Switch everything over to the Ristretto variant of the Decaf encoding, for compatibility with https://github.com/isislovecruft/curve25519-dalek and others. Documentation coming sometime at https://ristretto.group/. For now, suffice it to say that Ristretto has the same API and security properties, but slightly different input and output bytes. Also close Ticket 9, renaming "mul_by_cofactor_and_encode" functions to "mul_by_ratio_and_encode" with an appropriate #defined ENCODE_RATIO. This is because the base points in RFC 7748 and RFC 8032 have different relationships with the libdecaf base points. With this change, mul_by_ratio_and_encode'ing the base point will result in [EDDSA|X25519|X448]_ENCODE_RATIO times the RFC 8032 EdDSA and RFC 7748 X25519|X448 base point. Merge branch 'ristretto-work'master
@@ -1,3 +1,29 @@ | |||
October 13, 2017: | |||
OK, back to preparations for 1.0, today with major changes. | |||
Another group (Isis Lovecruft and Henry de Valence) implemented | |||
Decaf for Ed25519, whereas this code was implemented for IsoEd25519. | |||
These curves are isogenous, but not exactly the same, so the | |||
encodings all came out differently. | |||
To harmonize these two so that there is only one implementation | |||
for Ed25519, we've hammered out a compromise implementation called | |||
Ristretto. This is different from the old Decaf encoding in two | |||
major ways: | |||
* It checks the sign of x on Ed25519 instead of IsoEd25519. | |||
* It considers a number "negative" if its low bit is set, | |||
instead of its high bit. | |||
To avoid extra branches in the code, Ed448Goldilocks is also | |||
getting these changes to match Ristretto. | |||
The C++ class is also renamed to Ristretto, but IsoEd25519 is a | |||
synonym for that class. | |||
We might need to check the high bit again instead of low bit if | |||
E-521 is ever implemented, but I'll special case it then. | |||
April 22, 2017: | |||
Remove STROBE in preparation for 1.0 release. STROBE has its own | |||
repo now at https://strobe.sourceforge.io. I might re-integrate | |||
@@ -85,7 +85,7 @@ LIBCOMPONENTS = $(BUILD_OBJ)/utils.o $(BUILD_OBJ)/shake.o $(BUILD_OBJ)/sha512.o | |||
BENCHCOMPONENTS = $(BUILD_OBJ)/bench.o $(BUILD_OBJ)/shake.o | |||
all: lib $(BUILD_IBIN)/test $(BUILD_IBIN)/bench $(BUILD_BIN)/shakesum | |||
all: lib $(BUILD_IBIN)/test $(BUILD_BIN)/ristretto $(BUILD_IBIN)/bench $(BUILD_BIN)/shakesum | |||
scan: clean | |||
scan-build --use-analyzer=`which clang` \ | |||
@@ -101,6 +101,13 @@ else | |||
$(LDXX) $(LDFLAGS) -Wl,-rpath,`pwd`/$(BUILD_LIB) -o $@ $< -L$(BUILD_LIB) -ldecaf | |||
endif | |||
$(BUILD_BIN)/ristretto: $(BUILD_OBJ)/ristretto.o lib | |||
ifeq ($(UNAME),Darwin) | |||
$(LDXX) $(LDFLAGS) -o $@ $< -L$(BUILD_LIB) -ldecaf | |||
else | |||
$(LDXX) $(LDFLAGS) -Wl,-rpath,`pwd`/$(BUILD_LIB) -o $@ $< -L$(BUILD_LIB) -ldecaf | |||
endif | |||
# Internal test programs, which are not part of the final build/bin directory. | |||
$(BUILD_IBIN)/test_ct: $(BUILD_OBJ)/test_ct.o lib | |||
ifeq ($(UNAME),Darwin) | |||
@@ -9,9 +9,12 @@ Because this is new software, please expect it to have bugs, perhaps | |||
even critical security bugs. If you are using it, please sign up for | |||
updates: | |||
* Security-critical announcements (very low volume, God willing): decaf-security@googlegroups.com | |||
* New version announcements (low volume): decaf-announce@googlegroups.com | |||
* Library discussion (potentially more volume): decaf-discuss@googlegroups.com | |||
* Security-critical announcements (very low volume, God willing): | |||
decaf-security@googlegroups.com, join at https://groups.google.com/forum/#!forum/decaf-security | |||
* New version announcements (low volume): | |||
decaf-announce@googlegroups.com, join at https://groups.google.com/forum/#!forum/decaf-annonuce | |||
* Library discussion (potentially more volume): | |||
decaf-discuss@googlegroups.com, join at https://groups.google.com/forum/#!forum/decaf-discuss | |||
## General elliptic curve operations. | |||
@@ -1,224 +0,0 @@ | |||
class InvalidEncodingException(Exception): pass | |||
class NotOnCurveException(Exception): pass | |||
def lobit(x): return int(x) & 1 | |||
def hibit(x): return lobit(2*x) | |||
def enc_le(x,n): return bytearray([int(x)>>(8*i) & 0xFF for i in xrange(n)]) | |||
def dec_le(x): return sum(b<<(8*i) for i,b in enumerate(x)) | |||
def isqrt(x,exn=InvalidEncodingException("Not on curve")): | |||
"""Return 1/sqrt(x)""" | |||
if x==0: return 0 | |||
if not is_square(x): raise exn | |||
return 1/sqrt(x) | |||
class EdwardsPoint(object): | |||
"""Abstract class for point an an Edwards curve; needs F,a,d to work""" | |||
def __init__(self,x=0,y=1): | |||
x = self.x = self.F(x) | |||
y = self.y = self.F(y) | |||
if y^2 + self.a*x^2 != 1 + self.d*x^2*y^2: | |||
raise NotOnCurveException() | |||
def __repr__(self): | |||
return "%s(0x%x,0x%x)" % (self.__class__.__name__, self.x, self.y) | |||
def __iter__(self): | |||
yield self.x | |||
yield self.y | |||
def __add__(self,other): | |||
x,y = self | |||
X,Y = other | |||
a,d = self.a,self.d | |||
return self.__class__( | |||
(x*Y+y*X)/(1+d*x*y*X*Y), | |||
(y*Y-a*x*X)/(1-d*x*y*X*Y) | |||
) | |||
def __neg__(self): return self.__class__(-self.x,self.y) | |||
def __sub__(self,other): return self + (-other) | |||
def __rmul__(self,other): return self*other | |||
def __eq__(self,other): return tuple(self) == tuple(other) | |||
def __ne__(self,other): return not (self==other) | |||
def __mul__(self,exp): | |||
exp = int(exp) | |||
total = self.__class__() | |||
work = self | |||
while exp != 0: | |||
if exp & 1: total += work | |||
work += work | |||
exp >>= 1 | |||
return total | |||
def xyzt(self): | |||
x,y = self | |||
z = self.F.random_element() | |||
return x*z,y*z,z,x*y*z | |||
class RistrettoPoint(EdwardsPoint): | |||
"""Like current decaf but tweaked for simplicity""" | |||
def __eq__(self,other): | |||
x,y = self | |||
X,Y = other | |||
return x*Y == X*y or x*X == y*Y | |||
@staticmethod | |||
def sqrt(x,negative=lobit,exn=InvalidEncodingException("Not on curve")): | |||
if not is_square(x): raise exn | |||
s = sqrt(x) | |||
if negative(s): s=-s | |||
return s | |||
def encodeSpec(self): | |||
"""Unoptimized specification for encoding""" | |||
x,y = self | |||
if self.cofactor==8 and (lobit(x*y) or x==0): | |||
(x,y) = (self.i*y,self.i*x) | |||
elif self.cofactor==4 and y==-1: | |||
y = 1 # Doesn't affect impl | |||
if lobit(x): y=-y | |||
s = self.sqrt((1-y)/(1+y),exn=Exception("Unimplemented: point is even")) | |||
return enc_le(s,self.encLen) | |||
@classmethod | |||
def decodeSpec(cls,s): | |||
"""Unoptimized specification for decoding""" | |||
if len(s) != cls.encLen: | |||
raise InvalidEncodingException("wrong length %d" % len(s)) | |||
s = dec_le(s) | |||
if s < 0 or s >= cls.F.modulus() or lobit(s): | |||
raise InvalidEncodingException("%d out of range!" % s) | |||
s = cls.F(s) | |||
x = cls.sqrt(-4*s^2 / (cls.d*(s^2-1)^2 + (s^2+1)^2)) | |||
y = (1-s^2) / (1+s^2) | |||
if cls.cofactor==8 and (lobit(x*y) or x==0): | |||
raise InvalidEncodingException("x*y has high bit") | |||
return cls(x,y) | |||
def encode(self): | |||
x,y,z,t = self.xyzt() | |||
u1 = (z+y)*(z-y) | |||
u2 = x*y # = t*z | |||
isr = isqrt(u1 * u2^2) | |||
i1 = isr*u1 | |||
i2 = isr*u2 | |||
z_inv = i1*i2*t | |||
rotate = self.cofactor==8 and lobit(t*z_inv) | |||
if rotate: | |||
magic = isqrt(-self.d-1) | |||
x,y = y*self.i,x*self.i | |||
den_inv = magic * i1 | |||
else: | |||
den_inv = i2 | |||
if lobit(x*z_inv): y = -y | |||
s = (z-y) * den_inv | |||
if self.cofactor==8 and s==0: s += 1 | |||
if lobit(s): s=-s | |||
ret = enc_le(s,self.encLen) | |||
assert ret == self.encodeSpec() | |||
return ret | |||
@classmethod | |||
def decode(cls,s): | |||
right_answer = cls.decodeSpec(s) | |||
# Sanity check s | |||
if len(s) != cls.encLen: | |||
raise InvalidEncodingException("wrong length %d" % len(s)) | |||
s = dec_le(s) | |||
if s < 0 or s >= cls.F.modulus() or lobit(s): | |||
raise InvalidEncodingException("%d out of range!" % s) | |||
s = cls.F(s) | |||
yden = 1+s^2 | |||
ynum = 1-s^2 | |||
yden_sqr = yden^2 | |||
xden_sqr = -cls.d*ynum^2 - yden_sqr | |||
isr = isqrt(xden_sqr * yden_sqr) | |||
xden_inv = isr * yden | |||
yden_inv = xden_inv * isr * xden_sqr | |||
x = 2*s*xden_inv | |||
if lobit(x): x = -x | |||
y = ynum * yden_inv | |||
if cls.cofactor==8 and (lobit(x*y) or x==0): | |||
raise InvalidEncodingException("x*y has high bit") | |||
ret = cls(x,y) | |||
assert ret == right_answer | |||
return ret | |||
def torque(self): | |||
if self.cofactor == 8: | |||
return self.__class__(self.y*self.i, self.x*self.i) | |||
else: | |||
return self.__class__(-self.x, -self.y) | |||
class Ed25519Point(RistrettoPoint): | |||
F = GF(2^255-19) | |||
d = F(-121665/121666) | |||
a = F(-1) | |||
i = sqrt(F(-1)) | |||
cofactor = 8 | |||
encLen = 32 | |||
@classmethod | |||
def base(cls): | |||
y = cls.F(4/5) | |||
x = sqrt((y^2-1)/(cls.d*y^2+1)) | |||
if lobit(x): x = -x | |||
return cls(x,y) | |||
class Ed448Point(RistrettoPoint): | |||
F = GF(2^448-2^224-1) | |||
d = F(-39082) | |||
a = F(-1) | |||
cofactor = 4 | |||
encLen = 56 | |||
@classmethod | |||
def base(cls): | |||
y = cls.F(6) # FIXME: no it isn't | |||
x = sqrt((y^2-1)/(cls.d*y^2+1)) | |||
if lobit(x): x = -x | |||
return cls(x,y) | |||
class TestFailedException(Exception): pass | |||
def test(cls,n): | |||
# TODO: test corner cases like 0,1,i | |||
P = cls.base() | |||
Q = cls() | |||
for i in xrange(n): | |||
QQ = cls.decode(Q.encode()) | |||
if QQ != Q: raise TestFailedException("Round trip %s != %s" % (str(QQ),str(Q))) | |||
if Q.encode() != Q.torque().encode(): | |||
raise TestFailedException("Can't torque %s" % str(Q)) | |||
Q0 = Q + P | |||
if Q0 == Q: raise TestFailedException("Addition doesn't work") | |||
if Q0-P != Q: raise TestFailedException("Subtraction doesn't work") | |||
r = randint(1,1000) | |||
Q1 = Q0*r | |||
Q2 = Q0*(r+1) | |||
if Q1 + Q0 != Q2: raise TestFailedException("Scalarmul doesn't work") | |||
Q = Q1 | |||
@@ -0,0 +1,764 @@ | |||
import binascii | |||
class InvalidEncodingException(Exception): pass | |||
class NotOnCurveException(Exception): pass | |||
class SpecException(Exception): pass | |||
def lobit(x): return int(x) & 1 | |||
def hibit(x): return lobit(2*x) | |||
def negative(x): return lobit(x) | |||
def enc_le(x,n): return bytearray([int(x)>>(8*i) & 0xFF for i in xrange(n)]) | |||
def dec_le(x): return sum(b<<(8*i) for i,b in enumerate(x)) | |||
def randombytes(n): return bytearray([randint(0,255) for _ in range(n)]) | |||
def optimized_version_of(spec): | |||
"""Decorator: This function is an optimized version of some specification""" | |||
def decorator(f): | |||
def wrapper(self,*args,**kwargs): | |||
def pr(x): | |||
if isinstance(x,bytearray): return binascii.hexlify(x) | |||
else: return str(x) | |||
try: spec_ans = getattr(self,spec,spec)(*args,**kwargs),None | |||
except Exception as e: spec_ans = None,e | |||
try: opt_ans = f(self,*args,**kwargs),None | |||
except Exception as e: opt_ans = None,e | |||
if spec_ans[1] is None and opt_ans[1] is not None: | |||
raise | |||
#raise SpecException("Mismatch in %s: spec returned %s but opt threw %s" | |||
# % (f.__name__,str(spec_ans[0]),str(opt_ans[1]))) | |||
if spec_ans[1] is not None and opt_ans[1] is None: | |||
raise | |||
#raise SpecException("Mismatch in %s: spec threw %s but opt returned %s" | |||
