Browse Source

beginning of header generation technology

master
Michael Hamburg 9 years ago
parent
commit
a0b4bc5099
1 changed files with 614 additions and 0 deletions
  1. +614
    -0
      src/gen_headers/decaf.hxx.py

+ 614
- 0
src/gen_headers/decaf.hxx.py View File

@@ -0,0 +1,614 @@
curve_data = {
"Curve25519" : {
"iso_to" : "Curve25519",
"name" : "IsoEd25519",
"cxx_ns" : "IsoEd25519",
"short" : "255",
"c_ns" : "decaf_255",
"C_NS" : "DECAF_255",
"cofactor" : 8,
"modulus_type" : 5,
"bits" : 255
},
"Ed448" : {
"iso_to" : "Ed448-Goldilocks",
"name" : "Ed448-Goldilocks",
"cxx_ns" : "Ed448Goldilocks",
"short" : "448",
"c_ns" : "decaf_448",
"C_NS" : "DECAF_448",
"cofactor" : 4,
"modulus_type" : 3,
"bits" : 448
}
}


header = """
/**
* @file decaf/%(c_ns)s.hxx
* @author Mike Hamburg
*
* @copyright
* Copyright (c) 2015-2016 Cryptography Research, Inc. \\n
* Released under the MIT License. See LICENSE.txt for license information.
*
* @brief A group of prime order p, C++ wrapper.
*
* The Decaf library implements cryptographic operations on a an elliptic curve
* group of prime order p. It accomplishes this by using a twisted Edwards
* curve (isogenous to %(iso_to)s) and wiping out the cofactor.
*
* The formulas are all complete and have no special cases, except that
* %(c_ns)s_decode can fail because not every sequence of bytes is a valid group
* element.
*
* The formulas contain no data-dependent branches, timing or memory accesses,
* except for %(c_ns)s_base_double_scalarmul_non_secret.
*/
#ifndef __%(C_NS)s_HXX__
#define __%(C_NS)s_HXX__ 1

/** This code uses posix_memalign. */
#ifndef _XOPEN_SOURCE
#define _XOPEN_SOURCE 600
#endif
#include <stdlib.h>
#include <string.h> /* for memcpy */

#include <decaf.h>
#include <decaf/secure_buffer.hxx>
#include <string>
#include <sys/types.h>
#include <limits.h>

/** @cond internal */
#if __cplusplus >= 201103L
#define NOEXCEPT noexcept
#else
#define NOEXCEPT throw()
#endif
/** @endcond */

namespace decaf {

/**
* @brief %(iso_to)s/Decaf instantiation of group.
*/
struct %(cxx_ns)s {

/** The name of the curve */
static inline const char *name() { return "%(name)s"; }

/** The curve's cofactor (removed, but useful for testing) */
static const int REMOVED_COFACTOR = %(cofactor)d;

/** Residue class of field modulus: p == this mod 2*(this-1) */
static const int FIELD_MODULUS_TYPE = %(modulus_type)d;

/** @cond internal */
class Point;
class Precomputed;
/** @endcond */

/**
* @brief A scalar modulo the curve order.
* Supports the usual arithmetic operations, all in constant time.
*/
class Scalar : public Serializable<Scalar> {
private:
/** @brief wrapped C type */
typedef %(c_ns)s_scalar_t Wrapped;

public:
/** @brief Size of a serialized element */
static const size_t SER_BYTES = %(C_NS)s_SCALAR_BYTES;

/** @brief access to the underlying scalar object */
Wrapped s;

/** @brief Don't initialize. */
inline Scalar(const NOINIT &) NOEXCEPT {}

/** @brief Set to an unsigned word */
inline Scalar(const decaf_word_t w) NOEXCEPT { *this = w; }

/** @brief Set to a signed word */
inline Scalar(const int w) NOEXCEPT { *this = w; }

/** @brief Construct from RNG */
inline explicit Scalar(Rng &rng) NOEXCEPT {
FixedArrayBuffer<SER_BYTES> sb(rng);
*this = sb;
}

/** @brief Construct from decaf_scalar_t object. */
inline Scalar(const Wrapped &t = %(c_ns)s_scalar_zero) NOEXCEPT { %(c_ns)s_scalar_copy(s,t); }

