), -1, 0, decaf_448_scalar_p);
mpz_t x,y;
mpz_init(x);
mpz_init(y);
mask_t succ = MASK_SUCCESS;
int radix_bits = sizeof(word_t) * FIELD_BITS / sizeof(field_a_t);
for (j=0; j<ntests; j++) {
if (j<256) {
mpz_set_ui(x,0);
mpz_set_ui(y,0);
mpz_setbit(x,(j%16)*28);
mpz_setbit(y,(j/16)*28);
} else if (j&1) {
mpz_rrandomb(x, state, FIELD_BITS);
mpz_rrandomb(y, state, FIELD_BITS);
} else {
mpz_urandomb(x, state, FIELD_BITS);
mpz_urandomb(y, state, FIELD_BITS);
}
word_t word = gmp_urandomm_ui (state, 1ull<<radix_bits);
succ &= test_add_sub_RAW(x,y,word);
succ &= test_mul_sqr(x,y,word);
succ &= test_scalar(x,y,(j%20==0));
if (j < 1000)
succ &= test_isr(x);
// TODO: test neg, cond_neg_RAW, set_ui, wrd, srd, inv, ...?
}
mpz_clear(x);
mpz_clear(y);
mpz_clear(mp_field);
gmp_randclear(state);
return succ ? 0 : 1;
}


+ 0
- 195
test/test_goldilocks.c View File

@@ -1,195 +0,0 @@
#include "test.h"
#include "goldilocks.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int test_goldilocks (void) {
const char *message1 = "hello world";
const char *message2 = "Jello world";
unsigned char signature[GOLDI_SIGNATURE_BYTES];
unsigned char
ss12[GOLDI_SHARED_SECRET_BYTES],
ss21[GOLDI_SHARED_SECRET_BYTES],
ss21p[GOLDI_SHARED_SECRET_BYTES],
proto[GOLDI_SYMKEY_BYTES];
struct goldilocks_public_key_t pub, pub2;
struct goldilocks_private_key_t priv, priv2;
struct goldilocks_precomputed_public_key_t *pre = NULL;
int i, ret, good = 1;
ret = goldilocks_init();
if (ret) {
youfail();
printf(" Failed init.\n");
}
for (i=0; i<1000 && good; i++) {
ret = goldilocks_keygen(&priv, &pub);
if (ret) {
youfail();
printf(" Failed keygen trial %d.\n", i);
good = 0;
}
goldilocks_destroy_precomputed_public_key( pre );
pre = goldilocks_precompute_public_key ( &pub );
if (!pre) {
youfail();
printf(" Failed precomp-public trial %d.\n", i);
return -1;
}
ret = goldilocks_sign(
signature,
(const unsigned char *)message1,
strlen(message1),
&priv
);
if (ret) {
youfail();
printf(" Failed sign trial %d.\n", i);
good = 0;
}
ret = goldilocks_verify(
signature,
(const unsigned char *)message1,
strlen(message1),
&pub
);
if (ret) {
youfail();
printf(" Failed verify trial %d.\n", i);
good = 0;
}

ret = goldilocks_verify_precomputed (
signature,
(const unsigned char *)message1,
strlen(message1),
pre
);
if (ret) {
youfail();
printf(" Failed verify-pre trial %d.\n", i);
good = 0;
}
/* terrible negative test */
ret = goldilocks_verify(
signature,
(const unsigned char *)message2,
strlen(message1),
&pub
);
if (ret != GOLDI_EINVAL) {
youfail();
printf(" Failed nega-verify trial %d.\n", i);
good = 0;
}
ret = goldilocks_verify_precomputed(
signature,
(const unsigned char *)message2,
strlen(message1),
pre
);
if (ret != GOLDI_EINVAL) {
youfail();
printf(" Failed nega-verify-pre trial %d.\n", i);
good = 0;
}
/* honestly a slightly better negative test */
memset(signature,0,sizeof(signature));
ret = goldilocks_verify(
signature,
(const unsigned char *)message1,
strlen(message1),
&pub
);
if (ret != GOLDI_EINVAL) {
youfail();
printf(" Failed nega-verify-0 trial %d.\n", i);
good = 0;
}
ret = goldilocks_verify_precomputed(
signature,
(const unsigned char *)message1,
strlen(message1),
pre
);
if (ret != GOLDI_EINVAL) {
youfail();
printf(" Failed nega-verify-pre-0 trial %d.\n", i);
good = 0;
}
/* ecdh */
ret = goldilocks_keygen(&priv2, &pub2);
if (ret) {
youfail();
printf(" Failed keygen2 trial %d.\n", i);
good = 0;
}
ret = goldilocks_shared_secret ( ss12, &priv, &pub2 );
if (ret) {
youfail();
printf(" Failed ss12 trial %d.\n", i);
good = 0;
}
ret = goldilocks_shared_secret ( ss21, &priv2, &pub );
if (ret) {
youfail();
printf(" Failed ss21 trial %d.\n", i);
good = 0;
}
ret = goldilocks_shared_secret_precomputed ( ss21p, &priv2, pre );
if (ret) {
youfail();
printf(" Failed ss21p trial %d.\n", i);
good = 0;
}
if (memcmp(ss12,ss21,sizeof(ss12))) {
youfail();
printf(" Failed shared-secret trial %d.\n", i);
good = 0;
}
if (memcmp(ss21,ss21p,sizeof(ss21))) {
youfail();
printf(" Failed shared-secret precomp trial %d.\n", i);
good = 0;
}
/* test derive / underive / priv to pub */
goldilocks_underive_private_key ( proto, &priv );
ret = goldilocks_derive_private_key ( &priv2, proto );
if (ret || memcmp(&priv,&priv2,sizeof(priv))) {
youfail();
printf(" Failed derive round-trip trial %d.\n", i);
good = 0;
}
ret = goldilocks_private_to_public ( &pub2, &priv );
if (ret || memcmp(&pub,&pub2,sizeof(pub))) {
youfail();
printf(" Failed private-to-public trial %d.\n", i);
good = 0;
}
}
goldilocks_destroy_precomputed_public_key( pre );
return good ? 0 : -1;
}

+ 0
- 648
test/test_pointops.c View File

@@ -1,648 +0,0 @@
#include "test.h"

#include <stdio.h>

#include "ec_point.h"
#include "decaf.h"
#include "scalarmul.h"
#include "magic.h"
#include "field.h"
#include "crandom.h"


static void
failprint_ext (
const struct extensible_t *a
) {
field_a_t zi, scaled;
field_print(" x", a->x);
field_print(" y", a->y);
field_print(" z", a->z);
field_inverse(zi, a->z);
field_mul(scaled, zi, a->x);
field_print(" X", scaled);
field_mul(scaled, zi, a->y);
field_print(" Y", scaled);
printf("\n");
}

static void
failprint_tw_ext (
const struct tw_extensible_t *a
) {
failprint_ext((const struct extensible_t *)a);
}

static mask_t
fail_if_different (
const struct extensible_t *a,
const struct extensible_t *b,
const char *faildescr,
const char *adescr,
const char *bdescr
) {
mask_t succ = eq_extensible(a, b);
if (!succ) {
youfail();
printf(" %s\n", faildescr);
printf("\n %s:\n", adescr);
failprint_ext(a);
printf("\n %s:\n", bdescr);
failprint_ext(b);
}
return succ;
}

static mask_t
validate_ext(
const struct extensible_t *ext,
int evenness,
const char *description
) {
mask_t succ = validate_extensible(ext), succ2;
const char *error = "Point isn't on the curve.";
if (evenness > 0) {
succ2 = is_even_pt(ext);
if (succ &~ succ2) error = "Point isn't even.";
succ &= succ2;
} else if (evenness < 0) {
succ2 = is_even_pt(ext);
if (succ &~ succ2) error = "Point is even but shouldn't be.";
succ &= succ2;
} /* FUTURE: quadness */
if (~succ) {
youfail();
printf(" %s\n", error);
printf(" %s\n", description);
failprint_ext(ext);
}
return succ;
}

static mask_t
validate_tw_ext(
const struct tw_extensible_t *ext,
int evenness,
const char *description
) {
mask_t succ = validate_tw_extensible(ext), succ2;
const char *error = "Point isn't on the twisted curve.";
if (evenness > 0) {
succ2 = is_even_tw(ext);
if (succ &~ succ2) error = "Point isn't even.";
succ &= succ2;
} else if (evenness < 0) {
succ2 = is_even_tw(ext);
if (succ &~ succ2) error = "Point is even but shouldn't be.";
succ &= succ2;
} /* FUTURE: quadness */
if (~succ) {
youfail();
printf(" %s\n", error);
printf(" %s\n", description);
failprint_tw_ext(ext);
}
return succ;
}