# % (f.__name__,str(spec_ans[1]),str(opt_ans[0]))) | |||
if spec_ans[0] != opt_ans[0]: | |||
raise SpecException("Mismatch in %s: %s != %s" | |||
% (f.__name__,pr(spec_ans[0]),pr(opt_ans[0]))) | |||
if opt_ans[1] is not None: raise | |||
else: return opt_ans[0] | |||
wrapper.__name__ = f.__name__ | |||
return wrapper | |||
return decorator | |||
def xsqrt(x,exn=InvalidEncodingException("Not on curve")): | |||
"""Return sqrt(x)""" | |||
if not is_square(x): raise exn | |||
s = sqrt(x) | |||
if negative(s): s=-s | |||
return s | |||
def isqrt(x,exn=InvalidEncodingException("Not on curve")): | |||
"""Return 1/sqrt(x)""" | |||
if x==0: return 0 | |||
if not is_square(x): raise exn | |||
s = sqrt(x) | |||
#if negative(s): s=-s | |||
return 1/s | |||
def inv0(x): return 1/x if x != 0 else 0 | |||
def isqrt_i(x): | |||
"""Return 1/sqrt(x) or 1/sqrt(zeta * x)""" | |||
if x==0: return True,0 | |||
gen = x.parent(-1) | |||
while is_square(gen): gen = sqrt(gen) | |||
if is_square(x): return True,1/sqrt(x) | |||
else: return False,1/sqrt(x*gen) | |||
class QuotientEdwardsPoint(object): | |||
"""Abstract class for point an a quotiented Edwards curve; needs F,a,d,cofactor to work""" | |||
def __init__(self,x=0,y=1): | |||
x = self.x = self.F(x) | |||
y = self.y = self.F(y) | |||
if y^2 + self.a*x^2 != 1 + self.d*x^2*y^2: | |||
raise NotOnCurveException(str(self)) | |||
def __repr__(self): | |||
return "%s(0x%x,0x%x)" % (self.__class__.__name__, self.x, self.y) | |||
def __iter__(self): | |||
yield self.x | |||
yield self.y | |||
def __add__(self,other): | |||
x,y = self | |||
X,Y = other | |||
a,d = self.a,self.d | |||
return self.__class__( | |||
(x*Y+y*X)/(1+d*x*y*X*Y), | |||
(y*Y-a*x*X)/(1-d*x*y*X*Y) | |||
) | |||
def __neg__(self): return self.__class__(-self.x,self.y) | |||
def __sub__(self,other): return self + (-other) | |||
def __rmul__(self,other): return self*other | |||
def __eq__(self,other): | |||
"""NB: this is the only method that is different from the usual one""" | |||
x,y = self | |||
X,Y = other | |||
return x*Y == X*y or (self.cofactor==8 and -self.a*x*X == y*Y) | |||
def __ne__(self,other): return not (self==other) | |||
def __mul__(self,exp): | |||
exp = int(exp) | |||
if exp < 0: exp,self = -exp,-self | |||
total = self.__class__() | |||
work = self | |||
while exp != 0: | |||
if exp & 1: total += work | |||
work += work | |||
exp >>= 1 | |||
return total | |||
def xyzt(self): | |||
x,y = self | |||
z = self.F.random_element() | |||
return x*z,y*z,z,x*y*z | |||
def torque(self): | |||
"""Apply cofactor group, except keeping the point even""" | |||
if self.cofactor == 8: | |||
if self.a == -1: return self.__class__(self.y*self.i, self.x*self.i) | |||
if self.a == 1: return self.__class__(-self.y, self.x) | |||
else: | |||
return self.__class__(-self.x, -self.y) | |||
# Utility functions | |||
@classmethod | |||
def bytesToGf(cls,bytes,mustBeProper=True,mustBePositive=False,maskHiBits=False): | |||
"""Convert little-endian bytes to field element, sanity check length""" | |||
if len(bytes) != cls.encLen: | |||
raise InvalidEncodingException("wrong length %d" % len(bytes)) | |||
s = dec_le(bytes) | |||
if mustBeProper and s >= cls.F.order(): | |||
raise InvalidEncodingException("%d out of range!" % s) | |||
bitlen = int(ceil(log(cls.F.order())/log(2))) | |||
if maskHiBits: s &= 2^bitlen-1 | |||
s = cls.F(s) | |||
if mustBePositive and negative(s): | |||
raise InvalidEncodingException("%d is negative!" % s) | |||
return s | |||
@classmethod | |||
def gfToBytes(cls,x,mustBePositive=False): | |||
"""Convert little-endian bytes to field element, sanity check length""" | |||
if negative(x) and mustBePositive: x = -x | |||
return enc_le(x,cls.encLen) | |||
class RistrettoPoint(QuotientEdwardsPoint): | |||
"""The new Ristretto group""" | |||
def encodeSpec(self): | |||
"""Unoptimized specification for encoding""" | |||
x,y = self | |||
if self.cofactor==8 and (negative(x*y) or y==0): (x,y) = self.torque() | |||
if y == -1: y = 1 # Avoid divide by 0; doesn't affect impl | |||
if negative(x): x,y = -x,-y | |||
s = xsqrt(self.mneg*(1-y)/(1+y),exn=Exception("Unimplemented: point is odd: " + str(self))) | |||
return self.gfToBytes(s) | |||
@classmethod | |||
def decodeSpec(cls,s): | |||
"""Unoptimized specification for decoding""" | |||
s = cls.bytesToGf(s,mustBePositive=True) | |||
a,d = cls.a,cls.d | |||
x = xsqrt(4*s^2 / (a*d*(1+a*s^2)^2 - (1-a*s^2)^2)) | |||
y = (1+a*s^2) / (1-a*s^2) | |||
if cls.cofactor==8 and (negative(x*y) or y==0): | |||
raise InvalidEncodingException("x*y has high bit") | |||
return cls(x,y) | |||
@optimized_version_of("encodeSpec") | |||
def encode(self): | |||
"""Encode, optimized version""" | |||
a,d,mneg = self.a,self.d,self.mneg | |||
x,y,z,t = self.xyzt() | |||
if self.cofactor==8: | |||
u1 = mneg*(z+y)*(z-y) | |||
u2 = x*y # = t*z | |||
isr = isqrt(u1*u2^2) | |||
i1 = isr*u1 # sqrt(mneg*(z+y)*(z-y))/(x*y) | |||
i2 = isr*u2 # 1/sqrt(a*(y+z)*(y-z)) | |||
z_inv = i1*i2*t # 1/z | |||
if negative(t*z_inv): | |||
if a==-1: | |||
x,y = y*self.i,x*self.i | |||
den_inv = self.magic * i1 | |||
else: | |||
x,y = -y,x | |||
den_inv = self.i * self.magic * i1 | |||
else: | |||
den_inv = i2 | |||
if negative(x*z_inv): y = -y | |||
s = (z-y) * den_inv | |||
else: | |||
num = mneg*(z+y)*(z-y) | |||
isr = isqrt(num*y^2) | |||
if negative(isr^2*num*y*t): y = -y | |||
s = isr*y*(z-y) | |||
return self.gfToBytes(s,mustBePositive=True) | |||
@classmethod | |||
@optimized_version_of("decodeSpec") | |||
def decode(cls,s): | |||
"""Decode, optimized version""" | |||
s = cls.bytesToGf(s,mustBePositive=True) | |||
a,d = cls.a,cls.d | |||
yden = 1-a*s^2 | |||
ynum = 1+a*s^2 | |||
yden_sqr = yden^2 | |||
xden_sqr = a*d*ynum^2 - yden_sqr | |||
isr = isqrt(xden_sqr * yden_sqr) | |||
xden_inv = isr * yden | |||
yden_inv = xden_inv * isr * xden_sqr | |||
x = 2*s*xden_inv | |||
if negative(x): x = -x | |||
y = ynum * yden_inv | |||
if cls.cofactor==8 and (negative(x*y) or y==0): | |||
raise InvalidEncodingException("x*y is invalid: %d, %d" % (x,y)) | |||
return cls(x,y) | |||
@classmethod | |||
def fromJacobiQuartic(cls,s,t,sgn=1): | |||
"""Convert point from its Jacobi Quartic representation""" | |||
a,d = cls.a,cls.d | |||
assert s^4 - 2*cls.a*(1-2*d/(d-a))*s^2 + 1 == t^2 | |||
x = 2*s*cls.magic / t | |||
y = (1+a*s^2) / (1-a*s^2) | |||
return cls(sgn*x,y) | |||
@classmethod | |||
def elligatorSpec(cls,r0): | |||
a,d = cls.a,cls.d | |||
r = cls.qnr * cls.bytesToGf(r0,mustBeProper=False,maskHiBits=True)^2 | |||
den = (d*r-a)*(a*r-d) | |||
if den == 0: return cls() | |||
n1 = cls.a*(r+1)*(a+d)*(d-a)/den | |||
n2 = r*n1 | |||
if is_square(n1): | |||
sgn,s,t = 1, xsqrt(n1), -(r-1)*(a+d)^2 / den - 1 | |||
else: | |||
sgn,s,t = -1,-xsqrt(n2), r*(r-1)*(a+d)^2 / den - 1 | |||
return cls.fromJacobiQuartic(s,t) | |||
@classmethod | |||
@optimized_version_of("elligatorSpec") | |||
def elligator(cls,r0): | |||
a,d = cls.a,cls.d | |||
r0 = cls.bytesToGf(r0,mustBeProper=False,maskHiBits=True) | |||
r = cls.qnr * r0^2 | |||
den = (d*r-a)*(a*r-d) | |||
num = cls.a*(r+1)*(a+d)*(d-a) | |||
iss,isri = isqrt_i(num*den) | |||
if iss: sgn,twiddle = 1,1 | |||
else: sgn,twiddle = -1,r0*cls.qnr | |||
isri *= twiddle | |||
s = isri*num | |||
t = -sgn*isri*s*(r-1)*(d+a)^2 - 1 | |||
if negative(s) == iss: s = -s | |||
return cls.fromJacobiQuartic(s,t) | |||
class Decaf_1_1_Point(QuotientEdwardsPoint): | |||
"""Like current decaf but tweaked for simplicity""" | |||
def encodeSpec(self): | |||
"""Unoptimized specification for encoding""" | |||
a,d = self.a,self.d | |||
x,y = self | |||
if x==0 or y==0: return(self.gfToBytes(0)) | |||
if self.cofactor==8 and negative(x*y*self.isoMagic): | |||
x,y = self.torque() | |||
sr = xsqrt(1-a*x^2) | |||
altx = x*y*self.isoMagic / sr | |||
if negative(altx): s = (1+sr)/x | |||
else: s = (1-sr)/x | |||
return self.gfToBytes(s,mustBePositive=True) | |||
@classmethod | |||
def decodeSpec(cls,s): | |||
"""Unoptimized specification for decoding""" | |||
a,d = cls.a,cls.d | |||
s = cls.bytesToGf(s,mustBePositive=True) | |||
if s==0: return cls() | |||
t = xsqrt(s^4 + 2*(a-2*d)*s^2 + 1) | |||
altx = 2*s*cls.isoMagic/t | |||
if negative(altx): t = -t | |||
x = 2*s / (1+a*s^2) | |||
y = (1-a*s^2) / t | |||
if cls.cofactor==8 and (negative(x*y*cls.isoMagic) or y==0): | |||
raise InvalidEncodingException("x*y is invalid: %d, %d" % (x,y)) | |||
return cls(x,y) | |||
def toJacobiQuartic(self,toggle_rotation=False,toggle_altx=False,toggle_s=False): | |||
"Return s,t on jacobi curve" | |||
a,d = self.a,self.d | |||
x,y,z,t = self.xyzt() | |||
if self.cofactor == 8: | |||
# Cofactor 8 version | |||
# Simulate IMAGINE_TWIST because that's how libdecaf does it | |||
x = self.i*x | |||
t = self.i*t | |||
a = -a | |||
d = -d | |||
# OK, the actual libdecaf code should be here | |||
num = (z+y)*(z-y) | |||
den = x*y | |||
isr = isqrt(num*(a-d)*den^2) | |||
iden = isr * den * self.isoMagic # 1/sqrt((z+y)(z-y)) = 1/sqrt(1-Y^2) / z | |||
inum = isr * num # sqrt(1-Y^2) * z / xysqrt(a-d) ~ 1/sqrt(1-ax^2)/z | |||
if negative(iden*inum*self.i*t^2*(d-a)) != toggle_rotation: | |||
iden,inum = inum,iden | |||
fac = x*sqrt(a) | |||
toggle=(a==-1) | |||
else: | |||
fac = y | |||
toggle=False | |||
imi = self.isoMagic * self.i | |||
altx = inum*t*imi | |||
neg_altx = negative(altx) != toggle_altx | |||
if neg_altx != toggle: inum =- inum | |||
tmp = fac*(inum*z + 1) | |||
s = iden*tmp*imi | |||
negm1 = (negative(s) != toggle_s) != neg_altx | |||
if negm1: m1 = a*fac + z | |||
else: m1 = a*fac - z | |||
swap = toggle_s | |||
else: | |||
# Much simpler cofactor 4 version | |||
num = (x+t)*(x-t) | |||
isr = isqrt(num*(a-d)*x^2) | |||
ratio = isr*num | |||
altx = ratio*self.isoMagic | |||
neg_altx = negative(altx) != toggle_altx | |||
if neg_altx: ratio =- ratio | |||
tmp = ratio*z - t | |||
s = (a-d)*isr*x*tmp | |||
negx = (negative(s) != toggle_s) != neg_altx | |||
if negx: m1 = -a*t + x | |||
else: m1 = -a*t - x | |||
swap = toggle_s | |||
if negative(s): s = -s | |||
return s,m1,a*tmp,swap | |||
def invertElligator(self,toggle_r=False,*args,**kwargs): | |||
"Produce preimage of self under elligator, or None" | |||
a,d = self.a,self.d | |||
rets = [] | |||
tr = [False,True] if self.cofactor == 8 else [False] | |||
for toggle_rotation in tr: | |||
for toggle_altx in [False,True]: | |||
for toggle_s in [False,True]: | |||
for toggle_r in [False,True]: | |||
s,m1,m12,swap = self.toJacobiQuartic(toggle_rotation,toggle_altx,toggle_s) | |||
#print toggle_rotation,toggle_altx,toggle_s | |||
#print m1 | |||
#print m12 | |||
if self == self.__class__(): | |||
if self.cofactor == 4: | |||
# Hacks for identity! | |||
if toggle_altx: m12 = 1 | |||
elif toggle_s: m1 = 1 | |||
elif toggle_r: continue | |||
## BOTH??? | |||
else: | |||
m12 = 1 | |||
imi = self.isoMagic * self.i | |||
if toggle_rotation: | |||
if toggle_altx: m1 = -imi | |||
else: m1 = +imi | |||
else: | |||
if toggle_altx: m1 = 0 | |||
else: m1 = a-d | |||
rnum = (d*a*m12-m1) | |||
rden = ((d*a-1)*m12+m1) | |||
if swap: rnum,rden = rden,rnum | |||
ok,sr = isqrt_i(rnum*rden*self.qnr) | |||
if not ok: continue | |||
sr *= rnum | |||
#print "Works! %d %x" % (swap,sr) | |||
if negative(sr) != toggle_r: sr = -sr | |||
ret = self.gfToBytes(sr) | |||
if self.elligator(ret) != self and self.elligator(ret) != -self: | |||
print "WRONG!",[toggle_rotation,toggle_altx,toggle_s] | |||