/** @brief Copy constructor. */
inline Scalar(const Scalar &x) NOEXCEPT { *this = x; }

/** @brief Construct from arbitrary-length little-endian byte sequence. */
inline Scalar(const Block &buffer) NOEXCEPT { *this = buffer; }

/** @brief Serializable instance */
inline size_t serSize() const NOEXCEPT { return SER_BYTES; }

/** @brief Serializable instance */
inline void serializeInto(unsigned char *buffer) const NOEXCEPT {
%(c_ns)s_scalar_encode(buffer, s);
}

/** @brief Assignment. */
inline Scalar& operator=(const Scalar &x) NOEXCEPT { %(c_ns)s_scalar_copy(s,x.s); return *this; }

/** @brief Assign from unsigned word. */
inline Scalar& operator=(decaf_word_t w) NOEXCEPT { %(c_ns)s_scalar_set_unsigned(s,w); return *this; }


/** @brief Assign from signed int. */
inline Scalar& operator=(int w) NOEXCEPT {
Scalar t(-(decaf_word_t)INT_MIN);
%(c_ns)s_scalar_set_unsigned(s,(decaf_word_t)w - (decaf_word_t)INT_MIN);
*this -= t;
return *this;
}

/** Destructor securely zeorizes the scalar. */
inline ~Scalar() NOEXCEPT { %(c_ns)s_scalar_destroy(s); }

/** @brief Assign from arbitrary-length little-endian byte sequence in a Block. */
inline Scalar &operator=(const Block &bl) NOEXCEPT {
%(c_ns)s_scalar_decode_long(s,bl.data(),bl.size()); return *this;
}

/**
* @brief Decode from correct-length little-endian byte sequence.
* @return DECAF_FAILURE if the scalar is greater than or equal to the group order q.
*/
static inline decaf_error_t __attribute__((warn_unused_result)) decode (
Scalar &sc, const FixedBlock<SER_BYTES> buffer
) NOEXCEPT {
return %(c_ns)s_scalar_decode(sc.s,buffer.data());
}

/** Add. */
inline Scalar operator+ (const Scalar &q) const NOEXCEPT { Scalar r((NOINIT())); %(c_ns)s_scalar_add(r.s,s,q.s); return r; }

/** Add to this. */
inline Scalar &operator+=(const Scalar &q) NOEXCEPT { %(c_ns)s_scalar_add(s,s,q.s); return *this; }

/** Subtract. */
inline Scalar operator- (const Scalar &q) const NOEXCEPT { Scalar r((NOINIT())); %(c_ns)s_scalar_sub(r.s,s,q.s); return r; }

/** Subtract from this. */
inline Scalar &operator-=(const Scalar &q) NOEXCEPT { %(c_ns)s_scalar_sub(s,s,q.s); return *this; }

/** Multiply */
inline Scalar operator* (const Scalar &q) const NOEXCEPT { Scalar r((NOINIT())); %(c_ns)s_scalar_mul(r.s,s,q.s); return r; }

/** Multiply into this. */
inline Scalar &operator*=(const Scalar &q) NOEXCEPT { %(c_ns)s_scalar_mul(s,s,q.s); return *this; }

/** Negate */
inline Scalar operator- () const NOEXCEPT { Scalar r((NOINIT())); %(c_ns)s_scalar_sub(r.s,%(c_ns)s_scalar_zero,s); return r; }

/** @brief Invert with Fermat's Little Theorem (slow!). If *this == 0, return 0. */
inline Scalar inverse() const throw(CryptoException) {
Scalar r;
if (DECAF_SUCCESS != %(c_ns)s_scalar_invert(r.s,s)) {
throw CryptoException();
}
return r;
}

/** @brief Divide by inverting q. If q == 0, return 0. */
inline Scalar operator/ (const Scalar &q) const throw(CryptoException) { return *this * q.inverse(); }

/** @brief Divide by inverting q. If q == 0, return 0. */
inline Scalar &operator/=(const Scalar &q) throw(CryptoException) { return *this *= q.inverse(); }