static mask_t
fail_if_different_tw (
const struct tw_extensible_t *a,
const struct tw_extensible_t *b,
const char *faildescr,
const char *adescr,
const char *bdescr
) {
return fail_if_different(
(const struct extensible_t *)a, (const struct extensible_t *)b,
faildescr,adescr,bdescr
);
}

static int
add_double_test (
const struct affine_t *base1,
const struct affine_t *base2
) {
mask_t succ = MASK_SUCCESS;
struct extensible_t exb;
struct tw_extensible_t text1, text2, texta, textb;
struct tw_extended_t ted1, ted2;
struct tw_pniels_t pn;
/* Convert to ext */
convert_affine_to_extensible(&exb, base1);
succ &= validate_ext(&exb,0,"base1");
twist_and_double(&text1, &exb);
succ &= validate_tw_ext(&text1,2,"iso1");
convert_affine_to_extensible(&exb, base2);
succ &= validate_ext(&exb,0,"base2");
twist_and_double(&text2, &exb);
succ &= validate_tw_ext(&text2,2,"iso2");
/* a + b == b + a? */
convert_tw_extensible_to_tw_pniels(&pn, &text1);
copy_tw_extensible(&texta, &text2);
add_tw_pniels_to_tw_extensible(&texta, &pn);
convert_tw_extensible_to_tw_pniels(&pn, &text2);
copy_tw_extensible(&textb, &text1);
add_tw_pniels_to_tw_extensible(&textb, &pn);

decaf_448_point_t ted3;
convert_tw_extensible_to_tw_extended(&ted1, &text1);
convert_tw_extensible_to_tw_extended(&ted2, &text2);
decaf_448_point_add(ted3, (struct decaf_448_point_s*)&ted1, (struct decaf_448_point_s*)&ted2);
add_tw_extended(&ted1, &ted2);
convert_tw_extensible_to_tw_extended(&ted2, &textb);
if (~decaf_eq_tw_extended(&ted1, &ted2) | ~decaf_448_point_eq((struct decaf_448_point_s*)&ted1, ted3)) {
youfail();
succ = 0;
printf(" Tw extended simple compat:\n");
field_print(" x1",ted1.x);
field_print(" y1",ted1.y);
field_print(" z1",ted1.z);
field_print(" t1",ted1.t);
field_print(" x2",ted2.x);
field_print(" y2",ted2.y);
field_print(" z2",ted2.z);
field_print(" t2",ted2.t);
struct tw_extended_t *t3 = (struct tw_extended_t *)&ted3;
field_print(" x3",t3->x);
field_print(" y3",t3->y);
field_print(" z3",t3->z);
field_print(" t3",t3->t);
}
succ &= fail_if_different_tw(&texta,&textb,"Addition commutativity","a+b","b+a");
copy_tw_extensible(&textb, &text2);
add_tw_pniels_to_tw_extensible(&textb, &pn);
copy_tw_extensible(&texta, &text2);
double_tw_extensible(&texta);

succ &= fail_if_different_tw(&texta,&textb,"Doubling test","2b","b+b");
if (~succ) {
printf(" Bases were:\n");
field_print(" x1", base1->x);
field_print(" y1", base1->y);
field_print(" x2", base2->x);
field_print(" y2", base2->y);
}
return succ ? 0 : -1;
}

static int
single_twisting_test (
const struct affine_t *base
) {
struct extensible_t exb, ext, tmpext;
struct tw_extensible_t text, text2;
mask_t succ = MASK_SUCCESS;
convert_affine_to_extensible(&exb, base);
succ &= validate_ext(&exb,0,"base");
/* check: dual . iso = 4 */
twist_and_double(&text, &exb);
succ &= validate_tw_ext(&text,2,"iso");
untwist_and_double(&ext, &text);
succ &= validate_ext(&ext,2,"dual.iso");
copy_extensible(&tmpext,&exb);
double_extensible(&tmpext);
succ &= validate_ext(&tmpext,1,"2*base");
double_extensible(&tmpext);
succ &= validate_ext(&tmpext,2,"4*base");
succ &= fail_if_different(&ext,&tmpext,"Isogeny and dual","Dual . iso","4*base");
/* check: twist and serialize */
test_only_twist(&text, &exb);
succ &= validate_tw_ext(&text,0,"tot");
mask_t evt = is_even_tw(&text), evb = is_even_pt(&exb);
if (evt != evb) {
youfail();
printf(" Different evenness from twist base: %d, twist: %d\n", (int)-evt, (int)-evb);
succ = 0;
} /* FUTURE: quadness */
field_a_t sera,serb;
untwist_and_double_and_serialize(sera,&text);
copy_extensible(&tmpext,&exb);
double_extensible(&tmpext);
serialize_extensible(serb,&tmpext);
/* check that their (doubled; FUTURE?) serializations are equal */
if (~field_eq(sera,serb)) {
youfail();
printf(" Different serialization from twist + double ()\n");
field_print(" t", sera);
field_print(" b", serb);
succ = 0;
}
untwist_and_double(&ext, &text);
succ &= validate_ext(&tmpext,1,"dual.tot");
twist_and_double(&text2, &ext);
succ &= validate_tw_ext(&text2,2,"iso.dual.tot");

double_tw_extensible(&text);
succ &= validate_tw_ext(&text,1,"2*tot");

double_tw_extensible(&text);
succ &= validate_tw_ext(&text,2,"4*tot");
succ &= fail_if_different_tw(&text,&text2,"Dual and isogeny","4*tot","iso.dual.tot");
if (~succ) {
printf(" Base was:\n");
field_print(" x", base->x);
field_print(" y", base->y);
}
return succ ? 0 : -1;
}

int test_decaf_evil (void) {
#if FIELD_BITS != 448
printf(" [ UNIMP ] ");
return 0;
#else

#if WORD_BITS==64
#define SC_WORD(x) x##ull
#elif WORD_BITS==32
#define SC_WORD(x) (uint32_t)(x##ull), (x##ull)>>32
#endif

word_t evil_scalars[5][448/WORD_BITS] = {
{0},
{SC_WORD(0x2378c292ab5844f3),SC_WORD(0x216cc2728dc58f55),SC_WORD(0xc44edb49aed63690),SC_WORD(0xffffffff7cca23e9),
SC_WORD(0xffffffffffffffff),SC_WORD(0xffffffffffffffff),SC_WORD(0x3fffffffffffffff)}, /* q */
{SC_WORD(0xdc873d6d54a7bb0d),SC_WORD(0xde933d8d723a70aa),SC_WORD(0x3bb124b65129c96f),
SC_WORD(0x335dc16),SC_WORD(0x0),SC_WORD(0x0),SC_WORD(0x4000000000000000)}, /* qtwist */
{SC_WORD(0x46f1852556b089e6),SC_WORD(0x42d984e51b8b1eaa),SC_WORD(0x889db6935dac6d20),SC_WORD(0xfffffffef99447d3),
SC_WORD(0xffffffffffffffff),SC_WORD(0xffffffffffffffff),SC_WORD(0x7fffffffffffffff)}, /* 2q */
{SC_WORD(0xb90e7adaa94f761a),SC_WORD(0xbd267b1ae474e155),SC_WORD(0x7762496ca25392df),SC_WORD(0x66bb82c),
SC_WORD(0x0),SC_WORD(0x0),SC_WORD(0x8000000000000000)} /* 2*qtwist */
};
word_t random_scalar[448/WORD_BITS];
unsigned char evil_inputs[3][56];
memset(evil_inputs[0],0,56);
memset(evil_inputs[1],0,56);
memset(evil_inputs[2],0xff,56);
evil_inputs[1][0] = 1;
evil_inputs[2][0] = evil_inputs[2][28] = 0xFE;
unsigned char random_input[56];
crandom_state_a_t crand;
crandom_init_from_buffer(crand, "my evil_decaf random initializer");