if self.elligator(ret) == -self and self != -self: print "Negated!",[toggle_rotation,toggle_altx,toggle_s] | |||
rets.append(bytes(ret)) | |||
return rets | |||
@optimized_version_of("encodeSpec") | |||
def encode(self): | |||
"""Encode, optimized version""" | |||
return self.gfToBytes(self.toJacobiQuartic()[0]) | |||
@classmethod | |||
@optimized_version_of("decodeSpec") | |||
def decode(cls,s): | |||
"""Decode, optimized version""" | |||
a,d = cls.a,cls.d | |||
s = cls.bytesToGf(s,mustBePositive=True) | |||
#if s==0: return cls() | |||
s2 = s^2 | |||
den = 1+a*s2 | |||
num = den^2 - 4*d*s2 | |||
isr = isqrt(num*den^2) | |||
altx = 2*s*isr*den*cls.isoMagic | |||
if negative(altx): isr = -isr | |||
x = 2*s *isr^2*den*num | |||
y = (1-a*s^2) * isr*den | |||
if cls.cofactor==8 and (negative(x*y*cls.isoMagic) or y==0): | |||
raise InvalidEncodingException("x*y is invalid: %d, %d" % (x,y)) | |||
return cls(x,y) | |||
@classmethod | |||
def fromJacobiQuartic(cls,s,t,sgn=1): | |||
"""Convert point from its Jacobi Quartic representation""" | |||
a,d = cls.a,cls.d | |||
if s==0: return cls() | |||
x = 2*s / (1+a*s^2) | |||
y = (1-a*s^2) / t | |||
return cls(x,sgn*y) | |||
@classmethod | |||
def elligatorSpec(cls,r0,fromR=False): | |||
a,d = cls.a,cls.d | |||
if fromR: r = r0 | |||
else: r = cls.qnr * cls.bytesToGf(r0,mustBeProper=False,maskHiBits=True)^2 | |||
den = (d*r-(d-a))*((d-a)*r-d) | |||
if den == 0: return cls() | |||
n1 = (r+1)*(a-2*d)/den | |||
n2 = r*n1 | |||
if is_square(n1): | |||
sgn,s,t = 1, xsqrt(n1), -(r-1)*(a-2*d)^2 / den - 1 | |||
else: | |||
sgn,s,t = -1, -xsqrt(n2), r*(r-1)*(a-2*d)^2 / den - 1 | |||
return cls.fromJacobiQuartic(s,t) | |||
@classmethod | |||
@optimized_version_of("elligatorSpec") | |||
def elligator(cls,r0): | |||
a,d = cls.a,cls.d | |||
r0 = cls.bytesToGf(r0,mustBeProper=False,maskHiBits=True) | |||
r = cls.qnr * r0^2 | |||
den = (d*r-(d-a))*((d-a)*r-d) | |||
num = (r+1)*(a-2*d) | |||
iss,isri = isqrt_i(num*den) | |||
if iss: sgn,twiddle = 1,1 | |||
else: sgn,twiddle = -1,r0*cls.qnr | |||
isri *= twiddle | |||
s = isri*num | |||
t = -sgn*isri*s*(r-1)*(a-2*d)^2 - 1 | |||
if negative(s) == iss: s = -s | |||
return cls.fromJacobiQuartic(s,t) | |||
def elligatorInverseBruteForce(self): | |||
"""Invert Elligator using SAGE's polynomial solver""" | |||
a,d = self.a,self.d | |||
R.<r0> = self.F[] | |||
r = self.qnr * r0^2 | |||
den = (d*r-(d-a))*((d-a)*r-d) | |||
n1 = (r+1)*(a-2*d)/den | |||
n2 = r*n1 | |||
ret = set() | |||
for s2,t in [(n1, -(r-1)*(a-2*d)^2 / den - 1), | |||
(n2,r*(r-1)*(a-2*d)^2 / den - 1)]: | |||
x2 = 4*s2/(1+a*s2)^2 | |||
y = (1-a*s2) / t | |||
selfT = self | |||
for i in xrange(self.cofactor/2): | |||
xT,yT = selfT | |||
polyX = xT^2-x2 | |||
polyY = yT-y | |||
sx = set(r for r,_ in polyX.numerator().roots()) | |||
sy = set(r for r,_ in polyY.numerator().roots()) | |||
ret = ret.union(sx.intersection(sy)) | |||
selfT = selfT.torque() | |||
ret = [self.gfToBytes(r) for r in ret] | |||
for r in ret: | |||
assert self.elligator(r) in [self,-self] | |||
ret = [r for r in ret if self.elligator(r) == self] | |||
return ret | |||
class Ed25519Point(RistrettoPoint): | |||
F = GF(2^255-19) | |||
d = F(-121665/121666) | |||
a = F(-1) | |||
i = sqrt(F(-1)) | |||
mneg = F(1) | |||
qnr = i | |||
magic = isqrt(a*d-1) | |||
cofactor = 8 | |||
encLen = 32 | |||
@classmethod | |||
def base(cls): | |||
return cls( 15112221349535400772501151409588531511454012693041857206046113283949847762202, 46316835694926478169428394003475163141307993866256225615783033603165251855960 | |||
) | |||
class NegEd25519Point(RistrettoPoint): | |||
F = GF(2^255-19) | |||
d = F(121665/121666) | |||
a = F(1) | |||
i = sqrt(F(-1)) | |||
mneg = F(-1) # TODO checkme vs 1-ad or whatever | |||
qnr = i | |||
magic = isqrt(a*d-1) | |||
cofactor = 8 | |||
encLen = 32 | |||
@classmethod | |||
def base(cls): | |||
y = cls.F(4/5) | |||
x = sqrt((y^2-1)/(cls.d*y^2-cls.a)) | |||
if negative(x): x = -x | |||
return cls(x,y) | |||
class IsoEd448Point(RistrettoPoint): | |||
F = GF(2^448-2^224-1) | |||
d = F(39082/39081) | |||
a = F(1) | |||
mneg = F(-1) | |||
qnr = -1 | |||
magic = isqrt(a*d-1) | |||
cofactor = 4 | |||
encLen = 56 | |||
@classmethod | |||
def base(cls): | |||
return cls( # RFC has it wrong | |||
345397493039729516374008604150537410266655260075183290216406970281645695073672344430481787759340633221708391583424041788924124567700732, | |||
-363419362147803445274661903944002267176820680343659030140745099590306164083365386343198191849338272965044442230921818680526749009182718 | |||
) | |||
class TwistedEd448GoldilocksPoint(Decaf_1_1_Point): | |||
F = GF(2^448-2^224-1) | |||
d = F(-39082) | |||
a = F(-1) | |||
qnr = -1 | |||
cofactor = 4 | |||
encLen = 56 | |||
isoMagic = IsoEd448Point.magic | |||
@classmethod | |||
def base(cls): | |||
return cls.decodeSpec(Ed448GoldilocksPoint.base().encodeSpec()) | |||
class Ed448GoldilocksPoint(Decaf_1_1_Point): | |||
F = GF(2^448-2^224-1) | |||
d = F(-39081) | |||
a = F(1) | |||
qnr = -1 | |||
cofactor = 4 | |||
encLen = 56 | |||
isoMagic = IsoEd448Point.magic | |||
@classmethod | |||
def base(cls): | |||
return 2*cls( | |||
224580040295924300187604334099896036246789641632564134246125461686950415467406032909029192869357953282578032075146446173674602635247710, 298819210078481492676017930443930673437544040154080242095928241372331506189835876003536878655418784733982303233503462500531545062832660 | |||
) | |||
class IsoEd25519Point(Decaf_1_1_Point): | |||
# TODO: twisted iso too! | |||
# TODO: twisted iso might have to IMAGINE_TWIST or whatever | |||
F = GF(2^255-19) | |||
d = F(-121665) | |||
a = F(1) | |||
i = sqrt(F(-1)) | |||
qnr = i | |||
magic = isqrt(a*d-1) | |||
cofactor = 8 | |||
encLen = 32 | |||
isoMagic = Ed25519Point.magic | |||
isoA = Ed25519Point.a | |||
@classmethod | |||
def base(cls): | |||
return cls.decodeSpec(Ed25519Point.base().encode()) | |||
class TestFailedException(Exception): pass | |||
def test(cls,n): | |||
print "Testing curve %s" % cls.__name__ | |||
specials = [1] | |||
ii = cls.F(-1) | |||
while is_square(ii): | |||
specials.append(ii) | |||
ii = sqrt(ii) | |||
specials.append(ii) | |||
for i in specials: | |||
if negative(cls.F(i)): i = -i | |||
i = enc_le(i,cls.encLen) | |||
try: | |||
Q = cls.decode(i) | |||
QE = Q.encode() | |||
if QE != i: | |||
raise TestFailedException("Round trip special %s != %s" % | |||
(binascii.hexlify(QE),binascii.hexlify(i))) | |||
except NotOnCurveException: pass | |||
except InvalidEncodingException: pass | |||
P = cls.base() | |||
Q = cls() | |||
for i in xrange(n): | |||
#print binascii.hexlify(Q.encode()) | |||
QE = Q.encode() | |||
QQ = cls.decode(QE) | |||
if QQ != Q: raise TestFailedException("Round trip %s != %s" % (str(QQ),str(Q))) | |||
# Testing s -> 1/s: encodes -point on cofactor | |||
s = cls.bytesToGf(QE) | |||
if s != 0: | |||
ss = cls.gfToBytes(1/s,mustBePositive=True) | |||
try: | |||
QN = cls.decode(ss) | |||
if cls.cofactor == 8: | |||
raise TestFailedException("1/s shouldnt work for cofactor 8") | |||
if QN != -Q: | |||
raise TestFailedException("s -> 1/s should negate point for cofactor 4") | |||
except InvalidEncodingException as e: | |||
# Should be raised iff cofactor==8 | |||
if cls.cofactor == 4: | |||
raise TestFailedException("s -> 1/s should work for cofactor 4") | |||
QT = Q | |||
for h in xrange(cls.cofactor): | |||
QT = QT.torque() | |||
if QT.encode() != QE: | |||
raise TestFailedException("Can't torque %s,%d" % (str(Q),h+1)) | |||
Q0 = Q + P | |||
if Q0 == Q: raise TestFailedException("Addition doesn't work") | |||
if Q0-P != Q: raise TestFailedException("Subtraction doesn't work") | |||
r = randint(1,1000) | |||
Q1 = Q0*r | |||
Q2 = Q0*(r+1) | |||
if Q1 + Q0 != Q2: raise TestFailedException("Scalarmul doesn't work") | |||
Q = Q1 | |||
def testElligator(cls,n): | |||
print "Testing elligator on %s" % cls.__name__ | |||
for i in xrange(n): | |||
r = randombytes(cls.encLen) | |||
P = cls.elligator(r) | |||
if hasattr(P,"invertElligator"): | |||
iv = P.invertElligator() | |||
modr = bytes(cls.gfToBytes(cls.bytesToGf(r,mustBeProper=False,maskHiBits=True))) | |||
iv2 = P.torque().invertElligator() | |||
if modr not in iv: print "Failed to invert Elligator!" | |||
if len(iv) != len(set(iv)): | |||
print "Elligator inverses not unique!", len(set(iv)), len(iv) | |||
if iv != iv2: | |||
print "Elligator is untorqueable!" | |||
#print [binascii.hexlify(j) for j in iv] | |||
#print [binascii.hexlify(j) for j in iv2] | |||
#break | |||
else: | |||
pass # TODO | |||
def gangtest(classes,n): | |||
print "Gang test",[cls.__name__ for cls in classes] | |||
specials = [1] | |||
ii = classes[0].F(-1) | |||
while is_square(ii): | |||
specials.append(ii) | |||
ii = sqrt(ii) | |||
specials.append(ii) | |||
for i in xrange(n): | |||
rets = [bytes((cls.base()*i).encode()) for cls in classes] | |||
if len(set(rets)) != 1: | |||
print "Divergence in encode at %d" % i | |||
for c,ret in zip(classes,rets): | |||
print c,binascii.hexlify(ret) | |||
if i < len(specials): r0 = enc_le(specials[i],classes[0].encLen) | |||
else: r0 = randombytes(classes[0].encLen) | |||
rets = [bytes((cls.elligator(r0)*i).encode()) for cls in classes] | |||
if len(set(rets)) != 1: | |||
print "Divergence in elligator at %d" % i | |||
for c,ret in zip(classes,rets): | |||
print c,binascii.hexlify(ret) | |||
test(Ed25519Point,100) | |||
test(NegEd25519Point,100) | |||
test(IsoEd25519Point,100) | |||
test(IsoEd448Point,100) | |||
test(TwistedEd448GoldilocksPoint,100) | |||
test(Ed448GoldilocksPoint,100) | |||
testElligator(Ed25519Point,100) | |||
testElligator(NegEd25519Point,100) | |||
testElligator(IsoEd25519Point,100) | |||
testElligator(IsoEd448Point,100) | |||
testElligator(Ed448GoldilocksPoint,100) | |||
testElligator(TwistedEd448GoldilocksPoint,100) | |||
gangtest([IsoEd448Point,TwistedEd448GoldilocksPoint,Ed448GoldilocksPoint],100) | |||
gangtest([Ed25519Point,IsoEd25519Point],100) |
@@ -0,0 +1,140 @@ | |||
\documentclass[11pt]{article} | |||
\usepackage{amsmath,amsthm,amsfonts,amssymb,xspace,graphicx,url,stmaryrd,parskip} | |||
\newtheorem{lemma}{Lemma} | |||
\newcommand\todo[1]{\textbf{[[TODO: #1]]}\xspace} | |||
\def\F{\ensuremath{\mathbb{F}}} | |||
\def\G{\ensuremath{\mathbb{G}}} | |||
\def\Z{\ensuremath{\mathbb{Z}}} | |||
\def\O{\ensuremath{O}} | |||
\begin{document} | |||
\title{The Ristretto and Cortado elliptic curve groups} | |||
\author{Mike Hamburg\thanks{Rambus Security Division}} | |||
\maketitle | |||
\begin{abstract} | |||
\end{abstract} | |||
\section{Introduction} | |||
\section{Definitions and notation} | |||
Let the symbol $\bot$ denote failure. | |||
\subsection{Field elements} | |||
Let \F\ be a finite field of prime order $p$. For an element $x\in\F$, let $\text{res}(x)$ be the integer representative of $x\in[0,p-1]$. We call an element $x\in\F$ \textit{negative} if $\text{res}(x)$ is odd. Call an element in \F\ \textit{square} if it is a quadratic residue, i.e.\ if there exists $\sqrt{x}\in\F$ such that $\sqrt{x}^2=x$. There will in general be two such square roots; let the notation $\sqrt{x}$ mean the unique non-negative square root of $x$. If $p\equiv1\pmod 4$, then \F\ contains an element $i := \sqrt{-1}$. | |||
Let $\ell := \lceil \log_{2^8} p\rceil$. Each $x\in\F$ has a unique \textit{little-endian byte representation}, namely the sequence | |||
$$ | |||
\text{\F\_to\_bytes}(x) := \llbracket b_i\rrbracket_{i=0}^{\l-1} \ \text{where}\ b_i\in[0,255]\text{\ and\ }\sum_{i=0}^{\l-1} 2^{8i} \cdot b_i = \text{res}(x) | |||