/** @brief Compare in constant time */
inline bool operator!=(const Scalar &q) const NOEXCEPT { return !(*this == q); }

/** @brief Compare in constant time */
inline bool operator==(const Scalar &q) const NOEXCEPT { return !!%(c_ns)s_scalar_eq(s,q.s); }

/** @brief Scalarmul with scalar on left. */
inline Point operator* (const Point &q) const NOEXCEPT { return q * (*this); }

/** @brief Scalarmul-precomputed with scalar on left. */
inline Point operator* (const Precomputed &q) const NOEXCEPT { return q * (*this); }

/** @brief Direct scalar multiplication. */
inline SecureBuffer direct_scalarmul(
const Block &in,
decaf_bool_t allow_identity=DECAF_FALSE,
decaf_bool_t short_circuit=DECAF_TRUE
) const throw(CryptoException);
};

/**
* @brief Element of prime-order group.
*/
class Point : public Serializable<Point> {
private:
/** @brief wrapped C type */
typedef %(c_ns)s_point_t Wrapped;
public:
/** @brief Size of a serialized element */
static const size_t SER_BYTES = %(C_NS)s_SER_BYTES;

/** @brief Bytes required for hash */
static const size_t HASH_BYTES = SER_BYTES;

/** @brief Size of a stegged element */
static const size_t STEG_BYTES = HASH_BYTES * 2;

/** The c-level object. */
Wrapped p;

/** @brief Don't initialize. */
inline Point(const NOINIT &) NOEXCEPT {}

/** @brief Constructor sets to identity by default. */
inline Point(const Wrapped &q = %(c_ns)s_point_identity) NOEXCEPT { %(c_ns)s_point_copy(p,q); }

/** @brief Copy constructor. */
inline Point(const Point &q) NOEXCEPT { *this = q; }

/** @brief Assignment. */
inline Point& operator=(const Point &q) NOEXCEPT { %(c_ns)s_point_copy(p,q.p); return *this; }

/** @brief Destructor securely zeorizes the point. */
inline ~Point() NOEXCEPT { %(c_ns)s_point_destroy(p); }

/** @brief Construct from RNG */
inline explicit Point(Rng &rng, bool uniform = true) NOEXCEPT {
if (uniform) {
FixedArrayBuffer<2*HASH_BYTES> b(rng);
set_to_hash(b);
} else {
FixedArrayBuffer<HASH_BYTES> b(rng);
set_to_hash(b);
}
}

/**
* @brief Initialize from a fixed-length byte string.
* The all-zero string maps to the identity.
*
* @throw CryptoException the string was the wrong length, or wasn't the encoding of a point,
* or was the identity and allow_identity was DECAF_FALSE.
*/
inline explicit Point(const FixedBlock<SER_BYTES> &buffer, decaf_bool_t allow_identity=DECAF_TRUE)
throw(CryptoException) {
if (DECAF_SUCCESS != decode(*this,buffer,allow_identity)) {
throw CryptoException();
}
}

/**
* @brief Initialize from C++ fixed-length byte string.
* The all-zero string maps to the identity.
*
* @retval DECAF_SUCCESS the string was successfully decoded.
* @return DECAF_FAILURE the string was the wrong length, or wasn't the encoding of a point,
* or was the identity and allow_identity was DECAF_FALSE. Contents of the buffer are undefined.
*/
static inline decaf_error_t __attribute__((warn_unused_result)) decode (
Point &p, const FixedBlock<SER_BYTES> &buffer, decaf_bool_t allow_identity=DECAF_TRUE
) NOEXCEPT {
return %(c_ns)s_point_decode(p.p,buffer.data(),allow_identity);
}

/**
* @brief Map uniformly to the curve from a hash buffer.
* The empty or all-zero string maps to the identity, as does the string "\\x01".
* If the buffer is shorter than 2*HASH_BYTES, well, it won't be as uniform,
* but the buffer will be zero-padded on the right.
*/
static inline Point from_hash ( const Block &s ) NOEXCEPT {
Point p((NOINIT())); p.set_to_hash(s); return p;
}