int i,j,fails=0;
int ret = 0;
for (i=0; i<100; i++) {
crandom_generate(crand, (unsigned char *)random_scalar, sizeof(random_scalar));
if (i<15) {
memcpy(random_scalar, evil_scalars[i%5], sizeof(random_scalar));
if (i%3 == 1) random_scalar[0] ++;
if (i%3 == 2) random_scalar[0] --;
}
for (j=0; j<100; j++) {
crandom_generate(crand, random_input, sizeof(random_input));
mask_t should = 0, care_should = 0;
if (j<3) {
memcpy(random_input, evil_inputs[j], sizeof(random_input));
care_should = -1;
should = (j==0) ? -1 : 0;
} else {
random_input[55] &= 0x7F;
}
field_a_t base, out_m, out_e, out_ed;
mask_t s_base = field_deserialize(base,random_input);
affine_a_t pt_e;
tw_affine_a_t pt_te;
tw_extended_a_t pt_ed;
// TODO: test don't allow identity
mask_t s_e = decaf_deserialize_affine(pt_e,base,-1);
mask_t s_te = decaf_deserialize_tw_affine(pt_te,base,-1);
mask_t s_ed = decaf_deserialize_tw_extended(pt_ed,base,-1);
mask_t s_m = decaf_montgomery_ladder(out_m, base, random_scalar, 448);
uint8_t ser_di[56];
mask_t s_di = decaf_448_direct_scalarmul(ser_di,random_input,(struct decaf_448_scalar_s *)random_scalar,-1,-1);
tw_extensible_a_t work;
convert_tw_affine_to_tw_extensible(work,pt_te);
scalarmul(work, random_scalar);
decaf_serialize_tw_extensible(out_e, work);

scalarmul_ed(pt_ed, random_scalar);
decaf_serialize_tw_extended(out_ed, pt_ed);
uint8_t ser_de[56], ser_ed[56];
decaf_448_point_t pt_dec, pt_dec2;
memcpy(pt_dec, pt_ed, sizeof(pt_dec));
decaf_448_point_encode(ser_de, pt_dec);
mask_t succ_dec = decaf_448_point_decode(pt_dec2, ser_de, -1);
field_serialize(ser_ed, out_ed);
decaf_448_point_t p,q,m;
uint8_t oo_base_ser[56], n_base_ser[56];
field_a_t oo_base,tmp,tmp2;
field_isr(tmp,base);
field_sqr(tmp2,tmp); // 1/+-s_base
field_sqr(tmp,tmp2); // = 1/s_base^2
field_mul(oo_base,tmp,base); // = 1/s_base
field_serialize(oo_base_ser,oo_base);
field_neg(tmp,base);
field_serialize(n_base_ser,tmp); // = -base
decaf_448_point_from_hash_nonuniform (p,random_input);
decaf_448_point_from_hash_nonuniform (q,oo_base_ser);
decaf_448_point_from_hash_nonuniform (m,n_base_ser);
mask_t succ_nur = decaf_448_point_valid(p);
succ_nur &= decaf_448_point_valid(q);
succ_nur &= decaf_448_point_valid(m);
mask_t eq_neg, eq_pos;
eq_neg = decaf_448_point_eq(m,p);
decaf_448_point_add(m,p,q);
eq_pos = decaf_448_point_eq(m,decaf_448_point_identity);
if ((care_should && should != s_m)
|| ~s_base || s_e != s_te || s_m != s_te || s_ed != s_te || s_di != s_te
|| (s_te && ~field_eq(out_e,out_m))
|| (s_ed && ~field_eq(out_e,out_ed))
|| memcmp(ser_de, ser_ed, 56)
|| (s_te && memcmp(ser_di, ser_ed, 56))
|| (s_e & ~succ_dec)
|| (s_e & ~decaf_448_point_eq(pt_dec, pt_dec2)
|| (s_e & ~decaf_448_point_valid(pt_dec))
|| (succ_dec & ~decaf_448_point_valid(pt_dec2))
|| ~succ_nur
|| ~eq_neg
|| ~eq_pos)
) {
youfail();
field_print(" base", base);
scalar_print(" scal", random_scalar, (448+WORD_BITS-1)/WORD_BITS);
field_print(" oute", out_e);
field_print(" outE", out_ed);
field_print(" outm", out_m);
printf(" succ: m=%d, e=%d, t=%d, di=%d, b=%d, T=%d, D=%d, nur=%d, e+=%d, e-=%d, should=%d[%d]\n",
-(int)s_m,-(int)s_e,-(int)s_te,-(int)s_di,-(int)s_base,-(int)s_ed,-(int)succ_dec,
-(int)succ_nur, -(int)eq_neg, -(int)eq_pos,
-(int)should,-(int)care_should
);
ret = -1;
fails++;
}
}
}
if (fails) {
printf(" Failed %d trials\n", fails);
}
return ret;
#endif
}

int test_decaf (void) {
struct affine_t base;
struct tw_affine_t tw_base;
field_a_t serf;
struct crandom_state_t crand;
crandom_init_from_buffer(&crand, "my test_decaf random initializer");
int i, hits = 0, fails = 0;
if (~decaf_448_point_valid(decaf_448_point_base)) {
youfail();
printf(" Decaf base point invalid\n");
fails++;
}
if (~decaf_448_point_valid(decaf_448_point_identity)) {
youfail();
printf(" Decaf identity point invalid\n");
fails++;
}
for (i=0; i<1000; i++) {
uint8_t ser[FIELD_BYTES];
int j;
mask_t succ = 0;
for (j=0; j<128 && !succ; j++) {
crandom_generate(&crand, ser, sizeof(ser));
ser[FIELD_BYTES-1] &= (1<<((FIELD_BITS-1)%8)) - 1;

succ = field_deserialize(serf, ser);
if (!succ) {
youfail();
printf(" Unlikely: fail at field_deserialize\n");
return -1;
}
succ &= decaf_deserialize_affine(&base, serf, 0);
}
if (!succ) {
youfail();
printf("Unlikely: fail 128 desers\n");
return -1;
}
hits++;
field_a_t serf2;
struct extensible_t ext;
convert_affine_to_extensible(&ext, &base);
decaf_serialize_extensible(serf2, &ext);
if (~validate_affine(&base)) {
youfail();
printf("Invalid decaf deser:\n");
field_print(" s", serf);
field_print(" x", base.x);
field_print(" y", base.y);
fails ++;
} else if (~field_eq(serf, serf2)) {
youfail();
printf("Fail round-trip through decaf ser:\n");
field_print(" s", serf);
field_print(" x", base.x);
field_print(" y", base.y);
printf(" deser is %s\n", validate_affine(&base) ? "valid" : "invalid");
field_print(" S", serf2);
fails ++;
} else if (~is_even_pt(&ext)) {
youfail();
printf("Decaf deser isn't even:\n");
field_print(" s", serf);
field_print(" x", base.x);
field_print(" y", base.y);
fails ++;
}
succ = decaf_deserialize_tw_affine(&tw_base, serf, 0);
struct tw_extensible_t tw_ext, tw_ext2;
convert_tw_affine_to_tw_extensible(&tw_ext, &tw_base);
decaf_serialize_tw_extensible(serf2, &tw_ext);
twist_even(&tw_ext2, &ext);

if (~succ | ~validate_tw_extensible(&tw_ext)) {
youfail();
printf("Invalid decaf tw deser:\n");
field_print(" s", serf);
field_print(" x", tw_base.x);
field_print(" y", tw_base.y);
fails ++;
} else if (~field_eq(serf, serf2)) {
youfail();
printf("Fail round-trip through decaf ser:\n");
field_print(" s", serf);
field_print(" x", tw_base.x);
field_print(" y", tw_base.y);
printf(" tw deser is %s\n", validate_tw_extensible(&tw_ext) ? "valid" : "invalid");
field_print(" S", serf2);
fails ++;
} else if (~is_even_tw(&tw_ext)) {
youfail();
printf("Decaf tw deser isn't even:\n");
field_print(" s", serf);
field_print(" x", tw_base.x);
field_print(" y", tw_base.y);
fails ++;
} else if (~decaf_eq_tw_extensible(&tw_ext,&tw_ext2)) {
youfail();
printf("Decaf tw doesn't equal ext:\n");
field_print(" s", serf);
field_print(" x1", base.x);
field_print(" y1", base.y);
field_print(" x2", tw_base.x);
field_print(" y2", tw_base.y);
field_print(" X2", tw_ext2.x);
field_print(" Y2", tw_ext2.y);
fails ++;
}

tw_extended_a_t ed;
succ = decaf_deserialize_tw_extended(ed, serf, 0);
decaf_serialize_tw_extended(serf2, ed);

if (~succ) {
youfail();
printf("Invalid decaf ed deser:\n");
field_print(" s", serf);
fails ++;
} else if (~field_eq(serf, serf2)) {
youfail();
printf("Fail round-trip through decaf ser:\n");
field_print(" s", serf);
field_print(" x", ed->x);
field_print(" y", ed->y);
field_print(" z", ed->z);
field_print(" t", ed->t);
printf(" tw deser is %s\n", validate_tw_extensible(&tw_ext) ? "valid" : "invalid");
field_print(" S", serf2);
fails ++;
}

word_t scalar = 1;
mask_t res = decaf_montgomery_ladder(serf2,serf,&scalar,1+(i%31));
if (~res | ~field_eq(serf2,serf)) {
youfail();
printf("Decaf Montgomery ladder i=%d res=%d\n", 1+(i%31), (int)res);
field_print(" s", serf);
field_print(" o", serf2);
printf("\n");
}
}
if (hits < 1000) {
youfail();
printf(" Fail: only %d successes in decaf_deser\n", hits);
return -1;
} else if (fails) {
printf(" %d fails\n", fails);
return -1;
} else {
return 0;
}
}

int test_pointops (void) {
struct affine_t base, pbase;
field_a_t serf;
struct crandom_state_t crand;
crandom_init_from_buffer(&crand, "test_pointops random initializer");
struct extensible_t ext_base;
if (!validate_affine(goldilocks_base_point)) {
youfail();
printf(" Base point isn't on the curve.\n");
return -1;
}
convert_affine_to_extensible(&ext_base, goldilocks_base_point);
if (!validate_ext(&ext_base, 2, "base")) return -1;
int i, ret;
for (i=0; i<1000; i++) {
uint8_t ser[FIELD_BYTES];
crandom_generate(&crand, ser, sizeof(ser));