$$ | |||
\todo{bytes to \F} | |||
\subsection{Groups} | |||
For an abelian group \G\ with identity \O, let $n\G$ denote the subgroup of $\G$ which are of the form $n\cdot g$ for some $g\in\G$. Let $\G_n$ denote the $n$-torsion group of \G, namely the subgroup $\{g\in\G : n\cdot g = O\}$. | |||
\subsection{Edwards curves} | |||
We will work with twisted Edwards elliptic curves of the form | |||
% | |||
$$E_{a,d} : y^2 + a\cdot x^2 = 1 + d\cdot x^2\cdot y^2$$ | |||
% | |||
where $x,y\in\F$. Twisted Edwards curves curves have a group law | |||
$$(x_1,y_1) + (x_2,y_2) := | |||
\left( | |||
\frac{x_1 y_2 + x_2 y_1}{1+d x_1 x_2 y_1 y_2}, | |||
\frac{y_1 y_2 - a x_1 x_2}{1-d x_1 x_2 y_1 y_2} | |||
\right) | |||
$$ | |||
with identity point $\O := (0,1)$ and group inverse operation $$-(x,y) = (-x,y)$$ | |||
The group law is called \textit{complete} if is produces the correct answer (rather than e.g.\ $0/0$) for all points on the curve. The above formulas are complete when $d$ and $ad$ are nonsquare in \F, which implies that $a$ is square. When these conditions hold, we also say that the curve itself is complete. | |||
Let the number of points on the curve be $$\#E_{a,d} = h\cdot q$$ where $q$ is prime and $h\in\{4,8\}$. We call $h$ the \textit{cofactor}. | |||
For $P = (x,y)\in E$, we can define the \textit{projective homogeneous form} of $P$ as $(X,Y,Z)$ with $Z\neq 0$ and $$(x,y) = (X/Z,Y/Z)$$ and the \textit{extended homogeneous form} as $(X,Y,Z,T)$ where additionally $XY=ZT$. Extended homogeneous form is popular because it supports simple and efficient complete addition formulas~\cite{hisil}. | |||
\subsection{Montgomery curves} | |||
When $a-d$ is square in \F, the twisted Edwards curve $E_{a,d}$ is isomorphic to the Montgomery curve | |||
$$v^2 = u\cdot\left(u^2 + 2\cdot\frac{a+d}{a-d}\cdot u + 1\right)$$ | |||
by the map | |||
$$(u,v) = \left(\frac{1+y}{1-y},\ \ \frac{1+y}{1-y}\cdot\frac1x\cdot\frac{2}{\sqrt{a-d}}\right)$$ | |||
with inverse | |||
$$(x,y) = \left(\frac{u}{v}\cdot\frac{\sqrt{a-d}}{2},\ \ \frac{u-1}{u+1}\right)$$ | |||
If $M = (u,v)$ is a point on the Montgomery curve, then the $u$-coordinate of $2M$ is $(u^2-1)^2 / (4v^2)$ is necessarily square. It follows that if $(x,y)$ is a point on $E_{a,d}$, and $a-d$ is square, then $(1+y)/(1-y)$ is also square. | |||
Likewhise, when $d-a$ is square in \F, $E_{a,d}$ is isomorphic to the Montgomery curve | |||
$$v^2 = u\cdot\left(u^2 - 2\cdot\frac{a+d}{a-d}\cdot u + 1\right)$$ | |||
by the map | |||
$$(u,v) = \left(\frac{y+1}{y-1},\ \ \frac{y+1}{y-1}\cdot\frac1x\cdot\frac{2}{\sqrt{d-a}}\right)$$ | |||
with inverse | |||
$$(x,y) = \left(\frac{u}{v}\cdot\frac{\sqrt{d-a}}{2},\ \ \frac{1+u}{1-u}\right)$$ | |||
\section{Lemmas} | |||
First, we characterize the 2-torsion and 4-torsion groups.\\ | |||
\begin{lemma}\label{lemma:tors} | |||
Let $E_{a,d}$ be a complete Edwards curve. Its 2-torsion subgroup is generated by $(0,-1)$. The 4-torsion subgroup is generated by $(1/\sqrt{a},0)$. | |||
Adding the 2-torsion generator to $(x,y)$ produces $(-x,-y)$. Adding the 4-torsion generator $(1/\sqrt{a},0)$ produces $(y/\sqrt{a},-x\cdot\sqrt{a})$ | |||
\end{lemma} | |||
\begin{proof} | |||
Inspection. | |||
\end{proof} | |||
\begin{lemma}\label{lemma:line} | |||
Let $E_{a,d}$ be a complete twisted Edwards curve over \F, and $P_1 = (x_1,y_1)$ be any point on it. Then there are exactly two points $P_2 = (x_2,y_2)$ satisfying $x_1 y_2 = x_2 y_1$, namely $P_1$ itself and $(-x_1,-y_1)$. That is, there are either 0 or 2 points on any line through the origin. | |||
\end{lemma} | |||
\begin{proof} | |||
Plugging into the group operation gives | |||
$$x_1 y_2 = x_2 y_1 \Longleftrightarrow P_1-P_2 = (0,y_3)$$ | |||
for some $y_3$. Plugging $x=0$ into the curve equation gives $y=\pm1$, the 2-torsion points. Adding back, we have $P_2 = P_1 + (0,\pm1) = (\pm x_1, \pm y_1)$ as claimed. | |||
\end{proof} | |||
\begin{lemma}\label{lemma:dma} | |||
If $E_{a,d}$ is a complete Edwards curve, then $a^2-ad$ is square in \F\ (and thus $a-d$ is square in \F) if and only if the cofactor of $E_{a,d}$ is divisible by 8. | |||
\end{lemma} | |||
\begin{proof} | |||
Doubling an 8-torsion generator $(x,y)$ should produce a 4-torsion generator, i.e.\ a point with $y=0$. From the doubling formula, this happens precisely when $y^2=ax^2$, or $2ax^2=1+adx^4$. This has roots in \F\ if and only if its discriminant $4a^2-4ad$ is square, so that $a^2-ad$ is square. | |||
\end{proof} | |||
\begin{lemma}\label{lemma:sqrt} | |||
If $(x_2,y_2) = 2\cdot(x_1,y_1)$ is an even point in $E_{a,d}$, then $(1-ax_2^2)$ is a quadratic residue in \F. \todo{$(y_2^2-1)$}. | |||
\end{lemma} | |||
\begin{proof} | |||
The doubling formula has $$x_2 = \frac{2x_1 y_1}{y_1^2+ax_1^2}$$ | |||
so that $$1-ax_2^2 = \left(\frac{y_1^2-ax_1^2}{y_1^2+ax_1^2}\right)^2$$ | |||
is a quadratic residue. Now for any point $(x,y)\in E_{a,d}$, we have | |||
$$(y^2-1)\cdot(1-ax^2) | |||
= y^2+ax^2-1-ax^2y^2 | |||
= (d-a)x^2y^2 | |||
$$ | |||
which is a quadratic residue by Lemma~\ref{lemma:dma}. | |||
\end{proof} | |||
\section{The Espresso groups} | |||
Let $E$ be a complete twisted Edwards curve with $a\in\{\pm1\}$ and cofactor $4$ or $8$. We describe the \textit{Espresso} group $\G(E)$ as | |||
$$\text{Espresso}(E) := 2E / E_{h/2}$$ | |||
This group has prime order $q$. | |||
\subsection{Group law} | |||
The group law on $\text{Espresso}(E)$ is the same as that on $E$. | |||
\subsection{Equality} | |||
Two elements $P_1 := (x_1,y_1)$ and $P_2 := (x_2,y_2)$ in $\text{Espresso}(E)$ are equal if they differ by an element of $E_{h/2}$. | |||
If $h=4$, the points are equal if $P_1-P_2\in E_2$. By Lemma~\ref{lemma:line}, this is equivalent to $$x_1 y_2 = x_2 y_1$$ | |||
If $h=8$, the points are equal if $P_1-P_2\in E_4$. By Lemmas~\ref{lemma:tors} and~\ref{lemma:line}, this is equivalent to $$x_1 y_2 = x_2 y_1\text{\ \ or\ \ }x_1 x_2 = -a y_1 y_2$$ | |||
These equations are homogeneous, so they may be evaluated in projective homogeneous form with $X_i$ and $Y_i$ in place of $x_i$ and $y_i$ | |||
\subsection{Encoding} | |||
We now describe how to encode a point $P = (x,y)$ to bytes. The requirements of encoding are that | |||
\begin{itemize} | |||
\item Any point $P\in2E$ can be encoded. | |||
\item Two points $P,Q$ have the same encoding if and only if $P-Q\in E_{h/2}$. | |||
\end{itemize} | |||
When $h=4$, we encode a point as $\sqrt{a(y-1)/(y+1)}$ | |||
\end{document} |
@@ -0,0 +1,15 @@ | |||
Have (1-ydbl)/(1+ydbl) | |||
= (y^2-1)/(ax^2-1) | |||
Have (y^2-1)*(ax^2-1) = (a-d) x^2 y^2 | |||
==> (1-ydbl)/(1+ydbl) has same parity as a-d | |||
No points at infinity => d nonsqr, ad nonsqr -> a sqr. | |||
Point of order 8: ax^2=y^2 | |||
2y^2 = 1+day^4 | |||
product of roots = 1/ad = nonsquare, so one will be square (if no point at infty) | |||
b^2-4ac = 4(1-ad) -> 1-ad square iff point of order 8 exists | |||
If a^2 = 1, then 1-ad = a(a-d) |
@@ -48,10 +48,23 @@ static const scalar_t point_scalarmul_adjustment = {{{ | |||
const uint8_t decaf_x25519_base_point[DECAF_X25519_PUBLIC_BYTES] = { 0x09 }; | |||
#if COFACTOR==8 || EDDSA_USE_SIGMA_ISOGENY | |||
static const gf SQRT_ONE_MINUS_D = {FIELD_LITERAL( | |||
0x6db8831bbddec, 0x38d7b56c9c165, 0x016b221394bdc, 0x7540f7816214a, 0x0a0d85b4032b1 | |||
)}; | |||
#define RISTRETTO_FACTOR DECAF_255_RISTRETTO_FACTOR | |||
const gf RISTRETTO_FACTOR = {{{ | |||
0x702557fa2bf03, 0x514b7d1a82cc6, 0x7f89efd8b43a7, 0x1aef49ec23700, 0x079376fa30500 | |||
}}}; | |||
#if IMAGINE_TWIST | |||
#define TWISTED_D (-(EDWARDS_D)) | |||
#else | |||
#define TWISTED_D ((EDWARDS_D)-1) | |||
#endif | |||
#if TWISTED_D < 0 | |||
#define EFF_D (-(TWISTED_D)) | |||
#define NEG_D 1 | |||
#else | |||
#define EFF_D TWISTED_D | |||
#define NEG_D 0 | |||
#endif | |||
/* End of template stuff */ | |||
@@ -109,128 +122,112 @@ gf_invert(gf y, const gf x, int assert_nonzero) { | |||
gf_copy(y, t2); | |||
} | |||
/** Return high bit of x = low bit of 2x mod p */ | |||
static mask_t gf_lobit(const gf x) { | |||
gf y; | |||
gf_copy(y,x); | |||
gf_strong_reduce(y); | |||
return -(y->limb[0]&1); | |||
} | |||
/** identity = (0,1) */ | |||
const point_t API_NS(point_identity) = {{{{{0}}},{{{1}}},{{{1}}},{{{0}}}}}; | |||
/* Predeclare because not static: called by elligator */ | |||
void API_NS(deisogenize) ( | |||
gf_s *__restrict__ s, | |||
gf_s *__restrict__ minus_t_over_s, | |||
gf_s *__restrict__ inv_el_sum, | |||
gf_s *__restrict__ inv_el_m1, | |||
const point_t p, | |||
mask_t toggle_hibit_s, | |||
mask_t toggle_hibit_t_over_s, | |||
mask_t toggle_s, | |||
mask_t toggle_altx, | |||
mask_t toggle_rotation | |||
); | |||
void API_NS(deisogenize) ( | |||
gf_s *__restrict__ s, | |||
gf_s *__restrict__ minus_t_over_s, | |||
gf_s *__restrict__ inv_el_sum, | |||
gf_s *__restrict__ inv_el_m1, | |||
const point_t p, | |||
mask_t toggle_hibit_s, | |||
mask_t toggle_hibit_t_over_s, | |||
mask_t toggle_s, | |||
mask_t toggle_altx, | |||
mask_t toggle_rotation | |||
) { | |||
#if COFACTOR == 4 && !IMAGINE_TWIST | |||
(void) toggle_rotation; | |||
gf b, d; | |||
gf_s *c = s, *a = minus_t_over_s; | |||
gf_mulw(a, p->y, 1-EDWARDS_D); | |||
gf_mul(c, a, p->t); /* -dYT, with EDWARDS_D = d-1 */ | |||
gf_mul(a, p->x, p->z); | |||
gf_sub(d, c, a); /* aXZ-dYT with a=-1 */ | |||
gf_add(a, p->z, p->y); | |||
gf_sub(b, p->z, p->y); | |||
gf_mul(c, b, a); | |||
gf_mulw(b, c, -EDWARDS_D); /* (a-d)(Z+Y)(Z-Y) */ | |||
mask_t ok = gf_isr (a,b); /* r in the paper */ | |||
(void)ok; assert(ok | gf_eq(b,ZERO)); | |||
gf_mulw (b, a, -EDWARDS_D); /* u in the paper */ | |||
gf_mul(c,a,d); /* r(aZX-dYT) */ | |||
gf_mul(a,b,p->z); /* uZ */ | |||
gf_add(a,a,a); /* 2uZ */ | |||
mask_t tg = toggle_hibit_t_over_s ^ ~gf_hibit(minus_t_over_s); | |||
gf_cond_neg(minus_t_over_s, tg); /* t/s <-? -t/s */ | |||
gf_cond_neg(c, tg); /* u <- -u if negative. */ | |||
gf_add(d,c,p->y); | |||
gf_mul(s,b,d); | |||
gf_cond_neg(s, toggle_hibit_s ^ gf_hibit(s)); | |||
#else | |||
(void)toggle_rotation; /* Only applies to cofactor 8 */ | |||
gf t1; | |||
gf_s *t2 = s, *t3=inv_el_sum, *t4=inv_el_m1; | |||
gf_add(t1,p->x,p->t); | |||
gf_sub(t2,p->x,p->t); | |||
gf_mul(t3,t1,t2); /* t3 = num */ | |||
gf_sqr(t2,p->x); | |||
gf_mul(t1,t2,t3); | |||
gf_mulw(t2,t1,-1-TWISTED_D); /* -x^2 * (a-d) * num */ | |||
gf_isr(t1,t2); /* t1 = isr */ | |||
gf_mul(t2,t1,t3); /* t2 = ratio */ | |||
gf_mul(t4,t2,RISTRETTO_FACTOR); | |||
mask_t negx = gf_lobit(t4) ^ toggle_altx; | |||
gf_cond_neg(t2, negx); | |||
gf_mul(t3,t2,p->z); | |||
gf_sub(t3,t3,p->t); | |||
gf_mul(t2,t3,p->x); | |||
gf_mulw(t4,t2,-1-TWISTED_D); | |||
gf_mul(s,t4,t1); | |||
mask_t lobs = gf_lobit(s); | |||
gf_cond_neg(s,lobs); | |||
gf_copy(inv_el_m1,p->x); | |||
gf_cond_neg(inv_el_m1,~lobs^negx^toggle_s); | |||
gf_add(inv_el_m1,inv_el_m1,p->t); | |||
#elif COFACTOR == 8 && IMAGINE_TWIST | |||
/* More complicated because of rotation */ | |||
/* MAGIC This code is wrong for certain non-Curve25519 curves; | |||
* check if it's because of Cofactor==8 or IMAGINE_TWIST */ | |||
gf c, d; | |||
gf_s *b = s, *a = minus_t_over_s; | |||
#if IMAGINE_TWIST | |||
gf x, t; | |||
gf_div_qnr(x,p->x); | |||
gf_div_qnr(t,p->t); | |||
gf_add ( a, p->z, x ); | |||
gf_sub ( b, p->z, x ); | |||
gf_mul ( c, a, b ); /* "zx" = Z^2 - aX^2 = Z^2 - X^2 */ | |||
#else | |||
const gf_s *x = p->x, *t = p->t; | |||
gf_sqr ( a, p->z ); | |||
