|
@@ -226,6 +226,14 @@ static decaf_word_t hibit(const gf x) { |
|
|
return -(y->limb[0]&1); |
|
|
return -(y->limb[0]&1); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/** Return high bit of x = low bit of 2x mod p */ |
|
|
|
|
|
static decaf_word_t lobit(const gf x) { |
|
|
|
|
|
gf y; |
|
|
|
|
|
gf_cpy(y,x); |
|
|
|
|
|
gf_canon(y); |
|
|
|
|
|
return -(y->limb[0]&1); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
/** {extra,accum} - sub +? p |
|
|
/** {extra,accum} - sub +? p |
|
|
* Must have extra <= 1 |
|
|
* Must have extra <= 1 |
|
|
*/ |
|
|
*/ |
|
@@ -492,8 +500,8 @@ static void deisogenize ( |
|
|
decaf_bool_t rotate; |
|
|
decaf_bool_t rotate; |
|
|
{ |
|
|
{ |
|
|
gf e; |
|
|
gf e; |
|
|
gf_sqr(e, t); |
|
|
|
|
|
gf_mul(a, e, b); |
|
|
|
|
|
|
|
|
gf_sqr(e, p->z); |
|
|
|
|
|
gf_mul(a, e, b); /* z^2 / tz = z/t = 1/xy */ |
|
|
rotate = hibit(a) ^ toggle_rotation; |
|
|
rotate = hibit(a) ^ toggle_rotation; |
|
|
/* |
|
|
/* |
|
|
* Curve25519: cond select between zx * 1/tz or sqrt(1-d); y=-x |
|
|
* Curve25519: cond select between zx * 1/tz or sqrt(1-d); y=-x |
|
@@ -540,30 +548,39 @@ decaf_bool_t API_NS(point_decode) ( |
|
|
succ &= allow_identity | ~zero; |
|
|
succ &= allow_identity | ~zero; |
|
|
succ &= ~hibit(s); |
|
|
succ &= ~hibit(s); |
|
|
gf_sqr ( a, s ); |
|
|
gf_sqr ( a, s ); |
|
|
gf_add ( f, ONE, a ); /* 1+s^2 = 1+as^2 since a=1 */ |
|
|
|
|
|
|
|
|
gf_sub ( f, ONE, a ); /* f = 1-s^2 = 1-as^2 since a=1 */ |
|
|
succ &= ~ gf_eq( f, ZERO ); |
|
|
succ &= ~ gf_eq( f, ZERO ); |
|
|
gf_sqr ( b, f ); |
|
|
gf_sqr ( b, f ); |
|
|
gf_mlw ( c, a, -4*EDWARDS_D ); |
|
|
|
|
|
|
|
|
gf_mlw ( c, a, 4-4*EDWARDS_D ); |
|
|
gf_add ( c, c, b ); /* t^2 */ |
|
|
gf_add ( c, c, b ); /* t^2 */ |
|
|
gf_mul ( d, f, s ); /* s(1+s^2) for denoms */ |
|
|
|
|
|
|
|
|
gf_mul ( d, f, s ); /* s(1-s^2) for denoms */ |
|
|
gf_sqr ( e, d ); |
|
|
gf_sqr ( e, d ); |
|
|
gf_mul ( b, c, e ); |
|
|
gf_mul ( b, c, e ); |
|
|
|
|
|
|
|
|
succ &= gf_isqrt_chk ( e, b, DECAF_TRUE ); /* e = "the" */ |
|
|
|
|
|
|
|
|
succ &= gf_isqrt_chk ( e, b, DECAF_TRUE ); /* e = 1/(t s (1-s^2)) */ |
|
|
gf_mul ( b, e, d ); /* 1/t */ |
|
|
gf_mul ( b, e, d ); /* 1/t */ |
|
|
gf_mul ( d, e, c ); /* d = later "the" = t / (s(1+s^2)) */ |
|
|
|
|
|
|
|
|
gf_mul ( d, e, c ); /* d = t / (s(1-s^2)) */ |
|
|
gf_mul ( e, d, f ); /* t/s */ |
|
|
gf_mul ( e, d, f ); /* t/s */ |
|
|
gf_sub ( a, ONE, a); /* 1-s^2 */ |
|
|
|
|
|
|
|
|
decaf_bool_t negtos = hibit(e); |
|
|
|
|
|
cond_neg(b, negtos); |
|
|
|
|
|
cond_neg(d, negtos); |
|
|
|
|
|
|
|
|
|
|
|
gf_add ( p->z, ONE, a); /* Z = 1+s^2 */ |
|
|
|
|
|
succ &= ~gf_eq( p->z, ZERO ); /* FUTURE: unnecessary? */ |
|
|
|
|
|
|
|
|
|
|
|
gf_mul ( a, p->z, d); /* t(1+s^2) / s(1-s^2) = 2/xy */ |
|
|
|
|
|
succ &= ~lobit(a); /* = ~hibit(a/2), since hibit(x) = lobit(2x) */ |
|
|
|
|
|
|
|
|
gf_mul ( p->y, a, b ); /* y = (1-s^2) / t */ |
|
|
|
|
|
gf_sub ( d, e, d ); /* t/s - t/ s(1+s^2) = st / (1+s^2) */ |
|
|
|
|
|
gf_mul ( c, d, b ); /* s/(1+s^2) */ |
|
|
|
|
|
gf_mul ( b, c, SQRT_MINUS_ONE ); /* is/(1+s^2) */ |
|
|
|
|
|
gf_add ( p->x, b, b ); /* 2is */ |
|
|
|
|
|
cond_neg ( p->x, hibit(e) ); |
|
|
|
|
|
gf_mul ( p->t, p->x, p->y ); |
|
|
|
|
|
|
|
|
gf_mul ( a, f, b ); /* y = (1-s^2) / t */ |
|
|
|
|
|
gf_mul ( p->y, p->z, a ); /* Y = yZ */ |
|
|
|
|
|
gf_add ( p->x, s, s ); |
|
|
|
|
|
gf_mul ( p->t, p->x, a ); /* T = 2s (1-as^2)/t */ |
|
|
|
|
|
|
|
|
gf_cpy ( p->z, ONE ); |
|
|
|
|
|
|
|
|
/* TODO: integrate */ |
|
|
|
|
|
gf_cpy(a, p->x); |
|
|
|
|
|
gf_mul(p->x, a, SQRT_MINUS_ONE); |
|
|
|
|
|
gf_cpy(a, p->t); |
|
|
|
|
|
gf_mul(p->t, a, SQRT_MINUS_ONE); |
|
|
|
|
|
|
|
|
p->y->limb[0] -= zero; |
|
|
p->y->limb[0] -= zero; |
|
|
|
|
|
|
|
|