#if (FIELD_BITS % 8)
ser[FIELD_BYTES-1] &= (1<<(FIELD_BITS%8)) - 1;
#endif
/* TODO: we need a field generate, which can return random or pathological. */
mask_t succ = field_deserialize(serf, ser);
if (!succ) {
youfail();
printf(" Unlikely: fail at field_deserialize\n");
return -1;
}
if (i) {
copy_affine(&pbase, &base);
}
elligator_2s_inject(&base, serf);
if (i) {
ret = add_double_test(&base, &pbase);
if (ret) return ret;
}
ret = single_twisting_test(&base);
if (ret) return ret;
}
return 0;
}

+ 0
- 480
test/test_scalarmul.c View File

@@ -1,480 +0,0 @@
#include "test.h"

#include <stdio.h>

#include "scalarmul.h"
#include "decaf.h"
#include "ec_point.h"
#include "field.h"
#include "crandom.h"

#define STRIDE 7

/* 0 = succeed, 1 = inval, -1 = fail */
static int
single_scalarmul_compatibility_test (
const field_a_t base,
const word_t *scalar,
int nbits
) {
struct tw_extensible_t text, work;
field_a_t mont, ct, vl, vt, sced, decaf_s, decaf_m, decaf_te;
int ret = 0, i;
mask_t succ, succm;
succ = deserialize_and_twist_approx(&text, base);
succm = montgomery_ladder(mont,base,scalar,nbits,1);
if (succ != succm) {
youfail();
printf(" Deserialize_and_twist_approx succ=%d, montgomery_ladder succ=%d\n",
(int)-succ, (int)-succm);
printf(" nbits = %d\n", nbits);
field_print(" base", base);
scalar_print(" scal", scalar, (nbits+WORD_BITS-1)/WORD_BITS);
return -1;
}
if (!succ) {
return 1;
}

#if FIELD_BITS == 448
struct { int n,t,s; } params[] = {{5,5,18},{3,5,30},{4,4,28},{1,2,224}};
#elif FIELD_BITS == 480
struct { int n,t,s; } params[] = {{5,6,16},{6,5,16},{4,5,24},{4,4,30},{1,2,240}};
#elif FIELD_BITS == 521
struct { int n,t,s; } params[] = {{5,8,13},{4,5,26},{1,2,(SCALAR_BITS+1)/2}};
#else
struct { int n,t,s; } params[] = {{5,5,(SCALAR_BITS+24)/25},{1,2,(SCALAR_BITS+1)/2}};
#endif
const int nparams = sizeof(params)/sizeof(params[0]);
struct fixed_base_table_t fbt;
const int nsizes = 6;
field_a_t fbout[nparams], wout[nsizes];
memset(&fbt, 0, sizeof(fbt));
memset(&fbout, 0, sizeof(fbout));
memset(&wout, 0, sizeof(wout));
/* compute using combs */
for (i=0; i<nparams; i++) {
int n=params[i].n, t=params[i].t, s=params[i].s;
succ = precompute_fixed_base(&fbt, &text, n, t, s, NULL);
if (!succ) {
youfail();
printf(" Failed to precompute_fixed_base(%d,%d,%d)\n", n, t, s);
continue;
}
succ = scalarmul_fixed_base(&work, scalar, nbits, &fbt);
destroy_fixed_base(&fbt);
if (!succ) {
youfail();
printf(" Failed to scalarmul_fixed_base(%d,%d,%d)\n", n, t, s);
continue;
}
untwist_and_double_and_serialize(fbout[i], &work);
}
/* compute using precomp wNAF */
for (i=0; i<nsizes; i++) {
tw_niels_a_t pre[1<<i];
succ = precompute_fixed_base_wnaf(pre, &text, i);
if (!succ) {
youfail();
printf(" Failed to precompute_fixed_base_wnaf(%d)\n", i);
continue;
}
scalarmul_fixed_base_wnaf_vt(&work, scalar, nbits, (const tw_niels_a_t*)pre, i);
untwist_and_double_and_serialize(wout[i], &work);
}
mask_t consistent = MASK_SUCCESS;
if (nbits == FIELD_BITS) {
/* window methods currently only work on FIELD_BITS bits. */
copy_tw_extensible(&work, &text);
scalarmul(&work, scalar);
untwist_and_double_and_serialize(ct, &work);
copy_tw_extensible(&work, &text);
scalarmul_vlook(&work, scalar);
untwist_and_double_and_serialize(vl, &work);
copy_tw_extensible(&work, &text);
scalarmul_vt(&work, scalar, nbits);
untwist_and_double_and_serialize(vt, &work);
decaf_448_point_t ed2, ed3;
struct decaf_448_precomputed_s *dpre;
int pmret = posix_memalign(
(void**)&dpre,
alignof_decaf_448_precomputed_s,
sizeof_decaf_448_precomputed_s
);
if (pmret) return 1;
tw_extended_a_t ed;
convert_tw_extensible_to_tw_extended(ed, &text);
uint8_t ser4[DECAF_448_SER_BYTES];
decaf_448_point_encode(ser4, (struct decaf_448_point_s *)ed);
decaf_448_point_scalarmul(
ed2,
(struct decaf_448_point_s *)ed,
(struct decaf_448_scalar_s *)scalar
);
decaf_448_precompute(dpre, (struct decaf_448_point_s *)ed);
decaf_448_precomputed_scalarmul(
ed3,
dpre,
(struct decaf_448_scalar_s *)scalar
);
free(dpre);

scalarmul_ed(ed, scalar);
field_copy(work.x, ed->x);
field_copy(work.y, ed->y);
field_copy(work.z, ed->z);
field_copy(work.t, ed->t);
field_set_ui(work.u, 1);
untwist_and_double_and_serialize(sced, &work);

uint8_t ser1[DECAF_448_SER_BYTES], ser2[DECAF_448_SER_BYTES],
ser3[DECAF_448_SER_BYTES];
decaf_448_point_encode(ser1, (struct decaf_448_point_s *)ed);
decaf_448_point_encode(ser2, ed2);
decaf_448_point_encode(ser3, ed3);
consistent &= decaf_448_direct_scalarmul(ser4, ser4, (struct decaf_448_scalar_s *)scalar, -1, -1);

/* check consistency mont vs window */
consistent &= field_eq(mont, ct);
consistent &= field_eq(mont, vl);
consistent &= field_eq(mont, vt);
consistent &= field_eq(mont, sced);
consistent &= memcmp(ser1,ser2,sizeof(ser1)) ? 0 : -1;
consistent &= memcmp(ser1,ser3,sizeof(ser1)) ? 0 : -1;
consistent &= memcmp(ser1,ser4,sizeof(ser1)) ? 0 : -1;
}
/* check consistency mont vs combs */
for (i=0; i<nparams; i++) {
consistent &= field_eq(mont,fbout[i]);
}
/* check consistency mont vs wNAF */
for (i=0; i<nsizes; i++) {
consistent &= field_eq(mont,wout[i]);
}