gf_sqr ( b, p->x ); | |||
gf_add ( c, a, b ); /* "zx" = Z^2 - aX^2 = Z^2 + X^2 */ | |||
#endif | |||
/* Here: c = "zx" in the SAGE code = Z^2 - aX^2 */ | |||
gf_mul ( a, p->z, t ); /* "tz" = T*Z */ | |||
gf_sqr ( b, a ); | |||
gf_mul ( d, b, c ); /* (TZ)^2 * (Z^2-aX^2) */ | |||
mask_t ok = gf_isr(b, d); | |||
(void)ok; assert(ok | gf_eq(d,ZERO)); | |||
gf_mul ( d, b, a ); /* "osx" = 1 / sqrt(z^2-ax^2) */ | |||
gf_mul ( a, b, c ); | |||
gf_mul ( b, a, d ); /* 1/tz */ | |||
mask_t rotate; | |||
#if (COFACTOR == 8) | |||
gf e; | |||
gf_sqr(e, p->z); | |||
gf_mul(a, e, b); /* z^2 / tz = z/t = 1/xy */ | |||
rotate = gf_hibit(a) ^ toggle_rotation; | |||
/* Curve25519: cond select between zx * 1/tz or sqrt(1-d); y=-x */ | |||
gf_mul ( a, b, c ); | |||
gf_cond_sel ( a, a, SQRT_ONE_MINUS_D, rotate ); | |||
gf_cond_sel ( e, p->y, x, rotate ); | |||
#else | |||
const gf_s *e = x; | |||
(void)toggle_rotation; | |||
rotate = 0; | |||
#endif | |||
gf_mul ( c, a, d ); // new "osx" | |||
gf_mul ( a, c, p->z ); | |||
gf_add ( minus_t_over_s, a, a ); // 2 * "osx" * Z | |||
gf_mul ( d, b, p->z ); | |||
mask_t tg = toggle_hibit_t_over_s ^~ gf_hibit(minus_t_over_s); | |||
gf_cond_neg ( minus_t_over_s, tg ); | |||
gf_cond_neg ( c, rotate ^ tg ); | |||
gf_add ( d, d, c ); | |||
gf_mul ( s, d, e ); /* here "x" = y unless rotate */ | |||
gf_cond_neg ( s, toggle_hibit_s ^ gf_hibit(s) ); | |||
gf t1,t2,t3,t4,t5; | |||
gf_add(t1,p->z,p->y); | |||
gf_sub(t2,p->z,p->y); | |||
gf_mul(t3,t1,t2); /* t3 = num */ | |||
gf_mul(t2,p->x,p->y); /* t2 = den */ | |||
gf_sqr(t1,t2); | |||
gf_mul(t4,t1,t3); | |||
gf_mulw(t1,t4,-1-TWISTED_D); | |||
gf_isr(t4,t1); /* isqrt(num*(a-d)*den^2) */ | |||
gf_mul(t1,t2,t4); | |||
gf_mul(t2,t1,RISTRETTO_FACTOR); /* t2 = "iden" in ristretto.sage */ | |||
gf_mul(t1,t3,t4); /* t1 = "inum" in ristretto.sage */ | |||
/* Calculate altxy = iden*inum*i*t^2*(d-a) */ | |||
gf_mul(t3,t1,t2); | |||
gf_mul_i(t4,t3); | |||
gf_mul(t3,t4,p->t); | |||
gf_mul(t4,t3,p->t); | |||
gf_mulw(t3,t4,TWISTED_D+1); /* iden*inum*i*t^2*(d-1) */ | |||
mask_t rotate = toggle_rotation ^ gf_lobit(t3); | |||
/* Rotate if altxy is negative */ | |||
gf_cond_swap(t1,t2,rotate); | |||
gf_mul_i(t4,p->x); | |||
gf_cond_sel(t4,p->y,t4,rotate); /* t4 = "fac" = ix if rotate, else y */ | |||
gf_mul_i(t5,RISTRETTO_FACTOR); /* t5 = imi */ | |||
gf_mul(t3,t5,t2); /* iden * imi */ | |||
gf_mul(t2,t5,t1); | |||
gf_mul(t5,t2,p->t); /* "altx" = iden*imi*t */ | |||
mask_t negx = gf_lobit(t5) ^ toggle_altx; | |||
gf_cond_neg(t1,negx^rotate); | |||
gf_mul(t2,t1,p->z); | |||
gf_add(t2,t2,ONE); | |||
gf_mul(inv_el_sum,t2,t4); | |||
gf_mul(s,inv_el_sum,t3); | |||
mask_t negs = gf_lobit(s); | |||
gf_cond_neg(s,negs); | |||
mask_t negz = ~negs ^ toggle_s ^ negx; | |||
gf_copy(inv_el_m1,p->z); | |||
gf_cond_neg(inv_el_m1,negz); | |||
gf_sub(inv_el_m1,inv_el_m1,t4); | |||
#else | |||
#error "Cofactor must be 4 (with no IMAGINE_TWIST) or 8 (with IMAGINE_TWIST)" | |||
#endif | |||
} | |||
void API_NS(point_encode)( unsigned char ser[SER_BYTES], const point_t p ) { | |||
gf s, mtos; | |||
API_NS(deisogenize)(s,mtos,p,0,0,0); | |||
gf_serialize(ser,s,0); | |||
gf s,ie1,ie2; | |||
API_NS(deisogenize)(s,ie1,ie2,p,0,0,0); | |||
gf_serialize(ser,s,1); | |||
} | |||
decaf_error_t API_NS(point_decode) ( | |||
@@ -238,89 +235,54 @@ decaf_error_t API_NS(point_decode) ( | |||
const unsigned char ser[SER_BYTES], | |||
decaf_bool_t allow_identity | |||
) { | |||
gf s, a, b, c, d, e, f; | |||
mask_t succ = gf_deserialize(s, ser, 0); | |||
mask_t zero = gf_eq(s, ZERO); | |||
succ &= bool_to_mask(allow_identity) | ~zero; | |||
gf_sqr ( a, s ); /* s^2 */ | |||
gf s, s2, num, tmp; | |||
gf_s *tmp2=s2, *ynum=p->z, *isr=p->x, *den=p->t; | |||
mask_t succ = gf_deserialize(s, ser, 1, 0); | |||
succ &= bool_to_mask(allow_identity) | ~gf_eq(s, ZERO); | |||
succ &= ~gf_lobit(s); | |||
gf_sqr(s2,s); /* s^2 = -as^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub ( f, ONE, a ); /* f = 1-as^2 = 1-s^2*/ | |||
#else | |||
gf_add ( f, ONE, a ); /* f = 1-as^2 = 1+s^2 */ | |||
gf_sub(s2,ZERO,s2); /* -as^2 */ | |||
#endif | |||
succ &= ~ gf_eq( f, ZERO ); | |||
gf_sqr ( b, f ); /* (1-as^2)^2 = 1 - 2as^2 + a^2 s^4 */ | |||
gf_mulw ( c, a, 4*IMAGINE_TWIST-4*EDWARDS_D ); | |||
gf_add ( c, c, b ); /* t^2 = 1 + (2a-4d) s^2 + s^4 */ | |||
gf_mul ( d, f, s ); /* s * (1-as^2) for denoms */ | |||
gf_sqr ( e, d ); /* s^2 * (1-as^2)^2 */ | |||
gf_mul ( b, c, e ); /* t^2 * s^2 * (1-as^2)^2 */ | |||
succ &= gf_isr(e,b) | gf_eq(b,ZERO); /* e = 1/(t s (1-as^2)) */ | |||
gf_mul ( b, e, d ); /* 1 / t */ | |||
gf_mul ( d, e, c ); /* t / (s(1-as^2)) */ | |||
gf_mul ( e, d, f ); /* t / s */ | |||
mask_t negtos = gf_hibit(e); | |||
gf_cond_neg(b, negtos); | |||
gf_cond_neg(d, negtos); | |||
#if IMAGINE_TWIST | |||
gf_add ( p->z, ONE, a); /* Z = 1+as^2 = 1-s^2 */ | |||
#else | |||
gf_sub ( p->z, ONE, a); /* Z = 1+as^2 = 1-s^2 */ | |||
gf_sub(den,ONE,s2); /* 1+as^2 */ | |||
gf_add(ynum,ONE,s2); /* 1-as^2 */ | |||
gf_mulw(num,s2,-4*TWISTED_D); | |||
gf_sqr(tmp,den); /* tmp = den^2 */ | |||
gf_add(num,tmp,num); /* num = den^2 - 4*d*s^2 */ | |||
gf_mul(tmp2,num,tmp); /* tmp2 = num*den^2 */ | |||
succ &= gf_isr(isr,tmp2); /* isr = 1/sqrt(num*den^2) */ | |||
gf_mul(tmp,isr,den); /* isr*den */ | |||
gf_mul(p->y,tmp,ynum); /* isr*den*(1-as^2) */ | |||
gf_mul(tmp2,tmp,s); /* s*isr*den */ | |||
gf_add(tmp2,tmp2,tmp2); /* 2*s*isr*den */ | |||
gf_mul(tmp,tmp2,isr); /* 2*s*isr^2*den */ | |||
gf_mul(p->x,tmp,num); /* 2*s*isr^2*den*num */ | |||
gf_mul(tmp,tmp2,RISTRETTO_FACTOR); /* 2*s*isr*den*magic */ | |||
gf_cond_neg(p->x,gf_lobit(tmp)); /* flip x */ | |||
#if COFACTOR==8 | |||
/* Additionally check y != 0 and x*y*isomagic nonegative */ | |||
succ &= ~gf_eq(p->y,ZERO); | |||
gf_mul(tmp,p->x,p->y); | |||
gf_mul(tmp2,tmp,RISTRETTO_FACTOR); | |||
succ &= ~gf_lobit(tmp2); | |||
#endif | |||
#if COFACTOR == 8 | |||
gf_mul ( a, p->z, d); /* t(1+s^2) / s(1-s^2) = 2/xy */ | |||
succ &= ~gf_lobit(a); /* = ~gf_hibit(a/2), since gf_hibit(x) = gf_lobit(2x) */ | |||
#endif | |||
gf_mul ( a, f, b ); /* y = (1-s^2) / t */ | |||
gf_mul ( p->y, p->z, a ); /* Y = yZ */ | |||
#if IMAGINE_TWIST | |||
gf_add ( b, s, s ); | |||
gf_mul(p->x, b, SQRT_MINUS_ONE); /* Curve25519 */ | |||
#else | |||
gf_add ( p->x, s, s ); | |||
#endif | |||
gf_mul ( p->t, p->x, a ); /* T = 2s (1-as^2)/t */ | |||
#if UNSAFE_CURVE_HAS_POINTS_AT_INFINITY | |||
/* This can't happen for any of the supported configurations. | |||
* | |||
* If it can happen (because s=1), it's because the curve has points | |||
* at infinity, which means that there may be critical security bugs | |||
* elsewhere in the library. In that case, it's better that you hit | |||
* the assertion in point_valid, which will happen in the test suite | |||
* since it tests s=1. | |||
* | |||
* This debugging option is to allow testing of IMAGINE_TWIST = 0 on | |||
* Ed25519, without hitting that assertion. Don't use it in | |||
* production. | |||
*/ | |||
succ &= ~gf_eq(p->z,ZERO); | |||
gf_copy(tmp,p->x); | |||
gf_mul_i(p->x,tmp); | |||
#endif | |||
/* Fill in z and t */ | |||
gf_copy(p->z,ONE); | |||
gf_mul(p->t,p->x,p->y); | |||
p->y->limb[0] -= zero; | |||
assert(API_NS(point_valid)(p) | ~succ); | |||
return decaf_succeed_if(mask_to_bool(succ)); | |||
} | |||
#if IMAGINE_TWIST | |||
#define TWISTED_D (-(EDWARDS_D)) | |||
#else | |||
#define TWISTED_D ((EDWARDS_D)-1) | |||
#endif | |||
#if TWISTED_D < 0 | |||
#define EFF_D (-(TWISTED_D)) | |||
#define NEG_D 1 | |||
#else | |||
#define EFF_D TWISTED_D | |||
#define NEG_D 0 | |||
#endif | |||
void API_NS(point_sub) ( | |||
point_t p, | |||
const point_t q, | |||
@@ -865,7 +827,7 @@ void API_NS(point_debugging_pscale) ( | |||
) { | |||
gf gfac,tmp; | |||
/* NB this means you'll never pscale by negative numbers for p521 */ | |||
ignore_result(gf_deserialize(gfac,factor,0)); | |||
ignore_result(gf_deserialize(gfac,factor,0,0)); | |||
gf_cond_sel(gfac,gfac,ONE,gf_eq(gfac,ZERO)); | |||
gf_mul(tmp,p->x,gfac); | |||
gf_copy(q->x,tmp); | |||
@@ -1078,7 +1040,7 @@ decaf_error_t API_NS(direct_scalarmul) ( | |||
return succ; | |||
} | |||
void API_NS(point_mul_by_cofactor_and_encode_like_eddsa) ( | |||
void API_NS(point_mul_by_ratio_and_encode_like_eddsa) ( | |||
uint8_t enc[DECAF_EDDSA_25519_PUBLIC_BYTES], | |||
const point_t p | |||
) { | |||
@@ -1116,15 +1078,20 @@ void API_NS(point_mul_by_cofactor_and_encode_like_eddsa) ( | |||
gf_mul ( y, u, t ); // (x^2+y^2)(2z^2-y^2+x^2) | |||
gf_mul ( u, z, t ); | |||
gf_copy( z, u ); | |||
gf_mul ( u, x, SQRT_ONE_MINUS_D ); | |||
gf_mul ( u, x, RISTRETTO_FACTOR ); | |||
#if IMAGINE_TWIST | |||
gf_mul_i( x, u ); | |||
#else | |||
#error "... probably wrong" | |||
gf_copy( x, u ); | |||
#endif | |||
decaf_bzero(u,sizeof(u)); | |||
} | |||
#elif IMAGINE_TWIST | |||
{ | |||
API_NS(point_double)(q,q); | |||
API_NS(point_double)(q,q); | |||
gf_mul_qnr(x, q->x); | |||
gf_mul_i(x, q->x); | |||
gf_copy(y, q->y); | |||
gf_copy(z, q->z); | |||
} | |||
@@ -1137,7 +1104,7 @@ void API_NS(point_mul_by_cofactor_and_encode_like_eddsa) ( | |||
gf_add( u, x, t ); | |||
gf_add( z, q->y, q->x ); | |||
gf_sqr ( y, z); | |||
gf_sub ( y, u, y ); | |||
gf_sub ( y, y, u ); | |||
gf_sub ( z, t, x ); | |||
gf_sqr ( x, q->z ); | |||
gf_add ( t, x, x); | |||
@@ -1166,7 +1133,7 @@ void API_NS(point_mul_by_cofactor_and_encode_like_eddsa) ( | |||
} | |||
decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
decaf_error_t API_NS(point_decode_like_eddsa_and_mul_by_ratio) ( | |||
point_t p, | |||
const uint8_t enc[DECAF_EDDSA_25519_PUBLIC_BYTES] | |||
) { | |||
@@ -1176,7 +1143,7 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
mask_t low = ~word_is_zero(enc2[DECAF_EDDSA_25519_PRIVATE_BYTES-1] & 0x80); | |||
enc2[DECAF_EDDSA_25519_PRIVATE_BYTES-1] &= ~0x80; | |||
mask_t succ = gf_deserialize(p->y, enc2, 1); | |||
mask_t succ = gf_deserialize(p->y, enc2, 1, 0); | |||
#if 7 == 0 | |||
succ &= word_is_zero(enc2[DECAF_EDDSA_25519_PRIVATE_BYTES-1]); | |||
#endif | |||
@@ -1196,7 +1163,7 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
succ &= gf_isr(p->t,p->x); /* 1/sqrt(num * denom) */ | |||
gf_mul(p->x,p->t,p->z); /* sqrt(num / denom) */ | |||
gf_cond_neg(p->x,~gf_lobit(p->x)^low); | |||
gf_cond_neg(p->x,gf_lobit(p->x)^low); | |||
gf_copy(p->z,ONE); | |||
#if EDDSA_USE_SIGMA_ISOGENY | |||
@@ -1221,8 +1188,9 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
gf_sub ( p->t, a, c ); // y^2 - x^2 | |||
gf_sqr ( p->x, p->z ); | |||
gf_add ( p->z, p->x, p->x ); | |||
gf_sub ( a, p->z, p->t ); // 2z^2 - y^2 + x^2 | |||
gf_mul ( c, a, SQRT_ONE_MINUS_D ); | |||
gf_sub ( c, p->z, p->t ); // 2z^2 - y^2 + x^2 | |||
gf_div_i ( a, c ); | |||
gf_mul ( c, a, RISTRETTO_FACTOR ); | |||
gf_mul ( p->x, b, p->t); // (2xy)(y^2-x^2) | |||
gf_mul ( p->z, p->t, c ); // (y^2-x^2)sd(2z^2 - y^2 + x^2) | |||
gf_mul ( p->y, d, c ); // (y^2+x^2)sd(2z^2 - y^2 + x^2) | |||
@@ -1265,6 +1233,7 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
decaf_bzero(enc2,sizeof(enc2)); | |||
assert(API_NS(point_valid)(p) || ~succ); | |||
return decaf_succeed_if(mask_to_bool(succ)); | |||
} | |||
@@ -1274,7 +1243,7 @@ decaf_error_t decaf_x25519 ( | |||
const uint8_t scalar[X_PRIVATE_BYTES] | |||
) { | |||
gf x1, x2, z2, x3, z3, t1, t2; | |||
ignore_result(gf_deserialize(x1,base,1)); | |||
ignore_result(gf_deserialize(x1,base,1,0)); | |||
gf_copy(x2,ONE); | |||
gf_copy(z2,ZERO); | |||
gf_copy(x3,x1); | |||