/**
* @brief Map to the curve from a hash buffer.
* The empty or all-zero string maps to the identity, as does the string "\\x01".
* If the buffer is shorter than 2*HASH_BYTES, well, it won't be as uniform,
* but the buffer will be zero-padded on the right.
*/
inline void set_to_hash( const Block &s ) NOEXCEPT {
if (s.size() < HASH_BYTES) {
SecureBuffer b(HASH_BYTES);
memcpy(b.data(), s.data(), s.size());
%(c_ns)s_point_from_hash_nonuniform(p,b.data());
} else if (s.size() == HASH_BYTES) {
%(c_ns)s_point_from_hash_nonuniform(p,s.data());
} else if (s.size() < 2*HASH_BYTES) {
SecureBuffer b(2*HASH_BYTES);
memcpy(b.data(), s.data(), s.size());
%(c_ns)s_point_from_hash_uniform(p,b.data());
} else {
%(c_ns)s_point_from_hash_uniform(p,s.data());
}
}

/**
* @brief Encode to string. The identity encodes to the all-zero string.
*/
inline operator SecureBuffer() const {
SecureBuffer buffer(SER_BYTES);
%(c_ns)s_point_encode(buffer.data(), p);
return buffer;
}

/** @brief Serializable instance */
inline size_t serSize() const NOEXCEPT { return SER_BYTES; }

/** @brief Serializable instance */
inline void serializeInto(unsigned char *buffer) const NOEXCEPT {
%(c_ns)s_point_encode(buffer, p);
}

/** @brief Point add. */
inline Point operator+ (const Point &q) const NOEXCEPT { Point r((NOINIT())); %(c_ns)s_point_add(r.p,p,q.p); return r; }

/** @brief Point add. */
inline Point &operator+=(const Point &q) NOEXCEPT { %(c_ns)s_point_add(p,p,q.p); return *this; }

/** @brief Point subtract. */
inline Point operator- (const Point &q) const NOEXCEPT { Point r((NOINIT())); %(c_ns)s_point_sub(r.p,p,q.p); return r; }

/** @brief Point subtract. */
inline Point &operator-=(const Point &q) NOEXCEPT { %(c_ns)s_point_sub(p,p,q.p); return *this; }

/** @brief Point negate. */
inline Point operator- () const NOEXCEPT { Point r((NOINIT())); %(c_ns)s_point_negate(r.p,p); return r; }

/** @brief Double the point out of place. */
inline Point times_two () const NOEXCEPT { Point r((NOINIT())); %(c_ns)s_point_double(r.p,p); return r; }

/** @brief Double the point in place. */
inline Point &double_in_place() NOEXCEPT { %(c_ns)s_point_double(p,p); return *this; }

/** @brief Constant-time compare. */
inline bool operator!=(const Point &q) const NOEXCEPT { return ! %(c_ns)s_point_eq(p,q.p); }

/** @brief Constant-time compare. */
inline bool operator==(const Point &q) const NOEXCEPT { return !!%(c_ns)s_point_eq(p,q.p); }

/** @brief Scalar multiply. */
inline Point operator* (const Scalar &s) const NOEXCEPT { Point r((NOINIT())); %(c_ns)s_point_scalarmul(r.p,p,s.s); return r; }

/** @brief Scalar multiply in place. */
inline Point &operator*=(const Scalar &s) NOEXCEPT { %(c_ns)s_point_scalarmul(p,p,s.s); return *this; }

/** @brief Multiply by s.inverse(). If s=0, maps to the identity. */
inline Point operator/ (const Scalar &s) const throw(CryptoException) { return (*this) * s.inverse(); }

/** @brief Multiply by s.inverse(). If s=0, maps to the identity. */
inline Point &operator/=(const Scalar &s) throw(CryptoException) { return (*this) *= s.inverse(); }

/** @brief Validate / sanity check */
inline bool validate() const NOEXCEPT { return %(c_ns)s_point_valid(p); }

/** @brief Double-scalar multiply, equivalent to q*qs + r*rs but faster. */
static inline Point double_scalarmul (
const Point &q, const Scalar &qs, const Point &r, const Scalar &rs
) NOEXCEPT {
Point p((NOINIT())); %(c_ns)s_point_double_scalarmul(p.p,q.p,qs.s,r.p,rs.s); return p;
}