/* Do decaf */
copy_tw_extensible(&work,&text);
double_tw_extensible(&work);
decaf_serialize_tw_extensible(decaf_s, &work);

mask_t succ_dm, succ_dta;
succ_dm = decaf_montgomery_ladder(decaf_m, decaf_s, scalar, nbits);
succ_dta = deserialize_and_twist_approx(&work, mont);
decaf_serialize_tw_extensible(decaf_te, &work);
consistent &= field_eq(decaf_m, decaf_te);
consistent &= succ_dm & succ_dta;
/* If inconsistent, complain. */
if (!consistent) {
youfail();
printf(" Failed scalarmul consistency test with nbits=%d.\n",nbits);
field_print(" base", base);
scalar_print(" scal", scalar, (nbits+WORD_BITS-1)/WORD_BITS);
field_print(" mont", mont);
for (i=0; i<nparams; i++) {
printf(" With n=%d, t=%d, s=%d:\n", params[i].n, params[i].t, params[i].s);
field_print(" out ", fbout[i]);
}
for (i=0; i<nsizes; i++) {
printf(" With w=%d:\n",i);
field_print(" wNAF", wout[i]);
}
if (nbits == FIELD_BITS) {
field_print(" ct ", ct);
field_print(" vl ", vl);
field_print(" vt ", vt);
field_print(" ed ", sced);
}
printf("decaf: succ = %d, %d\n", (int)succ_dm, (int)succ_dta);
field_print(" s0", decaf_s);
field_print(" dm", decaf_m);
field_print(" dt", decaf_te);
ret = -1;
}
return ret;
}

static int
single_linear_combo_test (
const field_a_t base1,
const word_t *scalar1,
int nbits1,
const field_a_t base2,
const word_t *scalar2,
int nbits2
) {
struct tw_extensible_t text1, text2, working;
struct tw_pniels_t pn;
field_a_t result_comb, result_combo, result_wnaf;
mask_t succ =
deserialize_and_twist_approx(&text1, base1)
& deserialize_and_twist_approx(&text2, base2);
if (!succ) return 1;
struct fixed_base_table_t t1, t2;
tw_niels_a_t wnaf[32];
memset(&t1,0,sizeof(t1));
memset(&t2,0,sizeof(t2));
succ = precompute_fixed_base(&t1, &text1, 5, 5, 18, NULL); // FIELD_MAGIC
succ &= precompute_fixed_base(&t2, &text2, 6, 3, 25, NULL); // FIELD_MAGIC
succ &= precompute_fixed_base_wnaf(wnaf, &text2, 5);
if (!succ) {
destroy_fixed_base(&t1);
destroy_fixed_base(&t2);
return -1;
}
/* use the dedicated wNAF linear combo algorithm */
copy_tw_extensible(&working, &text1);
linear_combo_var_fixed_vt(&working, scalar1, nbits1, scalar2, nbits2, (const tw_niels_a_t*)wnaf, 5);
untwist_and_double_and_serialize(result_wnaf, &working);
/* use the dedicated combs algorithm */
succ &= linear_combo_combs_vt(&working, scalar1, nbits1, &t1, scalar2, nbits2, &t2);
untwist_and_double_and_serialize(result_combo, &working);
/* use two combs */
succ &= scalarmul_fixed_base(&working, scalar1, nbits1, &t1);
convert_tw_extensible_to_tw_pniels(&pn, &working);
succ &= scalarmul_fixed_base(&working, scalar2, nbits2, &t2);
add_tw_pniels_to_tw_extensible(&working, &pn);
untwist_and_double_and_serialize(result_comb, &working);
mask_t consistent = MASK_SUCCESS;
consistent &= field_eq(result_combo, result_wnaf);
consistent &= field_eq(result_comb, result_wnaf);
if (!succ || !consistent) {
youfail();
printf(" Failed linear combo consistency test with nbits=%d,%d.\n",nbits1,nbits2);

field_print(" base1", base1);
scalar_print(" scal1", scalar1, (nbits1+WORD_BITS-1)/WORD_BITS);
field_print(" base2", base2);
scalar_print(" scal2", scalar2, (nbits1+WORD_BITS-1)/WORD_BITS);
field_print(" combs", result_comb);
field_print(" combo", result_combo);
field_print(" wNAFs", result_wnaf);
return -1;
}
destroy_fixed_base(&t1);
destroy_fixed_base(&t2);
return 0;
}

/* 0 = succeed, 1 = inval, -1 = fail */
static int
single_scalarmul_commutativity_test (
const field_a_t base,
const word_t *scalar1,
int nbits1,
int ned1,
const word_t *scalar2,
int nbits2,
int ned2
) {
field_a_t m12, m21, tmp1, tmp2;
mask_t succ12a = montgomery_ladder(tmp1,base,scalar1,nbits1,ned1);
mask_t succ12b = montgomery_ladder(m12,tmp1,scalar2,nbits2,ned2);
mask_t succ21a = montgomery_ladder(tmp2,base,scalar2,nbits2,ned2);
mask_t succ21b = montgomery_ladder(m21,tmp2,scalar1,nbits1,ned1);
mask_t succ12 = succ12a & succ12b, succ21 = succ21a & succ21b;
if (succ12 != succ21) {
youfail();
printf(" Failed scalarmul commutativity test with (nbits,ned) = (%d,%d), (%d,%d).\n",
nbits1,ned1,nbits2,ned2);
field_print(" base", base);
field_print(" tmp1", tmp1);
field_print(" tmp2", tmp2);
scalar_print(" sca1", scalar1, (nbits1+WORD_BITS-1)/WORD_BITS);
scalar_print(" sca2", scalar2, (nbits1+WORD_BITS-1)/WORD_BITS);
printf(" good = ((%d,%d),(%d,%d))\n", (int)-succ12a,
(int)-succ12b, (int)-succ21a, (int)-succ21b);
return -1;
} else if (!succ12) {
// printf(" (nbits,ned) = (%d,%d), (%d,%d).\n", nbits1,ned1,nbits2,ned2);
// printf(" succ = (%d,%d), (%d,%d).\n", (int)-succ12a, (int)-succ12b, (int)-succ21a, (int)-succ21b);
return 1;
}
mask_t consistent = field_eq(m12,m21);
if (consistent) {
return 0;
} else {
youfail();
printf(" Failed scalarmul commutativity test with (nbits,ned) = (%d,%d), (%d,%d).\n",
nbits1,ned1,nbits2,ned2);
field_print(" base", base);
scalar_print(" sca1", scalar1, (nbits1+WORD_BITS-1)/WORD_BITS);
scalar_print(" sca2", scalar2, (nbits1+WORD_BITS-1)/WORD_BITS);
field_print(" m12 ", m12);
field_print(" m21 ", m21);
return -1;
}
}

static void crandom_generate_f(struct crandom_state_t *crand, uint8_t *scalar, int n) {
crandom_generate(crand, scalar, n);
int i;
for (i = FIELD_BYTES; i<n; i++) {
scalar[i] = 0;
}
#if (FIELD_BITS % 8)
if (n >= FIELD_BYTES) {
scalar[FIELD_BYTES-1] &= (1<<(FIELD_BITS%8)) - 1;
}
#endif
}

int test_scalarmul_commutativity (void) {
int i,j,k,got;
struct crandom_state_t crand;
crandom_init_from_buffer(&crand, "scalarmul_commutativity_test RNG");
for (i=0; i<=FIELD_BITS; i+=STRIDE) {
for (j=0; j<=FIELD_BITS; j+=STRIDE) {
got = 0;
for (k=0; k<128 && !got; k++) {
uint8_t ser[FIELD_BYTES];
word_t scalar1[SCALAR_WORDS], scalar2[SCALAR_WORDS];
crandom_generate_f(&crand, ser, sizeof(ser));
crandom_generate(&crand, (uint8_t *)scalar1, sizeof(scalar1));
crandom_generate(&crand, (uint8_t *)scalar2, sizeof(scalar2));
field_t base;
mask_t succ = field_deserialize(&base, ser);
if (!succ) continue;
int ret = single_scalarmul_commutativity_test (&base, scalar1, i, i%3, scalar2, j, j%3);
got = !ret;
if (ret == -1) return -1;
}

if (!got) {
youfail();
printf(" Unlikely: rejected 128 scalars in a row.\n");
return -1;
}
}
}
return 0;
}

int test_linear_combo (void) {
int i,j,k,got;
struct crandom_state_t crand;
crandom_init_from_buffer(&crand, "scalarmul_linear_combos_test RNG");
for (i=0; i<=FIELD_BITS; i+=STRIDE) {
for (j=0; j<=FIELD_BITS; j+=STRIDE) {
got = 0;
for (k=0; k<128 && !got; k++) {
uint8_t ser[FIELD_BYTES];
word_t scalar1[SCALAR_WORDS], scalar2[SCALAR_WORDS];
crandom_generate(&crand, (uint8_t *)scalar1, sizeof(scalar1));
crandom_generate(&crand, (uint8_t *)scalar2, sizeof(scalar2));
field_t base1;
crandom_generate_f(&crand, ser, sizeof(ser));
mask_t succ = field_deserialize(&base1, ser);
if (!succ) continue;
field_t base2;
crandom_generate(&crand, ser, sizeof(ser));
succ = field_deserialize(&base2, ser);
if (!succ) continue;
int ret = single_linear_combo_test (&base1, scalar1, i, &base2, scalar2, j);
got = !ret;
if (ret == -1) return -1;
}