@@ -1345,15 +1314,8 @@ void decaf_ed25519_convert_public_key_to_x25519 ( | |||
const uint8_t ed[DECAF_EDDSA_25519_PUBLIC_BYTES] | |||
) { | |||
gf y; | |||
{ | |||
uint8_t enc2[DECAF_EDDSA_25519_PUBLIC_BYTES]; | |||
memcpy(enc2,ed,sizeof(enc2)); | |||
/* retrieve y from the ed compressed point */ | |||
enc2[DECAF_EDDSA_25519_PUBLIC_BYTES-1] &= ~0x80; | |||
ignore_result(gf_deserialize(y, enc2, 0)); | |||
decaf_bzero(enc2,sizeof(enc2)); | |||
} | |||
const uint8_t mask = (uint8_t)(0xFE<<(6)); | |||
ignore_result(gf_deserialize(y, ed, 1, mask)); | |||
{ | |||
gf n,d; | |||
@@ -1390,6 +1352,26 @@ void decaf_x25519_generate_key ( | |||
decaf_x25519_derive_public_key(out,scalar); | |||
} | |||
void API_NS(point_mul_by_ratio_and_encode_like_x25519) ( | |||
uint8_t out[X_PUBLIC_BYTES], | |||
const point_t p | |||
) { | |||
point_t q; | |||
#if COFACTOR == 8 | |||
point_double_internal(q,p,1); | |||
#else | |||
API_NS(point_copy)(q,p); | |||
#endif | |||
gf_invert(q->t,q->x,0); /* 1/x */ | |||
gf_mul(q->z,q->t,q->y); /* y/x */ | |||
gf_sqr(q->y,q->z); /* (y/x)^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub(q->y,ZERO,q->y); | |||
#endif | |||
gf_serialize(out,q->y,1); | |||
API_NS(point_destroy(q)); | |||
} | |||
void decaf_x25519_derive_public_key ( | |||
uint8_t out[X_PUBLIC_BYTES], | |||
const uint8_t scalar[X_PRIVATE_BYTES] | |||
@@ -1405,39 +1387,13 @@ void decaf_x25519_derive_public_key ( | |||
scalar_t the_scalar; | |||
API_NS(scalar_decode_long)(the_scalar,scalar2,sizeof(scalar2)); | |||
/* We're gonna isogenize by 2, so divide by 2. | |||
* | |||
* Why by 2, even though it's a 4-isogeny? | |||
* | |||
* The isogeny map looks like | |||
* Montgomery <-2-> Jacobi <-2-> Edwards | |||
* | |||
* Since the Jacobi base point is the PREimage of the iso to | |||
* the Montgomery curve, and we're going | |||
* Jacobi -> Edwards -> Jacobi -> Montgomery, | |||
* we pick up only a factor of 2 over Jacobi -> Montgomery. | |||
*/ | |||
API_NS(scalar_halve)(the_scalar,the_scalar); | |||
/* Compensate for the encoding ratio */ | |||
for (unsigned i=1; i<DECAF_X25519_ENCODE_RATIO; i<<=1) { | |||
API_NS(scalar_halve)(the_scalar,the_scalar); | |||
} | |||
point_t p; | |||
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),the_scalar); | |||
/* Isogenize to Montgomery curve. | |||
* | |||
* Why isn't this just a separate function, eg decaf_encode_like_x25519? | |||
* Basically because in general it does the wrong thing if there is a cofactor | |||
* component in the input. In this function though, there isn't a cofactor | |||
* component in the input. | |||
*/ | |||
gf_invert(p->t,p->x,0); /* 1/x */ | |||
gf_mul(p->z,p->t,p->y); /* y/x */ | |||
gf_sqr(p->y,p->z); /* (y/x)^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub(p->y,ZERO,p->y); | |||
#endif | |||
gf_serialize(out,p->y,1); | |||
decaf_bzero(scalar2,sizeof(scalar2)); | |||
API_NS(scalar_destroy)(the_scalar); | |||
API_NS(point_mul_by_ratio_and_encode_like_x25519)(out,p); | |||
API_NS(point_destroy)(p); | |||
} | |||
@@ -21,7 +21,7 @@ | |||
#define API_NS(_id) decaf_255_##_id | |||
static const unsigned char base_point_ser_for_pregen[SER_BYTES] = { | |||
0x03 | |||
0xe2, 0xf2, 0xae, 0x0a, 0x6a, 0xbc, 0x4e, 0x71, 0xa8, 0x84, 0xa9, 0x61, 0xc5, 0x00, 0x51, 0x5f, 0x58, 0xe3, 0x0b, 0x6a, 0xa5, 0x82, 0xdd, 0x8d, 0xb6, 0xa6, 0x59, 0x45, 0xe0, 0x8d, 0x2d, 0x76 | |||
}; | |||
/* To satisfy linker. */ | |||
@@ -63,16 +63,25 @@ int main(int argc, char **argv) { | |||
API_NS(point_t) real_point_base; | |||
int ret = API_NS(point_decode)(real_point_base,base_point_ser_for_pregen,0); | |||
if (ret != DECAF_SUCCESS) return 1; | |||
if (ret != DECAF_SUCCESS) { | |||
fprintf(stderr, "Can't decode base point!\n"); | |||
return 1; | |||
} | |||
API_NS(precomputed_s) *pre; | |||
ret = posix_memalign((void**)&pre, API_NS(alignof_precomputed_s), API_NS(sizeof_precomputed_s)); | |||
if (ret || !pre) return 1; | |||
if (ret || !pre) { | |||
fprintf(stderr, "Can't allocate space for precomputed table\n"); | |||
return 1; | |||
} | |||
API_NS(precompute)(pre, real_point_base); | |||
struct niels_s *pre_wnaf; | |||
ret = posix_memalign((void**)&pre_wnaf, API_NS(alignof_precomputed_s), API_NS(sizeof_precomputed_wnafs)); | |||
if (ret || !pre_wnaf) return 1; | |||
if (ret || !pre_wnaf) { | |||
fprintf(stderr, "Can't allocate space for precomputed WNAF table\n"); | |||
return 1; | |||
} | |||
API_NS(precompute_wnafs)(pre_wnaf, real_point_base); | |||
const gf_s *output; | |||
@@ -5,61 +5,61 @@ | |||
#define API_NS(_id) decaf_255_##_id | |||
const API_NS(point_t) API_NS(point_base) = {{ | |||
{FIELD_LITERAL(0x0004a2ebbc57c446,0x000501e3eb5a93b2,0x00079c37ac6e4a40,0x00052181e701cbb9,0x0000512db01de8b3)}, | |||
{FIELD_LITERAL(0x0005ef58002a189b,0x0000f03409118cd4,0x00033a3f7e448905,0x0006a725fcccd553,0x0000863a7a72a10d)}, | |||
{FIELD_LITERAL(0x000000000000000a,0x0000000000000000,0x0000000000000000,0x0000000000000000,0x0000000000000000)}, | |||
{FIELD_LITERAL(0x00064dd34108cd8b,0x00074d6a76c1aa17,0x0007ee5469f0a08a,0x0007eb4b28e92c93,0x00076326b6a09052)} | |||
{FIELD_LITERAL(0x0000485cca7e8859,0x00041dc396dfb8fc,0x0005584743ad3a93,0x0006ae1e23d9233c,0x00056f798c3a929c)}, | |||
{FIELD_LITERAL(0x0004ccccccccccc2,0x0001999999999999,0x0003333333333333,0x0006666666666666,0x0004cccccccccccc)}, | |||
{FIELD_LITERAL(0x0000000000000001,0x0000000000000000,0x0000000000000000,0x0000000000000000,0x0000000000000000)}, | |||
{FIELD_LITERAL(0x0004f837acb251cf,0x0000dea88db96efd,0x00019b5df567eff2,0x00059babaf1be1f1,0x000342e2875657f7)} | |||
}}; | |||
const gf API_NS(precomputed_base_as_fe)[144] | |||
VECTOR_ALIGNED __attribute__((visibility("hidden"))) = { | |||
{FIELD_LITERAL(0x00074308734f7d55,0x000380ac08a23a96,0x00024b4b5cef028b,0x000632cbb8646ab5,0x00075516b5681530)}, | |||
{FIELD_LITERAL(0x0005729461e535df,0x0004a8e85565dffb,0x000246a85e49fde1,0x000285c20023113d,0x00028a44366a7a53)}, | |||
{FIELD_LITERAL(0x0007900f448afdf1,0x0003b19d978aa5b4,0x00001f24c6a6a64c,0x0002087f8eafcb75,0x0002908747e585e7)}, | |||
{FIELD_LITERAL(0x00076d889cad4165,0x00071362fbf32e38,0x000690aefb540c46,0x000621cc7bb1b618,0x000221025cc4baa9)}, | |||
{FIELD_LITERAL(0x0007bebe4b16496c,0x0002e7f9398fd049,0x0000e75000bce490,0x000524d09bad6a16,0x0006e0956a9e4b96)}, | |||
{FIELD_LITERAL(0x00011021995f4d69,0x000408ad873a4a85,0x0001eabfb56a654e,0x0000c9929a913e80,0x000089c71d2ad5fb)}, | |||
{FIELD_LITERAL(0x0001074205aa7651,0x00070175da77bb6c,0x0003aabc342a7247,0x00053b258c3bfab2,0x00026b1876e97291)}, | |||
{FIELD_LITERAL(0x00011e80f790420b,0x00005b106301a4b8,0x0003655366fb76bd,0x0000db29fd744fb9,0x000421bcf8c7f1c9)}, | |||
{FIELD_LITERAL(0x00046711fde8d258,0x000470e3497ac3e2,0x000194ae035752d1,0x0004ae895c0abf15,0x0005ddd80811ad26)}, | |||
{FIELD_LITERAL(0x0005b4e34964bdc6,0x0001e81fa96ce1f5,0x0007e2df72008566,0x000168443f698ebe,0x000152ac0b755c25)}, | |||
{FIELD_LITERAL(0x000290744e6e5635,0x0006c5bc38e03bc3,0x0006c96e2fbd1fda,0x00013f648afeb2d4,0x0007c62b7a2c6a06)}, | |||
{FIELD_LITERAL(0x000318c70c2f945b,0x0004239d8e807a94,0x0004188e8a39e6a0,0x00059e2ee0252e08,0x00040068a0c16600)}, | |||
{FIELD_LITERAL(0x0006e6b7abb10734,0x0006c794fd3e62f5,0x00020e578b02d4d6,0x00071c80374f0b04,0x00012c3bfb2d0371)}, | |||
{FIELD_LITERAL(0x00055466e28f151e,0x0006b7f47234ae9b,0x00000e13de9f7ae1,0x000397ae5535fd30,0x0003770095a7d1b6)}, | |||
{FIELD_LITERAL(0x0000bf2a1151e097,0x00034b6f37a26f1c,0x0006c920dc5af278,0x00036a5fdeecf456,0x0000274e3992daca)}, | |||
{FIELD_LITERAL(0x00059e4ca2f8886f,0x0006b4750e946c95,0x00059eec7f9ece40,0x00005a4cea7306d6,0x0002942643555c80)}, | |||
{FIELD_LITERAL(0x000032272e61054e,0x0002fd234cb15146,0x00023e3ee1ef8f01,0x0004cbc46f7dc7bd,0x00012823d598d1eb)}, | |||
{FIELD_LITERAL(0x00038ad274b8a817,0x0004fc82ef8b5d5c,0x00041bd3024f4574,0x00055d7231efff55,0x0000c5645a2c0dfe)}, | |||
{FIELD_LITERAL(0x00046d0660706b4f,0x00026639b32bc46a,0x00047778c8f868cf,0x00026f6f03de7b3f,0x000152449d80f37a)}, | |||
{FIELD_LITERAL(0x000775f7d7c489e4,0x000753ccdcef1f73,0x0000794b3d428f1b,0x00069f835109615b,0x0007c293b3c9fd03)}, | |||
{FIELD_LITERAL(0x00023ede6e1d8634,0x0000a56181b173a2,0x0004562f62daae1f,0x00052816d45aa833,0x0007ff582bb6653c)}, | |||
{FIELD_LITERAL(0x0002454ac31a713a,0x00046a1aff243be4,0x00061d4625463d74,0x0007381029e9febe,0x0000d36e87e5c9f8)}, | |||
{FIELD_LITERAL(0x0000366482a905cf,0x0006027364c80753,0x00047dbd74ea5f7d,0x0007370de9872204,0x0001d4b014ca1204)}, | |||
{FIELD_LITERAL(0x00053ea1c4c97833,0x0002df62d318036e,0x000288c25f0a8ee5,0x0007b269312b6991,0x000605703efca474)}, | |||
{FIELD_LITERAL(0x0005411db67012d5,0x0003839ba04d414e,0x000427bac114c00c,0x0006101f4dbbd8ba,0x0005d0d37579b501)}, | |||
{FIELD_LITERAL(0x0003f868cecaff25,0x00050633eeea03f4,0x0005b378fd40553d,0x00022b1fd96bba9c,0x00038e387b07f4b2)}, | |||
{FIELD_LITERAL(0x00068bb1688f018a,0x00059ca4f89e5af1,0x0006cdd39e07c0ff,0x0001c41c8682a8f3,0x0002501bad194816)}, | |||
{FIELD_LITERAL(0x00057a048831afd7,0x0001db1d8848cb7c,0x0001c19664abd34d,0x000263448bc1ac3d,0x0000a1eb87cc5550)}, | |||
{FIELD_LITERAL(0x00071d63dc03d8dd,0x00054edf28315a40,0x0005fe7a8b0c9d28,0x0006e8ba1d5c3992,0x000178b0808a422d)}, | |||
{FIELD_LITERAL(0x00042084b3f0d594,0x0004fd2f47147e58,0x00063d8e820cc500,0x00010c06f4c00216,0x0004bd7eea1193b9)}, | |||
{FIELD_LITERAL(0x0007b23a241e726b,0x000282c8eb1f96ae,0x000248d8ea07c098,0x0003da55bdb3a408,0x0005ecfe96ec945e)}, | |||
{FIELD_LITERAL(0x000149c42977f67f,0x00047674073754cb,0x000775f8ea834290,0x000433d0d9140645,0x0003e8d14fa401e1)}, | |||
{FIELD_LITERAL(0x000698be8aeb7d5b,0x000492c2fc1e06a3,0x0003613444b366db,0x0001fc87dfbe6c92,0x0002de2e337b3729)}, | |||
{FIELD_LITERAL(0x00056790106623d8,0x00055d885f4a0c01,0x00033933a8257fe2,0x0002f1c5bf947de4,0x0000ae7e40035af0)}, | |||
{FIELD_LITERAL(0x000508a1f1d4682b,0x0003b54ef307cd48,0x0000a5d58aa5768e,0x0004517d377be18f,0x000593760533c5ff)}, | |||
{FIELD_LITERAL(0x000763e76811d43a,0x0005d342e8bf6b90,0x0002e1707e229c60,0x0003bbdc425fceed,0x0005a2ab1a4a0de9)}, | |||
{FIELD_LITERAL(0x0006b384c7e1e2b9,0x000164f357c822fd,0x0000c4c2d68283dc,0x0007b356c6bbf73b,0x0004a57a4935fc97)}, | |||
{FIELD_LITERAL(0x0000e3b94bdc9773,0x0003c3d5d69b31dc,0x00069a7f6da96736,0x0002be940a2193d7,0x00032f05636602b8)}, | |||
{FIELD_LITERAL(0x00070b26342e2300,0x0007357ea5a05bad,0x0003f322f4d1d92d,0x000254cdfca21e23,0x0003c784682a918b)}, | |||
{FIELD_LITERAL(0x00036fe4c08fe3a9,0x0005d27b152b9afe,0x0006e4037781ebf5,0x000588f5fe18f990,0x0006c18726bb2385)}, | |||
{FIELD_LITERAL(0x0005d22a0a21bdd4,0x00069bb3d6587726,0x0001187048cafffe,0x00038b6bb210a404,0x0001f9644d68f257)}, | |||
{FIELD_LITERAL(0x0000ca52c758f28b,0x00003d3ffb8ca649,0x0002c133f22ac9b8,0x000705af85c4ecdf,0x00049d2f4f3a6e62)}, | |||
{FIELD_LITERAL(0x0007da0f4e1565e0,0x0006fa7a1e4779d2,0x00003c3ea7568e41,0x00011f89f112d22c,0x00036de81e03d02d)}, | |||
{FIELD_LITERAL(0x0004d13807f938ee,0x000701c7c55031ce,0x0001d7e07fd92939,0x0000a1f04baafe91,0x0006505e3a8412b4)}, | |||
{FIELD_LITERAL(0x0005383940f7159b,0x000331630c6fa442,0x0001100ad7ae8320,0x0002e381cf7e6260,0x000072201917150f)}, | |||
{FIELD_LITERAL(0x000683d5cfeca129,0x0004dbe0eef910b4,0x0005abce5d5576c5,0x000396e6a3a58311,0x000752c6080343f2)}, | |||
{FIELD_LITERAL(0x0002e1404ee6d107,0x0004064a3bd93e57,0x00078a011f16378f,0x00032f7253e4b397,0x0006a54ad677432e)}, | |||
{FIELD_LITERAL(0x000734b7d62b820c,0x0004ad861c234f0b,0x00078691d4e8036c,0x000708b8ec865a61,0x000334c73b5b80d2)}, | |||
{FIELD_LITERAL(0x000787c06838438e,0x000079b93ae8d43f,0x0006ce4230c8d2e4,0x0001e958b5ba51e1,0x000581f2251d4761)}, | |||