/** @brief Dual-scalar multiply, equivalent to this*r1, this*r2 but faster. */
inline void dual_scalarmul (
Point &q1, Point &q2, const Scalar &r1, const Scalar &r2
) const NOEXCEPT {
%(c_ns)s_point_dual_scalarmul(q1.p,q2.p,p,r1.s,r2.s);
}

/**
* @brief Double-scalar multiply, equivalent to q*qs + r*rs but faster.
* For those who like their scalars before the point.
*/
static inline Point double_scalarmul (
const Scalar &qs, const Point &q, const Scalar &rs, const Point &r
) NOEXCEPT {
return double_scalarmul(q,qs,r,rs);
}

/**
* @brief Double-scalar multiply: this point by the first scalar and base by the second scalar.
* @warning This function takes variable time, and may leak the scalars (or points, but currently
* it doesn't).
*/
inline Point non_secret_combo_with_base(const Scalar &s, const Scalar &s_base) NOEXCEPT {
Point r((NOINIT())); %(c_ns)s_base_double_scalarmul_non_secret(r.p,s_base.s,p,s.s); return r;
}

/** @brief Return a point equal to *this, whose internal data is rotated by a torsion element. */
inline Point debugging_torque() const NOEXCEPT {
Point q;
%(c_ns)s_point_debugging_torque(q.p,p);
return q;
}

/** @brief Return a point equal to *this, whose internal data has a modified representation. */
inline Point debugging_pscale(const FixedBlock<SER_BYTES> factor) const NOEXCEPT {
Point q;
%(c_ns)s_point_debugging_pscale(q.p,p,factor.data());
return q;
}

/** @brief Return a point equal to *this, whose internal data has a randomized representation. */
inline Point debugging_pscale(Rng &r) const NOEXCEPT {
FixedArrayBuffer<SER_BYTES> sb(r);
return debugging_pscale(sb);
}

/**
* Modify buffer so that Point::from_hash(Buffer) == *this, and return DECAF_SUCCESS;
* or leave buf unmodified and return DECAF_FAILURE.
*/
inline decaf_error_t invert_elligator (
Buffer buf, uint16_t hint
) const NOEXCEPT {
unsigned char buf2[2*HASH_BYTES];
memset(buf2,0,sizeof(buf2));
memcpy(buf2,buf.data(),(buf.size() > 2*HASH_BYTES) ? 2*HASH_BYTES : buf.size());
decaf_bool_t ret;
if (buf.size() > HASH_BYTES) {
ret = decaf_successful(%(c_ns)s_invert_elligator_uniform(buf2, p, hint));
} else {
ret = decaf_successful(%(c_ns)s_invert_elligator_nonuniform(buf2, p, hint));
}
if (buf.size() < HASH_BYTES) {
ret &= decaf_memeq(&buf2[buf.size()], &buf2[HASH_BYTES], HASH_BYTES - buf.size());
}
if (ret) {
/* TODO: make this constant time?? */
memcpy(buf.data(),buf2,(buf.size() < HASH_BYTES) ? buf.size() : HASH_BYTES);
}
decaf_bzero(buf2,sizeof(buf2));
return decaf_succeed_if(ret);
}

/** @brief Steganographically encode this */
inline SecureBuffer steg_encode(Rng &rng, size_t size=STEG_BYTES) const throw(std::bad_alloc, LengthException) {
if (size <= HASH_BYTES + 4 || size > 2*HASH_BYTES) throw LengthException();
SecureBuffer out(STEG_BYTES);
decaf_error_t done;
do {
rng.read(Buffer(out).slice(HASH_BYTES-1,STEG_BYTES-HASH_BYTES+1));
done = invert_elligator(out, out[HASH_BYTES-1]);
} while (!decaf_successful(done));
return out;
}

/** @brief Return the base point */
static inline const Point base() NOEXCEPT { return Point(%(c_ns)s_point_base); }

/** @brief Return the identity point */
static inline const Point identity() NOEXCEPT { return Point(%(c_ns)s_point_identity); }
};