if (!got) {
youfail();
printf(" Unlikely: rejected 128 scalars in a row.\n");
return -1;
}
}
}
return 0;
}

int test_scalarmul_compatibility (void) {
int i,j,k,got;
struct crandom_state_t crand;
crandom_init_from_buffer(&crand, "scalarmul_compatibility_test RNG");
for (i=0; i<=FIELD_BITS; i+=STRIDE) {
for (j=0; j<=20; j++) {
got = 0;
for (k=0; k<128 && !got; k++) {
uint8_t ser[FIELD_BYTES];
word_t scalar[SCALAR_WORDS];
crandom_generate_f(&crand, ser, sizeof(ser));
crandom_generate(&crand, (uint8_t *)scalar, sizeof(scalar));
field_t base;
mask_t succ = field_deserialize(&base, ser);
if (!succ) continue;
int ret = single_scalarmul_compatibility_test (&base, scalar, i);
got = !ret;
if (ret == -1) return -1;
}

if (!got) {
youfail();
printf(" Unlikely: rejected 128 scalars in a row.\n");
return -1;
}
}
}
return 0;
}

+ 0
- 270
test/test_sha512.c View File

@@ -1,270 +0,0 @@
#include "test.h"

#include <stdio.h>
#include <string.h>

#include "sha512.h"



static int sha512_monte_carlo_core (
const char *seed,
const char *checks[100]
) {
sha512_ctx_a_t sha;
sha512_init(sha);
unsigned char md0[64],md1[64],md2[64];
int ret = hexdecode(md0,seed,64);
if (ret) {
youfail();
printf(" SHA-512 NIST Monte Carlo validation seed hex decode failure.\n");
return -1;
}
int i,j;

memcpy(md1,md0,sizeof(md1));
memcpy(md2,md0,sizeof(md1));
for (j=0; j<100; j++) {
for (i=3; i<1003; i++) {
sha512_update(sha,md0,sizeof(md0));
sha512_update(sha,md1,sizeof(md1));
sha512_update(sha,md2,sizeof(md2));
memcpy(md0,md1,sizeof(md1));
memcpy(md1,md2,sizeof(md1));
sha512_final(sha,md2);
}
ret = hexdecode(md0,checks[j],64);
if (ret) {
youfail();
printf(" SHA-512 NIST Monte Carlo validation hex decode failure at iteration %d\n", j);
return -1;
} else if (memcmp(md0,md2,sizeof(md2))) {
youfail();
printf(" SHA-512 NIST Monte Carlo validation failure at iteration %d\n", j);
hexprint(" Expected", md0, 64);
hexprint(" But got ", md2, 64);
return j+1;
}
memcpy(md0,md2,sizeof(md1));
memcpy(md1,md2,sizeof(md1));
}
return 0;
}