{FIELD_LITERAL(0x00028065bd02efcb,0x00072c06ae982429,0x0001a39392af7f7c,0x000398aaf36dab32,0x0004c8a8c4525fae)}, | |||
{FIELD_LITERAL(0x00006ff0bb7501fc,0x00044e6268755a4b,0x0007e0db395959b3,0x0005f7807150348a,0x00056f78b81a7a18)}, | |||
{FIELD_LITERAL(0x00013c159d969f7f,0x00038046e416d34a,0x00030a05d3333cd8,0x0003fc17afcf330a,0x0001456fcd6c2c06)}, | |||
{FIELD_LITERAL(0x0001b3b052f3a00d,0x00050d154cc33fb6,0x000570a09253802b,0x0006af26330b8f09,0x000503fdb7977d73)}, | |||
{FIELD_LITERAL(0x0006efde66a0b284,0x0003f75278c5b57a,0x000615404a959ab1,0x0007366d656ec17f,0x00077638e2d52a04)}, | |||
{FIELD_LITERAL(0x00002d288a8a8e1c,0x000029f655eeea29,0x00069ca769b47ee2,0x0002d41c299b6574,0x0002fcdb7d8bda37)}, | |||
{FIELD_LITERAL(0x0005883fa323a11e,0x000241047ad9c769,0x000233d3283fbb6d,0x000041bda7280e1d,0x00018a85382540f5)}, | |||
{FIELD_LITERAL(0x000398ee02172d95,0x00038f1cb6853c1d,0x00066b51fca8ad2e,0x00035176a3f540ea,0x00022227f7ee52d9)}, | |||
{FIELD_LITERAL(0x000790607ffeebfe,0x000725f8959cf0e0,0x00016b68dcd68a0f,0x00046f439e78680b,0x00026be3a14518fd)}, | |||
{FIELD_LITERAL(0x0002216f73946c7d,0x0000f4eb865cbfbf,0x0003c96750df440c,0x000655188ab63a68,0x0002a93e3b59098a)}, | |||
{FIELD_LITERAL(0x0004e738f3d06b92,0x0003dc62717f856b,0x0003e77175c6195f,0x000261d11fdad1f7,0x0003ff975f3e99ff)}, | |||
{FIELD_LITERAL(0x00031becbaeb1b98,0x0007912ee9ea6632,0x0004e42e201b640f,0x0007e5a0ef458ef1,0x000383f3cebfcbef)}, | |||
{FIELD_LITERAL(0x00004a9f30d26d26,0x0001838b85de7867,0x0006904531c39e2b,0x0000b5c478c98d49,0x0007d059931f87d8)}, | |||
{FIELD_LITERAL(0x000740d5eeae1f56,0x0004b490c85d90e3,0x000136df23a50d87,0x000495a021130ba9,0x0007d8b1c66d2535)}, | |||
{FIELD_LITERAL(0x000711d059bc6cef,0x0000ea1c699aeba1,0x0006371a8052c525,0x000699f87dd13a72,0x00021319ac452786)}, | |||
{FIELD_LITERAL(0x0004179c92b1b0bb,0x00046e9ddba894d8,0x0001e24442ec9a91,0x0004c132a51620b3,0x0006d110187f3653)}, | |||
{FIELD_LITERAL(0x0004752d8b4757d6,0x0003037d1074a2a3,0x0003e42cfdb0ba8b,0x0002a28dce1000aa,0x00073a9ba5d3f201)}, | |||
{FIELD_LITERAL(0x000605edf6ba1a36,0x000013aba4619a54,0x0007ad04bb3634df,0x0007d3751dadf975,0x0007857a65f3ad25)}, | |||
{FIELD_LITERAL(0x0003117ab7b95c2b,0x0000f4a313b2a63d,0x0006eb78029227ec,0x00043b924f138238,0x00073aad45f02122)}, | |||
{FIELD_LITERAL(0x0005c12191e279b9,0x00075a9e7e4e8c5d,0x0003a9d09d2551e0,0x0002d7e92ba557cc,0x000000a7d4499ac3)}, | |||
{FIELD_LITERAL(0x0005b75a63605042,0x0001fb3e9b1e1738,0x00054c87b6f7d7b6,0x0003b73e6812d3e8,0x000633794ff51d12)}, | |||
{FIELD_LITERAL(0x00058b7c046273ac,0x0000464dc4a43f06,0x0004eb0e5479c3c5,0x00036c45d45ee21a,0x00047b89a5b4d946)}, | |||
{FIELD_LITERAL(0x0002c15e3b3687ba,0x0005209d2ce7fc91,0x0005773da0f5711a,0x00004d96ced4966e,0x0001fa8fc1035b8b)}, | |||
{FIELD_LITERAL(0x00075c8cfdf08431,0x0003e5ee1a32e561,0x00017f242d52abcb,0x00070b795ca26857,0x0002cb36d5df0af3)}, | |||
{FIELD_LITERAL(0x0006a3037380c025,0x0005f0b9e09cee4c,0x000333017642af74,0x00023fd62c2cfe7a,0x00070eee8fed21d2)}, | |||
{FIELD_LITERAL(0x0001744e9770fe63,0x0002635b0761a50e,0x0001322c61f83f00,0x00063be3797d570c,0x0005afe452e6b7e9)}, | |||
{FIELD_LITERAL(0x00005fff6e9b6af7,0x0003e58a55a575a1,0x000616d026c6eff2,0x000186a3124f745b,0x0002eec52ffe33c4)}, | |||
{FIELD_LITERAL(0x0001ee0dff83b7ca,0x00022805e31c6873,0x0006fd7df7edeaef,0x0002f0f61779d562,0x0004deb8f2bacd10)}, | |||
{FIELD_LITERAL(0x0003df7b4c0f2a59,0x000302d0b8eb81a7,0x0001c2717df33aff,0x0006f3f90b3ffde9,0x0003428115ee6c46)}, | |||
{FIELD_LITERAL(0x0001ab77a68de949,0x0005da9c4d9a1ae9,0x0003ce86c23f9b7c,0x00007c893f16e3d9,0x000190c2b28c32a8)}, | |||
{FIELD_LITERAL(0x0000bae92c40e17e,0x0004a8ef7ffd05e8,0x0005e3a63cc24e24,0x0001ed40c1f74c12,0x000258c0a1c13ff6)}, | |||
{FIELD_LITERAL(0x0001674175148292,0x00036d3d03e1f95c,0x00049ecbbb4c9924,0x000603782041936d,0x000521d1cc84c8d6)}, | |||
{FIELD_LITERAL(0x0004c7d5df621bb3,0x00063a78ba5518cb,0x00050af726ccf0a4,0x0003745ad4fb4c6d,0x0004b598e9a94c84)}, | |||
{FIELD_LITERAL(0x000546d94d9e537c,0x0001f783b157c7bb,0x00034c7f212657b4,0x0006ea763a87171a,0x00074beeb5597da9)}, | |||
{FIELD_LITERAL(0x00009c1897ee2bb3,0x00022cbd1740946f,0x00051e8f81dd639f,0x00044423bda03112,0x00025d54e5b5f216)}, | |||
{FIELD_LITERAL(0x00037efe726b959f,0x000251179afe0af9,0x00027abb104aaf2d,0x0000409b36a0b0c0,0x0007f20165baf2eb)}, | |||
{FIELD_LITERAL(0x0001e7dc70d2e455,0x00079f1c0b114486,0x0002b9b9c0211476,0x000420d65df5b9c1,0x0007ad32d88f4e65)}, | |||
{FIELD_LITERAL(0x0000f4d9cbd1dced,0x0000ca815a5fa452,0x00040cdd0b2e26d2,0x0005ab32035de1dc,0x0004387b97d56e74)}, | |||
{FIELD_LITERAL(0x0004282b73d9d3e6,0x0006f6ae3911c629,0x0007e698e17d290f,0x000064657542456d,0x00022eaf07413105)}, | |||
{FIELD_LITERAL(0x0004d9e24bbb1c38,0x00001d0b9cb4f6e6,0x00008953dd712c89,0x00062f9f338dc8e9,0x0005b270d74b9a0b)}, | |||
{FIELD_LITERAL(0x000735ad38a70d62,0x0007c2c0047359b6,0x00053ecc0dd53647,0x0000fa507a3b1320,0x000362d0b0c5919d)}, | |||
{FIELD_LITERAL(0x0001e756ac51c2d7,0x0002fb982df272d3,0x0002bcba823c3ff6,0x00000e8c28e674f5,0x0001511ccec93f3e)}, | |||
{FIELD_LITERAL(0x0005d9d5f3a4d0f4,0x00014e0b6acbbb8a,0x0004c935dce28917,0x0004e84532fe74e9,0x0003532b26c5bdd3)}, | |||
{FIELD_LITERAL(0x0002c7c6bf08ea52,0x0004ce9cf3905bbd,0x0006eff528517cdf,0x00051c7e30819d9f,0x00078ddfe6e8eaf0)}, | |||
{FIELD_LITERAL(0x00040b28295a488c,0x00058f3942269291,0x0002eae04529af91,0x0005a950aa509a31,0x00051d13d423f3cc)}, | |||
{FIELD_LITERAL(0x00075bbfd400a649,0x0002c84af6f7554f,0x00010589298f1c45,0x0002df1c4551d7a3,0x00040ada606a7008)}, | |||
{FIELD_LITERAL(0x0000cb4829d47de1,0x00035279e3dcb0f4,0x0000796e2b17fc93,0x0000f7471379a59e,0x0004cb38c4a47f2d)}, | |||
{FIELD_LITERAL(0x00063d326152d536,0x0001f0f272df8e88,0x00020d57f1ef5f0b,0x000049ae733cd741,0x000789b0bd910484)}, | |||
{FIELD_LITERAL(0x00049e000de68a33,0x0002569532faf05e,0x0002c360e2577651,0x00023e58038a73d4,0x0005cfd1c66aa5db)}, | |||
{FIELD_LITERAL(0x0005219445517667,0x00052a931068f3ea,0x0006cc6f70494867,0x00050f70ab70bd44,0x0004939aea5e18ae)}, | |||
@@ -159,100 +159,100 @@ VECTOR_ALIGNED __attribute__((visibility("hidden"))) = { | |||
}; | |||
const gf API_NS(precomputed_wnaf_as_fe)[96] | |||
VECTOR_ALIGNED __attribute__((visibility("hidden"))) = { | |||
{FIELD_LITERAL(0x000743d2369750f6,0x000698b734af8c74,0x0003c7e6ca7de989,0x0004137b677d5a14,0x000602a70a1dd604)}, | |||
{FIELD_LITERAL(0x000620e9c96ce4a2,0x000718e799056806,0x0003bdec5bbc2429,0x0003ca0864fd880d,0x00013df868873a16)}, | |||
{FIELD_LITERAL(0x0005ac6e48dfc457,0x0004b83cf2fa3b88,0x000036ccd665d9e2,0x0003eb7fcdb11759,0x0001b35e6ddb1020)}, | |||
{FIELD_LITERAL(0x0007ccb3f6a10981,0x0000da543ce37bbf,0x00050b9209636544,0x0000d2b0429e9ce7,0x00074186575eae41)}, | |||
{FIELD_LITERAL(0x0002504ab1b01a82,0x000740ed4b7cc499,0x0003069cb6ca6ba3,0x0003c80e50487d68,0x0003342b644eef24)}, | |||
{FIELD_LITERAL(0x00049584d605e6e0,0x00016cad8c3a0b14,0x0002bf8a350d0042,0x0006bd8f108a926f,0x0002cc1d5eef3036)}, | |||
{FIELD_LITERAL(0x000224075358ec99,0x000230ff1b8a53aa,0x000252117056a351,0x00060743c508fae8,0x0001c04f5d1353b7)}, | |||
{FIELD_LITERAL(0x00062b5e839935b4,0x0005b02eb7b4e0d0,0x0002afa8629ae76f,0x0003bce28577fcae,0x0006041f9433c6e5)}, | |||
{FIELD_LITERAL(0x0003aa8f4a1d8f00,0x0002a8c9cce67276,0x000035ddc332a503,0x00007963621fb93b,0x00016176cef7ee40)}, | |||
{FIELD_LITERAL(0x0007844f7ba1cba7,0x0004289c1bd2a22a,0x0001b82a79e54f30,0x0003f2eafdf66144,0x0007da88f52cff12)}, | |||
{FIELD_LITERAL(0x0001435ccbef7ad2,0x0002ea3968864b1a,0x00028ffbb295dfb3,0x00005cc6454e1a56,0x000118fec97e8196)}, | |||
{FIELD_LITERAL(0x000039800ab41821,0x0000256683f84cd6,0x0004a13569b54086,0x0000f91fd3009a54,0x000032dcb2da50c3)}, | |||
{FIELD_LITERAL(0x0007839c8a17923b,0x000289a30b913a2d,0x00053c030ee71ea6,0x00002e6800c51b3e,0x0002b490d56ed17c)}, | |||
{FIELD_LITERAL(0x0005994df663e026,0x000768669098c9f0,0x000162cd08abef32,0x0004e454dc2612eb,0x0000e67536846b6c)}, | |||
{FIELD_LITERAL(0x00038e9c32917745,0x00043ced54b6ba1e,0x0004fde18248c8a5,0x0002a04384c093f9,0x00058d130d26a4b1)}, | |||
{FIELD_LITERAL(0x0006b2bedf0160b4,0x0004c358673bc4df,0x00004b7cb73858dc,0x0003ce1efb2bb821,0x0004678c0b830186)}, | |||
{FIELD_LITERAL(0x0007ca530af5c4f0,0x00016b5286e93694,0x000659359b212d67,0x00049b8a75475c8d,0x00060315a6cbe365)}, | |||
{FIELD_LITERAL(0x0006e25ec0d1f161,0x00055570af71e028,0x0003ed583cc18071,0x0004af3d5eed4270,0x00046fc5b551e1ce)}, | |||
{FIELD_LITERAL(0x000109b61d35f784,0x00006f9c76807b2a,0x00016785e92d7d92,0x0001259af252e1fc,0x0001b26b4c137c2f)}, | |||
{FIELD_LITERAL(0x00044ca6598cc832,0x000665b54839a384,0x0001e6ac6ab983a7,0x0001fdd6b13cdb62,0x0007deb170a5cdd6)}, | |||
{FIELD_LITERAL(0x0007e80f449d9a39,0x0003484eb5cd07d7,0x00047caa9ec3f9f4,0x000500ef87bc5ada,0x000187a67cc2f430)}, | |||
{FIELD_LITERAL(0x0007c02cdacf8a52,0x00079d67ea5c92b3,0x0002f0a7f9d32d93,0x0006fab780441ed9,0x0003168c11a2dd70)}, | |||
{FIELD_LITERAL(0x0007b23805768cf7,0x0001b85ac1197abe,0x0000a84d11198b19,0x0001554cd3699a16,0x0000b2d83584a435)}, | |||
{FIELD_LITERAL(0x0000420968ce6088,0x0000cc5150df8ac3,0x000417109dda028d,0x00035a467ace9b33,0x00001f365e1c5d3f)}, | |||
{FIELD_LITERAL(0x0006a07632f786c1,0x00072b0af45dcdb7,0x00071e70402c687b,0x0005718eb4d6b056,0x00010d977fb49765)}, | |||
{FIELD_LITERAL(0x0005a3beb1d34a87,0x000179261d82fa41,0x00027ef49938fbd9,0x000393146b5d52b8,0x0003d532d9c7fd8b)}, | |||
{FIELD_LITERAL(0x00028db255727690,0x000723b04a325e5e,0x0002351555604a71,0x000533831cacd285,0x000073463e9558c6)}, | |||
{FIELD_LITERAL(0x00076ceb26b3c5d4,0x000118ee75e27eca,0x0006c8f5746eb4d9,0x000108f3ab526482,0x0007814bee3f31ea)}, | |||
{FIELD_LITERAL(0x0005469b27b0273f,0x000722c4740b42ed,0x00003774b73b1ec2,0x0006975e5845ba85,0x000279f0b9aef6d8)}, | |||
{FIELD_LITERAL(0x000086e7726efe30,0x00046f84a1d534a8,0x00070dfe952cd70e,0x0005a9c277bc3691,0x0004dab8837a8f79)}, | |||
{FIELD_LITERAL(0x00015857a17c5473,0x0006c6f1f9ecee05,0x000142ff5cfa92e9,0x0002fadbc290acba,0x0002afe96b249c8e)}, | |||
{FIELD_LITERAL(0x000534f64fe6546e,0x0007b9d6e279298a,0x00039d003aef00b2,0x00059f49b9a4852d,0x00014231773d812c)}, | |||
{FIELD_LITERAL(0x0002240be6516279,0x0003718ee020a890,0x0000af97358cd479,0x00011746695ab6ef,0x00008dd9f53c8e71)}, | |||
{FIELD_LITERAL(0x00056e798b523179,0x00061c15a11e6553,0x000127cdf4dba7fe,0x0004ec0a026fe93f,0x0006f81c908a88b8)}, | |||
{FIELD_LITERAL(0x000687514dfa3a3b,0x0003dede73973032,0x0006848771c31d8b,0x00035001bf224172,0x00045c2c0115e2a5)}, | |||
{FIELD_LITERAL(0x000273710ccec161,0x000301989216eaf3,0x00078ecdd4517c80,0x00038e65639bcbe8,0x00074c272578c47e)}, | |||
{FIELD_LITERAL(0x000697f25f2c6de4,0x0001c40484164b5a,0x0006e268824a8cdb,0x000189aeb1055818,0x00010d43bf6ed421)}, | |||
{FIELD_LITERAL(0x0001b2b89e1685bd,0x00037dc20eb9d1fc,0x0004dfeab3a62c72,0x000103f9cffa384a,0x00067a6fbbd0d79f)}, | |||
{FIELD_LITERAL(0x000277a74a9d1b19,0x0000558a9562cc3f,0x00072aea9d8917b7,0x0002cb9e55344e41,0x0007fc2fc3988035)}, | |||
{FIELD_LITERAL(0x000749bf55899998,0x00071fc079537515,0x000175bc8875f5ae,0x00028cd79c84d4ff,0x00060cff8d61fcb9)}, | |||
{FIELD_LITERAL(0x000619495eef1208,0x0003ae99098e8a9e,0x0003736d7378cdcd,0x0004c9c881e59d8d,0x00060f51372948ca)}, | |||
{FIELD_LITERAL(0x000653ad6e70b35f,0x0000f2e72673c00b,0x00041a8cd4eaac24,0x0000d20b9168b162,0x0006dd0479c03028)}, | |||
{FIELD_LITERAL(0x000224c166967a71,0x0003b68b7f69a426,0x0004e031ef85509f,0x0006eddf508d3143,0x00034644b2fded93)}, | |||
{FIELD_LITERAL(0x0007f8fa58983740,0x000591f53ca681ae,0x00018b202d61b69a,0x0004fc0280de98fe,0x0006785de5920076)}, | |||