/**
* @brief Precomputed table of points.
* Minor difficulties arise here because the decaf API doesn't expose, as a constant, how big such an object is.
* Therefore we have to call malloc() or friends, but that's probably for the best, because you don't want to
* stack-allocate a 15kiB object anyway.
*/

/** @cond internal */
typedef %(c_ns)s_precomputed_s Precomputed_U;
/** @endcond */
class Precomputed
/** @cond internal */
: protected OwnedOrUnowned<Precomputed,Precomputed_U>
/** @endcond */
{
public:

/** Destructor securely zeorizes the memory. */
inline ~Precomputed() NOEXCEPT { clear(); }

/**
* @brief Initialize from underlying type, declared as a reference to prevent
* it from being called with 0, thereby breaking override.
*
* The underlying object must remain valid throughout the lifetime of this one.
*
* By default, initializes to the table for the base point.
*
* @warning The empty initializer makes this equal to base, unlike the empty
* initializer for points which makes this equal to the identity.
*/
inline Precomputed (
const Precomputed_U &yours = *defaultValue()
) NOEXCEPT : OwnedOrUnowned<Precomputed,Precomputed_U>(yours) {}


#if __cplusplus >= 201103L
/** @brief Move-assign operator */
inline Precomputed &operator=(Precomputed &&it) NOEXCEPT {
OwnedOrUnowned<Precomputed,Precomputed_U>::operator= (it);
return *this;
}

/** @brief Move constructor */
inline Precomputed(Precomputed &&it) NOEXCEPT : OwnedOrUnowned<Precomputed,Precomputed_U>() {
*this = it;
}

/** @brief Undelete copy operator */
inline Precomputed &operator=(const Precomputed &it) NOEXCEPT {
OwnedOrUnowned<Precomputed,Precomputed_U>::operator= (it);
return *this;
}
#endif

/**
* @brief Initilaize from point. Must allocate memory, and may throw.
*/
inline Precomputed &operator=(const Point &it) throw(std::bad_alloc) {
alloc();
%(c_ns)s_precompute(ours.mine,it.p);
return *this;
}

/**
* @brief Copy constructor.
*/
inline Precomputed(const Precomputed &it) throw(std::bad_alloc)
: OwnedOrUnowned<Precomputed,Precomputed_U>() { *this = it; }

/**
* @brief Constructor which initializes from point.
*/
inline explicit Precomputed(const Point &it) throw(std::bad_alloc)
: OwnedOrUnowned<Precomputed,Precomputed_U>() { *this = it; }

/** @brief Fixed base scalarmul. */
inline Point operator* (const Scalar &s) const NOEXCEPT { Point r; %(c_ns)s_precomputed_scalarmul(r.p,get(),s.s); return r; }

/** @brief Multiply by s.inverse(). If s=0, maps to the identity. */
inline Point operator/ (const Scalar &s) const throw(CryptoException) { return (*this) * s.inverse(); }

/** @brief Return the table for the base point. */
static inline const Precomputed base() NOEXCEPT { return Precomputed(); }

public:
/** @cond internal */
friend class OwnedOrUnowned<Precomputed,Precomputed_U>;
static inline size_t size() NOEXCEPT { return sizeof_%(c_ns)s_precomputed_s; }
static inline size_t alignment() NOEXCEPT { return alignof_%(c_ns)s_precomputed_s; }
static inline const Precomputed_U * defaultValue() NOEXCEPT { return %(c_ns)s_precomputed_base; }
/** @endcond */
};

}; /* struct %(cxx_ns)s */

/** @cond internal */
inline SecureBuffer %(cxx_ns)s::Scalar::direct_scalarmul (
const Block &in,
decaf_bool_t allow_identity,
decaf_bool_t short_circuit
) const throw(CryptoException) {
SecureBuffer out(%(cxx_ns)s::Point::SER_BYTES);
if (DECAF_SUCCESS !=
%(c_ns)s_direct_scalarmul(out.data(), in.data(), s, allow_identity, short_circuit)
) {
throw CryptoException();
}
return out;
}
/** endcond */

#undef NOEXCEPT
} /* namespace decaf */

#endif /* __%(C_NS)s_HXX__ */
"""

print header[1:-1] % curve_data["Ed448"]

Loading…
Cancel
Save