int test_sha512_monte_carlo(void) {
const char *seed =
"5c337de5caf35d18ed90b5cddfce001ca1b8ee8602f367e7c24ccca6f893802f"
"b1aca7a3dae32dcd60800a59959bc540d63237876b799229ae71a2526fbc52cd";
const char *checks[100] = {
"ada69add0071b794463c8806a177326735fa624b68ab7bcab2388b9276c036e4"
"eaaff87333e83c81c0bca0359d4aeebcbcfd314c0630e0c2af68c1fb19cc470e",
"ef219b37c24ae507a2b2b26d1add51b31fb5327eb8c3b19b882fe38049433dbe"
"ccd63b3d5b99ba2398920bcefb8aca98cd28a1ee5d2aaf139ce58a15d71b06b4",
"c3d5087a62db0e5c6f5755c417f69037308cbce0e54519ea5be8171496cc6d18"
"023ba15768153cfd74c7e7dc103227e9eed4b0f82233362b2a7b1a2cbcda9daf",
"bb3a58f71148116e377505461d65d6c89906481fedfbcfe481b7aa8ceb977d25"
"2b3fe21bfff6e7fbf7575ceecf5936bd635e1cf52698c36ef6908ddbd5b6ae05",
"b68f0cd2d63566b3934a50666dec6d62ca1db98e49d7733084c1f86d91a8a08c"
"756fa7ece815e20930dd7cb66351bad8c087c2f94e8757cb98e7f4b86b21a8a8",
"937d7856a82a84c163c79417d0540c47daaf9ffe662c843737dbbcbe5f865bf6"
"f47a9d2bd10129a4f498073094653c324a2519a1c71ac1279b1623ff7d24647a",
"f8fbc058c2b9f84131c9decfa543a35ade41581f670398efd61b3abfced9c1cf"
"cb5324f2370487f9c59a65bc668ea596c8d22ce8a33014dfad28357fa7d05f04",
"4ab0c9484ff5c30fa64ae6e81510c5fea566eafb88f175f8bc19109f40fe8001"
"4c8b77fff10b8750778429bf3c5497e4cb92d9b30014f4cb975dff2a45244c28",
"685179397554d276513d630234a03419808c698abf2600d7490aabb8e455c6ab"
"6ea412c7729dc140a79dff66533c6946cbe90f9da9ed16e2e629db1651bea870",
"335e6e941ab7dadfecdb74ea6cb4e8584b6e3408841a33a6cf7fd6a63294b193"
"0a60983240311672acac3840a90e64cc366ce75081b2252627e9c31197ebad03",
"e3217f6af6e279e9445dc3738cbf9ba0e9edba0455844a73648139777afdea2c"
"4d8032e214f541bf92675fb23f24df8e4fe98e0003aadfb6d8f9cc2cd799bbf7",
"ee2fdfb3ae630613b7d890977cf2515deac272a37f27e4a01961ecf103d4ff5b"
"45cc8aef53b635dd75aa51aabf71c0642555ccd3281e0388f8ca09d83258cf30",
"6a30d97cc98af6a25b673dce7aeab8d762bf2e55ea0c6dc899179281f84dd02a"
"2896f77e9c106b472f55f7adbef7b1157be567ee1236ebdac2a3c5d8cb133eb5",
"ac1176abdc5f71170183d92ae55856221b0d95590af11d9d72ba605ec026bbec"
"52d6974bc43a1efb125ff2b161fbdc616fda00f04193a0bc26aacdfa052a5741",
"59fa909480620ecc08d34531a6da1b55158b74fc93ddf68e1d242615b6f3843a"
"7952e63e798c6445cde1b07e0be09d0d711cb7b42a0e7760a593b08acfceb63d",
"9eb253319efa61b864f27bd334d7dd78b38d3265fb544e0c8edee950a547e1d8"
"db921a285774ab94d66beae933298d20f2a5aa87c62fe1e383cc3b18e7af18ac",
"81735324005671f7bdad9e685ee8257f5e0622b9fcb5d38dbdfb2df27258c3e1"
"d46d76e24c0c92c744e1b50a2b4b0d31525b3af83cc80a75722d921bdeef59c4",
"17498cdff4323bb8021e44eca6559e05d8ff9a0ef2ee9d4ba0ac6e73f83972a0"
"dfbb6d47728fa70311d7c82e154966e1b7678263b0f65133e9116969193d429b",
"228c4574d7c45eb9ba9240722133fce74abe00c7328ab30b4bde373dc79afdd6"
"e0569d36268cd5eaa2f27205fc00512577bcbb6699e1d66ed85eafaba7548afb",
"3d40ccd9cc445bbecca9227c67fe455d89e0b7c1c858d32f30e2b544ca9a5a60"
"6535aea2e59fec6ec4d1ba898cc4338c6eadef9c0884bcf56aca2f481a2d7d3e",
"e1e577aeac92e3a2b7f8a262bf2ac9c037d2274ca6618fbe4cc21db7c699e994"
"6b6671ae45ea433a1e392a5bc9eec96fd641ba8f4a047f022a04a337227004df",
"5e4424c0bcb2f0f7a2428821a9d5840a82401f4440ae6bed25c53cd9e71cf9d3"
"9904d6a375bd721f4332ab0202529c91feb9c094c3e6d34ca4f66649ee6fa212",
"56b199d63ca37189d5ca0d40006ac7bcb9f39cbdc00ef7b8a5697caa7d81d05b"
"645a146995b1151d01958f1589337e14afc6e7dd10a815170e527a398e6ce8c3",
"d2d498ff93fb03013a64f295b5bc68e57d2fb5600da578aa011d43ff432eae3e"
"0c800f9e2a53155e56fdbf5e068fe2b4beb3e42b2585531b8b16c4d8ca3356c6",
"3d3875489903710f17cf4247b5842ace6f017b1a3b99e9ee5fbc04fc7898e78b"
"12693879878028ca40c63cd0f6925fb7d0ca0412e4f06619e3ace223690f03b8",
"a013e21cd1234483c95c2ea2757be949bc79401ba39b09c316a1612d594642be"
"65ca106e12695ac3808c57c6f2980e895fd1fe188946562afc238414e1e43649",
"c5f6367d7195489e16242f912fbe0d8002e947de3a7e9c53f77b1e5e90e05bd7"
"ca395e787e34cb5f500c02da59c9d83de35601de7ae80dae74a0d6b4a292d43b",
"7c28c44c6aaba83c122f24d68273e28a5afd65b4071d02b7ea3300478d511897"
"1e1356ae57cbc70d2a177ea464a1c2c50d4297b933e789c63b1481797ae8f08c",
"af7cb42b1c70a85ac1ae1c2991b25b657c19f4fcf83af7f7dc0ae1028c1452a6"
"a17dc98929634fe6ed3855b70b96bc2caa93d82037b94ebeddc77e4c1a7cc563",
"bd56ad4c0cbd162706053da929d667253aadcf417affb483fff4f2699bf406d1"
"28cfdf5196dfbb05bb89ccbf04c5147bd2ebb3156b0bc1768ca6faa171c91c01",
"004d7b0fff9bcddf4b3913ae190a76728705a3d23874d92a8b7ff246c8fcad46"
"623cb04723c8aded0cba4968d1a8cc1375b99005786c1bcb7ae4bf13325c3ae0",
"8299a5bf5ed64f525c4eebbeca969fc1b91a81adb58c584bdd2d7676386a31fa"
"546643a3cf505007584f02fb712d708cab645bf078a1b9339f5a76aee985d017",
"ce7100f3455db1a9776a9f40d562ea998afca1f9fee7e0d81c8db34cf68ad23a"
"8bfa6fc04774703e1e56d5196b66966158fcf2a8335a58c6ba7ba1af756ba1dc",
"90aaabcb655ee921b8350229efe6064a60051cf0cac858fa3d43afd5b97cc823"
"01bd1b8cc1f874022e5af948185638783a13ca1bbd5049ace7fbf4f6d90c201f",
"3cf0a25b33ded3e0806dfe603b9987f1d6f2b3fdcb1ec7f8566828c00e17e8f5"
"9e38b3bca302396c7525ca194e6cc8501369059e2e34ae21e3141215876847c4",
"bdc5266aee339a1ff13fcf5229773cd3d14b47101e83076927c160bb71bf7445"
"590525a2012d52af008e118e16df1b6bfcaf8f22b4e45f9e749f3c20625a2bc8",
"ef8d2ba885381ab97756d59dbbbf53a1ea35d152b2d8f82c3518430aa34e7083"
"59194ea43950d032e151f576d343a5c3cfe6b71d4ed0ead9d3a107402589bad0",
"194ea5324c4179998dd7057755f255fdea04dadf533f7851e3e9718b610948e3"
"2fd28323077d9421142ac808978adfa325b668c8599a2e01c757a5a14ed2dd37",
"106984d2f0087e621dae760552bc6279072267883c204079481af6034354f1a2"
"b77c17e6c039a1063e479342aa3ccd90330dd3fb5a7d5e976619497e2d3326cd",
"a1347216f1a6db47b90c4ded3c5c75440f54c22c87d538314d1340f86f88acba"
"01378acb933ddad0adc6b75d55bfb7e8efc9c4a531b2a410610b7515b6dac66a",
"b76e4db147e0eaa4f04880654088b9d0fce518c8c377d92c846345604dc6b2b1"
"8d377fdb8e30f06d9bcfe6d7dacc07d6adff73d98d49f8f132b80f3084390830",
"acd4e527763dfd4513f0def0b1edf8ea12dc78d336b7b796f3dcc32e10687254"
"43a2f55ab4f666b27d6bf2ab39669c98293f0a9108051fd3144d31a1ed171ddd",
"10128c15494bc87a87374f676ef9fe2df20b36ffcca41a80bd40b216637b3de7"
"10efd070e277827820a7bba3cceb7b21f8fe7f9775d6c4df4d3da5349434ec49",
"2632dd5c188c6ed3a4610405fdda704add752f5424d9de65a51400fe478e26cd"
"0412e5f91ca4b744c34f4954f40a3a4254431d21954623208b527b7b4daa687e",
"45707f5b6fc5ccd1f78d77f177d10fb8b462c74cc821518cd5cfa4b5d6b40b41"
"8044900693c37abbb82367d340fec67f800d74072935da1706b4d90ae26099c7",
"56c37f31220b5b3040373d91b2c5e42fe9e601a12f7f8dc4534459bf28e484b8"
"713db243c5782c031e674003a3c14c42fd152e7188789065e82795e10f87d54b",
"5da94c899d48bd8299fee3d81662f8d6c5f8f8bc54d18cb0368b13cebaee7ad7"
"1e74ea80f34974ad166f04f9a0602809166fe4085a475a8ca86cade12b6754c4",
"0664363f97ba910760b0922e31ca880ca97469506cb007e3108c36c3ce3ce180"
"1fb4197609479339e8820632b6a38bffffee05a9adc11cc544b9aa6f5b95cc6f",
"732c41a1edaa727c04f627ff158aaff67c18efd667216132b99ab84d108996a1"
"0bb008b5d803b22ed1aa78bb0d10f8a762fd34777d7dccce8e84827ba88d4193",
"fc9c21d67e393a2b05a23a17d8db630cbaebaa3def211181749f1bcad1815606"
"27fb60ee20fae2e5980cbf50fce0a19dce807e7fb75c4da0ef008bc75d413a65",
"0453b765afc1edffa595efe345177f5805ed3abc1297ceab757ae7161723a614"
"4cb543299f418049276d16b7896662631634fab9549127c10f27505b7dee8665",
"3853f3bf024e0668e8d1ea53733a97537f97d9307c5f3a19864ab4eeb1654710"
"693bb961a344dec8a758f5e64b26fcb6dd423419c4a114fa749211a9de06c281",
"240137f0dd57beb3f7fc283bb3ead423c67883fd46f4e27471d7be57ad469a49"
"bad03a3658418bd55614678f3a463bceff85291314b90ef43ccbcb028f0a7a07",
"f9050a5271edbe4cfdb9520ec05bbdc3cbcb9bce36fd212338d3e7028a39b9ab"
"30793e561d75a2e424193264c7f0775e65599ef0c94e0ad24dbfe18252364267",
"47caa7a5862fad837aaa409a4a9df2575e645528c35159115911b7c4e2f08ae4"
"9d68de97249b31b83ce2c163f649cad4559dc6e6a7191f2922d79a5fd6af167b",
"13f5825c41fa49edf6104e3e35c9c224eba93e37374f730004c39c54e7391e4a"
"847fd61865235a3fe32224c96fbe86f7e14c3d5df496e83ec989a71b4f293a44",
"e5b55e05efe1ca6b9a96a57e3a1523d610d70f837e93b31fa98c2736d3e114d2"
"38d46ec6b6e3d19e774b253f6b0c7a2ebe69b7e60fc0874444806b2a2278df45",
"f14a586ac30f0af255f597a9aef9abba5e99c04d17b01f24427c4ee2c196b52a"
"cb1ceefc9b15cb822b3ecffdc2f7c49e11d3fc0769acee33361537d379c62e0c",
"7e2d3398807195c48e6ec52d20710bbf8b21ea8de4d1abc197897ccc58aeff40"
"259edc67270cdae0edcc686c0d0dccc5760c1495ab1cf48482dc2000ae2d42ad",
"2f3d5c5f990bf615d5e8b396ccbd0337da39fad09b059f955a431db76a9dc720"
"dffc4e02c0be397c7e0463799cd75fd6ab7c52bec66c8df5ef0d47e14a4c5927",
"483a1764d308cc494a2b543d29ba616483aefdf91c7769fd084eedaac1add189"
"1df95d317a47430b2bf73e4081f86597020e28afe2d34a22b77ea62b6112d09a",
"bfa88691ec951511651c6f14af100eeb26d87729e18ac3ef49a80d73ffeaeea5"
"3e97c4a7277a7ee9f2fba070b1c9720d6cdba407dd82267019e3f0f5662b2f2b",
"4c17c8e2e7132dbf82afebc40efc77926d16f4d2c082d846dac28733aa767e28"
"40ebf04f2563df75933466a36e11968d342e4157827605d04d9627ce9b5216c8",
"70bbfc29a2a765220af84e7bb10d759a3152ad4b5643ef6b89966950ec7ef950"
"3d57bc0a28c4ee789a60bf9dcac59139e15241d73b990410cf92eff213da9eca",
"8d1d56f37fc19b84984a6fa33aa9c2dbdbf79a29c04ad0b4cf20333e6bec9434"
"47be2416242f8cd2f9732e79bb925cc5a61a80c5fc9c079961243fd1c1f5900e",
"492fd0171f4dcd5d20ea6c0d34b5576c8894664ae5955e6737f5e3b711c2804d"
"99ccca065b7ec18c82da98b18a3029b765c51ebc7c433b36492e0ed6b8511bb6",
"7f49e8e54db7e5b4323cae2db71f3e8b8eba172dcad3602e9b7b058007a55893"
"58732d5afffa56072a46e89b1ea27ef8d556deb86b569c635d394f15d99d8a15",
"56884a6a9210d5f371e25823efb2511a9c410c26a441e07c1bdffe8605084267"
"d49c315baf6a692d7d97844b2714b4930877a5d7f52cf6fa151700fcb6980546",
"6aaef8284eef221ecb17ea3c9596f075b5155fe7b925d737ed3c6543c761c28c"
"7cd9d9d4b5e2a37b2f183a2a367bbd34b633497bc7a1737d61c8c1f3ef295062",
"38ef178f5688e59d47c375252db7b39f40c0c84169878ee7ba5086e4b25fea81"
"076b9c37847e9e6bf24ae0b343689c265ec5ca7469e619acd61b0276721efb1b",
"e3fe1aabad120777cf24eaae289b486632ca46ceb89afae73dbae5fa87c76787"
"9369355a9cc5c21ca604ed91d0f2f58c466573f3e6d88e52c62c0d3cb188e141",
"82f5bd920457bb2763a0da031a7fed47b236951b1ea420c20fd2b6de1dbfbb9c"
"4600ea7092788493e2d4be6ee24b6dba04e57af3e8f2f14d9837295420ac7631",
"6d0b26208ba9b1615067bb3ff97b292fe67e4c02d240d649c32370e0a4cd22d0"
"3bdf864be4d24a3f5f51aeccfd1afd5191e590edeb5f7bec323b0506c3104b89",
"d081083158054d08371ec84f4d3aa5aa761734ac6091a30330a861fda056f835"
"c750bf4f7981af1693ff28545366bd05cec47bccd77a7d237befb0135c534138",
"6ba8b52780b8a07a2a2015dd8f0c5e7437b8e024c4ee428f7ba91dfea118cb72"
"a939872550983317132b841b7cbc29a22b8f1cfea0c55203cafc69b55ed6244a",
"312692b0a51f002b7f06d05b39d15a5637dbddd2f4f1a73e6c88a4c841cdba5c"
"d8e69c0939ab39bb1a9c54fa35402143c97edb9704a0e9e1a98701710f6a5dad",
"aaee960de201a8dcccff95b834fccf0dafc03fe6cffc0429162bf4aff01165ab"
"07a0c9435e9cb412121b7ba010657ccc3152118602b665072136317d92fd4262",
"21fdff552e08c86c07f080cefacaaaf31846eb893bfe2e4f88c3c3cd8cbf592a"
"84500942695a5e5ae971ab343ce2695dd1baeb1f94dd4b53d678e14265e421ae",
"ca8f1a5b2172f6adb474da53b35e3f73ffd88263d3eecde72e48b16e1a065801"
"5b555ee319005a1d82802e91431ee777610f9b1028d819921e1044ad426b0270",
"ce5ab25eff9c1ddc569a1eaaa66b689109ee269db7066e0b02d39b3564fd14ca"
"6249987b7791e203d3d7c2ebf18558d2f23f94c03dd1d03aa63849e4d2889a76",
"a6f8b0561000dd4ae8b828c5f676e8c1a6474c4a042a645f1815bd52e9ff53c9"
"7dc36d5d8997f8ce332185feead76267f5b2e63f597fb3345ca0046e58fc0f24",
"fec86794bad4106c5ad1c1a2d9a1b7aae480396ec231eb5cac21c4077d17a0b6"
"52da0037363399a5a1dababa4a40e4c54b9124167580dee9108c4dbb24c57512",
"594f5dd3f4c87bdc0d81309386e9163a9718e34c7b0dcb4613f8487aa786f9d2"
"11cfb61bb247fa9f5ecef042e710f192850f5571807294bfd8a54397850e5773",
"d81ad866f25ef6a0a6431d267114da564513e5ebdcf48db7e95db8cf32a89f0a"
"b107874d796035db97420ffcf1db5f04dc1a52ddbbb960fc63b7f3f835cc8be6",
"431d537e098e9949f6a68108d55d20952e3bfcdeb7273bac3917e37790a84fa5"
"db04c33a79c113a06cf333e831d7702a00853a93fd0aa5146d934f4f71242a6a",
"4ed95636c6885ae4e63d042e82f4da830c702dbf3b9746d64770a64dd666b332"
"08315f3a947c4dff790771ef283788a9c74da83e22b97f750286a820ee46698c",
"a9bcb60b4d7724cdddddbc232b4ac70b94d0d7e9f0724b1222d918930cbb9bdb"
"b04b3ad43e3c8caf3bf8b004ee4aec6bd527ff8eb6189b44827f7ba7057f6a90",
"d6d5e44d5bb07fc4144ab6ab309f048968f73f7992beb326047e9e2cd7af6240"
"bc8abf46703c32fdb58fb2a8672594a660ef855be74f24cec09d4fb00219de82",
"dfda9ac0c7147530da97715ccf47814182255f2f2cf40287db97a4c63b43fcd3"
"9e6d41e560921492badb253a7dea0aba863c7c33b912bb59d1ff4de03a4f03bb",
"0395faaaf2e907f27779d6f1cc9c9db68ec390a38fbb0702c6475b46f7a39949"
"8d46fd8014f834b131e1e83abba0359b1f16d8fc0a393580615def2ad0caba73",
"41cb98f09029abe85d24a0f131f116c7f69f54f7e91c250642606512bf3da4ca"
"89ba70a4714a5f66d9ae81ff09317dadaff12a02057074c970f0f02a52bfafd2",
"8e8f161d48e306c5533ed614b8ef3a1979df6db7e13d0780a73c4a3980ddf0a9"
"5f93941d412c93683e39915a660c3fbec0dbb1bb6beea2e2099cd968011535c0",
"789593f0b8fb83ef9b3ec50ab8f6e1e47344f763d4f7ceab5600989e7b6fd5fe"
"f6ee5e487975f64474af6cd71ae4d9ecce8f009edea0227c7ebe73080b8f961b",
"f37e1449e0b313d9537a6177f7a31158d353e5b79c781facf02526ec94e0c6cf"
"da37105bac67098b194ea82efb307c2929a9ab8aca0e76c53e829e3f901cd245",
"2e74e745caaf2d449ab3b031dd214b48616853a512cf2e95c40cb8e7594fe5e4"
"879ac8a26d02eb35b3b96a5c9e7dcae3e15fd050a0bcc1fb3b9cb9c4df0fad3e",
"6eac7069c26082e52574ca6a58abb9b1b9faf452e8cca9f1c7023679ce192ca5"
"54892f30e38104d39088a24df35612444a0fc90084af7535fd9344fa51dded84",
"ada6caf30c4f6e3644d952366e01519af6771b406e2c447552f0c597b8dd10e9"
"e9b4e699c9a835de03f422be8980538d9786172dfd2fe511db272a1543d5aa35",
"4d4b0086b2cb05d713f2805caa7e6605c8f7dbbb2e0f92aa159aebdcd6306030"
"5f47b748f1bca6e0b6e11cf8f9697fcccb6584b878c4b54a699290728a40aa1b",
"97420b8a0ad102aeb92139da2c052d2748dd7d2dbb93a9ea79dc15b520d0ca7c"
"ab8cb7a00f5b5aebcb49d7e7f52a27180935ce617aeecdecba04064c668edd37",
"4aa7dad74eb51d09a6ae7735c4b795b078f51c314f14f42a0d63071e13bdc5fd"
"9f51612e77b36d44567502a3b5eb66c609ec017e51d8df93e58d1a44f3c1e375"
};
return sha512_monte_carlo_core(seed, checks);
}

Loading…
Cancel
Save