{FIELD_LITERAL(0x00041699232389e1,0x0003822a5c348c53,0x0001e29ca07ec9da,0x000128910390a845,0x0002b213535bf600)}, | |||
{FIELD_LITERAL(0x000417bc4d41cf19,0x00031c294352e330,0x00020a94ff61c9d5,0x00031858c5974e19,0x00058517be5b44d0)}, | |||
{FIELD_LITERAL(0x00017d3e06b8a658,0x000143bb6ba1cf12,0x000719f71ff82335,0x0005940429c47d68,0x0003b60dd1548856)}, | |||
{FIELD_LITERAL(0x00004c2bddb8b3dc,0x0004a028442be56e,0x00047cec2a9828b9,0x0003b41d389be98c,0x0004304d1864f24b)}, | |||
{FIELD_LITERAL(0x000649f3323200e1,0x0007efe729c48cce,0x000786d72426898b,0x0001da85f6f36d7f,0x0007afaf872e143b)}, | |||
{FIELD_LITERAL(0x0000c5b03a9ad985,0x00001cb1fa90f4d4,0x0000dd387fb86459,0x00027a356d168448,0x00042ada3a8601d0)}, | |||
{FIELD_LITERAL(0x00032c3175e087f6,0x0004e9886f0f8a4e,0x00031943180b56fb,0x00032d332e84f78b,0x000022fe4c9f0a99)}, | |||
{FIELD_LITERAL(0x00004e12e08f3cf1,0x00059187b665bc45,0x0007256e995bdef2,0x0000262f4793b87f,0x000367324411af89)}, | |||
{FIELD_LITERAL(0x00010f9e0f6efa7b,0x00036f8f54758003,0x00013f525e654d31,0x0002192ebcf9f453,0x0002e0f80630b257)}, | |||
{FIELD_LITERAL(0x0001e68e538e7134,0x00053124b27c4383,0x0003afa7e55b7619,0x00077a5411f3b516,0x00048a1cfbcea526)}, | |||
{FIELD_LITERAL(0x0002d8e9a252d6bb,0x00027ad3c557244c,0x0005c8fd932f4ed4,0x0006fad7ca74e589,0x000423ad018bc13d)}, | |||
{FIELD_LITERAL(0x0000a1da6d58cf72,0x00025c445f860800,0x000698590629c3ab,0x0003c3a59208ffe8,0x000169000ba9197f)}, | |||
{FIELD_LITERAL(0x0005e5bcd4e61d7d,0x0001bb779e9dc08f,0x0003c7c5aff92ebf,0x0003d921c5764bbc,0x0006d695748c1b54)}, | |||
{FIELD_LITERAL(0x00020303a62cd160,0x000347eb92fc693a,0x0004850e9f667fcf,0x000208e2e66428a6,0x0006e21933165db3)}, | |||
{FIELD_LITERAL(0x000492a0691faaf3,0x000381f60373488c,0x0003d6f183197f09,0x00040163d988c397,0x0004e0d5bbeaa234)}, | |||
{FIELD_LITERAL(0x00015c50e219a243,0x000279df295b9db5,0x0001d3a06b1ce50c,0x0001a0d41ae8bef3,0x0001e12777751552)}, | |||
{FIELD_LITERAL(0x00073984cea05b9b,0x0000deff48eae16e,0x00040dd1d363093a,0x000125195e7f0589,0x00037a4d480f49a3)}, | |||
{FIELD_LITERAL(0x0004106c5e793fd3,0x000514a760ed60b3,0x00007a66701ef207,0x0002bea3ba33657f,0x0007af61727fd2d9)}, | |||
{FIELD_LITERAL(0x00043e7c7334b0e7,0x0003cc0e9c6c62d0,0x00043ba8761df2f1,0x000333e22830d325,0x00035c2e2471d04f)}, | |||
{FIELD_LITERAL(0x00013082646c1f9c,0x000362ef8568ffd2,0x00067b2ba55e12c3,0x0000a9825fde937b,0x0000c769bb66060c)}, | |||
{FIELD_LITERAL(0x0002367467a85096,0x0001133815110a70,0x0000ab74011fdc31,0x000100a78312f6df,0x00029c7cc3eb674b)}, | |||
{FIELD_LITERAL(0x00047e13df7b9ff7,0x0006fd78b662bee6,0x0000e0a5e1ed9a65,0x0000ee6133b13803,0x0001a49790841cb9)}, | |||
{FIELD_LITERAL(0x0003d887edc2ac17,0x00034ca9e5fb9a49,0x0006fa601857d317,0x00028c1c25f0a90f,0x000177f44e824cf9)}, | |||
{FIELD_LITERAL(0x0007c3e3a1f49841,0x0006ddd51697801e,0x0001b24bfd50f063,0x00013782899c047b,0x00056c54300ac2cf)}, | |||
{FIELD_LITERAL(0x0000756a8926c43e,0x00054d58198a5543,0x00008330139de7a0,0x0004f31feb6a6b14,0x00006525c89b0161)}, | |||
{FIELD_LITERAL(0x000650e695c5da40,0x0001033c791eabeb,0x00056f2360fb33b3,0x00047bdaa765f629,0x0006945f8a73a000)}, | |||
{FIELD_LITERAL(0x0002f9a99b7729ec,0x0003decb7e034d67,0x0005097cfcdc63d5,0x0001b9a8f6131bde,0x00056f1fdc6c596a)}, | |||
{FIELD_LITERAL(0x00070cee95c4544c,0x0007781e63838577,0x0001b1520dd885b0,0x0000265e72115db1,0x0005fb0324a91d4a)}, | |||
{FIELD_LITERAL(0x000650f5f8fbdd64,0x00031c2678c34c82,0x000065353f0cf936,0x0002491692e94e39,0x0006c3b66eb95cad)}, | |||
{FIELD_LITERAL(0x0007bb94b92d721a,0x000448c1a7a663f9,0x0005ec6c88be1b48,0x000683856f731a08,0x000411cf4c796636)}, | |||
{FIELD_LITERAL(0x000291a06b298f50,0x000745565bb5621a,0x000506925fdd5f18,0x0002dd0e5cefdf2b,0x00053a9ec799d04e)}, | |||
{FIELD_LITERAL(0x0005797b7369b0b2,0x000155565f699e37,0x0002b176d189610f,0x00058199f8d7fc6a,0x0007566e666e3a30)}, | |||
{FIELD_LITERAL(0x00073dda6e080b0a,0x00001193e044b254,0x00077e225d7670be,0x0000639a471cc676,0x0001261c25a7bd1c)}, | |||
{FIELD_LITERAL(0x0007024967ec86ea,0x000204ae4dc589af,0x000293680fe404f4,0x0005375c121f1939,0x000720010ab2b942)}, | |||
{FIELD_LITERAL(0x00007e6d310ec5dc,0x000047ac0cce852a,0x00043e23334c026a,0x0006ed366b38ee5a,0x0000d1458ba5a6df)}, | |||
{FIELD_LITERAL(0x00021b90f03cbf2d,0x0007977528da577d,0x000427536441d483,0x00029da71b8e79d3,0x00036ec244e19089)}, | |||
{FIELD_LITERAL(0x00019dbd0a87d8a2,0x000275ffe2770607,0x0004951784ea41c8,0x00069242bc5080c1,0x000631809b789f7a)}, | |||
{FIELD_LITERAL(0x000073405335f633,0x0006bc653424f657,0x0000f51782d233b8,0x00006bc1af07bb36,0x0002565b5c69b722)}, | |||
{FIELD_LITERAL(0x00017c7391d3e6b9,0x0005eddc736945f7,0x000368b0f32ec6dc,0x0005b00a58d2f62d,0x000262d4dc5fde05)}, | |||
{FIELD_LITERAL(0x0003effc881c81dc,0x000753b7016dba17,0x0007673af68eee2a,0x00073ce00df1f3ee,0x00032e60f04936ec)}, | |||
{FIELD_LITERAL(0x00016eb1e06b15da,0x00043a71fa2e28a9,0x00015971af1affe4,0x0003efc95563ffda,0x00000c34ebdda4e3)}, | |||
{FIELD_LITERAL(0x00019e3b9f82ba88,0x0002fa37a814d2a8,0x0006196e62b9f46b,0x0003e7590757040d,0x00001e1f5a5bed8e)}, | |||
{FIELD_LITERAL(0x00031322bd434d6b,0x000491460ddbbf29,0x0006a8c7420141a7,0x00002592832e7a12,0x0006eb32d11aebda)}, | |||
{FIELD_LITERAL(0x0000be17064868aa,0x0000e11f8e414f0c,0x0001d178e11b5113,0x0000d9c0407c52d7,0x00027cbd7ccc2804)}, | |||
{FIELD_LITERAL(0x0004f0667ec85b85,0x0002cd4060677445,0x0004234b38aba23a,0x00065332ae9516f1,0x00056dc729ea4b26)}, | |||
{FIELD_LITERAL(0x000119ab40400ee4,0x0001fe7cae43441d,0x0002869b20e7e0dd,0x0004c1f98c26304e,0x0001b1020675efbf)}, | |||
{FIELD_LITERAL(0x000369f957477df9,0x0004806fc3a6b4c4,0x0000682fc6009497,0x0000190600762d8c,0x0000105698d28452)}, | |||
{FIELD_LITERAL(0x0000db58e90b0258,0x0002faa725dd0cb8,0x0006bcd0fb7d7773,0x000025525eeafd1d,0x00032541b927bcd7)}, | |||
{FIELD_LITERAL(0x0004f1e166f0bd7e,0x00075f57198553f9,0x00022a3bd982e093,0x0002e4f143a9eb47,0x000735c8594a0a9c)}, | |||
{FIELD_LITERAL(0x00070ac72f9780aa,0x0003e873b4d59105,0x0007f6c02aa0281c,0x00024fa03888dad7,0x00009c751940b87e)}, | |||
{FIELD_LITERAL(0x000297476c6d9690,0x000689d5de7319f7,0x0002ba11aa2814f7,0x00003265301b3019,0x0003a1cc84857e0c)}, | |||
{FIELD_LITERAL(0x0003b824eb77c5ed,0x000533420322f935,0x0002d51e82c71d7b,0x000528ab31dfcc63,0x00069ca6b033d9fc)} | |||
{FIELD_LITERAL(0x000642380127222b,0x0006bdeb015cf04e,0x0006ed75f7c2fc4f,0x0007dc242146a194,0x0003aea9a0491d17)}, | |||
{FIELD_LITERAL(0x00068a94cba5aa97,0x0002dbae983ca94a,0x000445bd3b7036e3,0x00068a42451fc4d1,0x00011e232c83afb4)}, | |||
{FIELD_LITERAL(0x00025391b7203b96,0x000347c30d05c477,0x0007c933299a261d,0x00041480324ee8a6,0x00064ca19224efdf)}, | |||
{FIELD_LITERAL(0x0005870a7d58f0a0,0x0001b114a243c47e,0x00041892d3f588cf,0x0000dd81de11287e,0x00017356a5582dd5)}, | |||
{FIELD_LITERAL(0x00010182955b295c,0x00066c5c9ffd69b2,0x00061b151a710972,0x000283e92443fc68,0x0006d37a5c5e317b)}, | |||
{FIELD_LITERAL(0x00036a7b29fa190d,0x0006935273c5f4eb,0x00054075caf2ffbd,0x00014270ef756d90,0x000533e2a110cfc9)}, | |||
{FIELD_LITERAL(0x0001629db13df925,0x0005b8e4096d6111,0x0003f69f6e1fa07d,0x0000ad2fb64a4e21,0x0003804eca6f1a1b)}, | |||
{FIELD_LITERAL(0x00004152d30c2a52,0x0002c24984123284,0x00042e97ac31b344,0x00019fefd67353e1,0x0004e8cd7188a7e4)}, | |||
{FIELD_LITERAL(0x00045570b5e270ed,0x0005573633198d89,0x0007ca223ccd5afc,0x0007869c9de046c4,0x00069e89310811bf)}, | |||
{FIELD_LITERAL(0x0006d9d11e7eae02,0x0000be17c117a8e5,0x0005bd1bacc035a8,0x00055263e886a24c,0x0004f490d4442b45)}, | |||
{FIELD_LITERAL(0x000011c8b01f8feb,0x0007bf1c4cb192c2,0x000326354b21cbf2,0x000488390b6dfc94,0x0005ba34838ba4de)}, | |||
{FIELD_LITERAL(0x0007c67ff54be7cc,0x0007da997c07b329,0x00035eca964abf79,0x000706e02cff65ab,0x0007cd234d25af3c)}, | |||
{FIELD_LITERAL(0x0001fb4c93b5f593,0x0007144dc0cada1e,0x0000d50f94b1cb97,0x0006df9cbaf29c61,0x0003edfa4c8c2b32)}, | |||
{FIELD_LITERAL(0x0007271443c9ba84,0x00016f294c6baac0,0x00044dfa59cab659,0x0002fe9702828a2a,0x0007db9144c036dd)}, | |||
{FIELD_LITERAL(0x00047163cd6e88a8,0x0003c312ab4945e1,0x0003021e7db7375a,0x00055fbc7b3f6c06,0x000272ecf2d95b4e)}, | |||
{FIELD_LITERAL(0x00038b922c70ed29,0x000253866fc7c488,0x000576f12a312db9,0x00045d4f321497af,0x00018e5445d11403)}, | |||
{FIELD_LITERAL(0x0003f8e7ccec15a0,0x00052340d38e8703,0x0001fe25f1ae8f20,0x0003ddd469f772d0,0x000462fbbea67ca2)}, | |||
{FIELD_LITERAL(0x00011da13f2e0e8c,0x0002aa8f508e1fd7,0x000412a7c33e7f8e,0x000350c2a112bd8f,0x0003903a4aae1e31)}, | |||
{FIELD_LITERAL(0x0007f9daed4a4867,0x0002b6b4ed700133,0x0002630bb5d53e2d,0x00052b6f0617a8d5,0x0003a71ea3b7dd75)}, | |||
{FIELD_LITERAL(0x000784badf35d97a,0x000130c033b608d3,0x0004d1ca333b988c,0x00046996c1106167,0x00006cd17cb32faf)}, | |||
{FIELD_LITERAL(0x000017f0bb6265b4,0x0004b7b14a32f828,0x00038355613c060b,0x0002ff107843a525,0x00067859833d0bcf)}, | |||
{FIELD_LITERAL(0x0007efb1526681aa,0x0005d3f09cc25381,0x0005070ed313624a,0x0007dc7c70fcf2e6,0x00035f22ab001ece)}, | |||
{FIELD_LITERAL(0x0001d03d7131822b,0x00041269a071318a,0x00066b533c7c2f0e,0x00079eb2962ac445,0x0007c84f8b7d6434)}, | |||
{FIELD_LITERAL(0x0007bdf697319f65,0x000733aeaf20753c,0x0003e8ef6225fd72,0x0004a5b9853164cc,0x0007e0c9a1e3a2c0)}, | |||
{FIELD_LITERAL(0x0000ea923f718b41,0x0003ed3cdc5c1206,0x0007fcd7e9778042,0x000087a1037b0d5d,0x00007a7a0abbab1c)}, | |||
{FIELD_LITERAL(0x0001f75504e732eb,0x00022ebe847278d8,0x0007ea9ffc7568b3,0x0005ce813453dcf8,0x000487735ef97869)}, | |||
{FIELD_LITERAL(0x0005724daa8d895d,0x0000dc4fb5cda1a1,0x0005caeaaa9fb58e,0x0002cc7ce3532d7a,0x00078cb9c16aa739)}, | |||
{FIELD_LITERAL(0x000132663b80f4fb,0x0003569bb0747910,0x0001254f43541bae,0x0005ef6302e41398,0x0000f0739e94acdc)}, | |||
{FIELD_LITERAL(0x00062c278d9a1d30,0x000160f59d5d7ddb,0x0003a13c02fd4a4c,0x0003ae8e19ec0313,0x0007ff33d0402d0a)}, | |||
{FIELD_LITERAL(0x000779188d9101bd,0x0003907b5e2acb57,0x0000f2016ad328f1,0x0002563d8843c96e,0x000325477c857086)}, | |||
{FIELD_LITERAL(0x0002b91f27fd54d4,0x0006396d4db9c2ed,0x0001910e4a18d580,0x00013a22c5bab363,0x0007a440ee553a25)}, | |||
{FIELD_LITERAL(0x000490c21e746b15,0x00024b7059991174,0x00008ee694b74d75,0x0005e237b7856642,0x0007642c6cdb680c)}, | |||
{FIELD_LITERAL(0x0005dbf419ae9d74,0x00048e711fdf576f,0x00075068ca732b86,0x0006e8b996a54910,0x000772260ac3718e)}, | |||
{FIELD_LITERAL(0x000482565fa8a25b,0x0003df033dcf6602,0x00064e0f3b4e7074,0x00021b4575c116f5,0x0002208124f689de)}, | |||
{FIELD_LITERAL(0x0007585a86ebfdf4,0x0007b22f0200bb5d,0x0004c01c0570390b,0x00012d4f936a9ace,0x0007061937f48098)}, | |||
{FIELD_LITERAL(0x00058c8ef3313e8c,0x0004fe676de9150c,0x000071322bae837f,0x0004719a9c643417,0x0000b3d8da873b81)}, | |||
{FIELD_LITERAL(0x0004a783941354c6,0x0004a8dbae0192b1,0x00066e6e2284eb96,0x000328e80b25e8c3,0x000042a8e76bf4d5)}, | |||
{FIELD_LITERAL(0x0001d8c052051ec3,0x000366a48a8dd65b,0x0002a78e24295abf,0x000129d49470f3e6,0x0006c57172fbfc6f)}, | |||
{FIELD_LITERAL(0x00058858b562e4d4,0x0007aa756a9d33c0,0x0000d5156276e848,0x00053461aacbb1be,0x000003d03c677fca)}, | |||
{FIELD_LITERAL(0x0004ec9d19b70d7e,0x0006b590207bdecd,0x0001637d3bcc3bb3,0x00000c22df7f92fb,0x00041ea544c47cfa)}, | |||
{FIELD_LITERAL(0x0005bb2c05450730,0x000699da0443d31e,0x00029833797938dd,0x00047094e611ef5a,0x0003a80296f5af96)}, | |||
{FIELD_LITERAL(0x0001ac52918f4c8e,0x00070d18d98c3ff4,0x0003e5732b1553db,0x00072df46e974e9d,0x000122fb863fcfd7)}, | |||
{FIELD_LITERAL(0x00000849cf428975,0x000727067cad891a,0x0004f88f61de7005,0x00044257203c4bbb,0x0004c637329a0014)}, | |||
{FIELD_LITERAL(0x000765ea2cf96125,0x00020be964ac2553,0x0006542c16078fcd,0x0007e1c9a694af26,0x000670be61b828ab)}, | |||
{FIELD_LITERAL(0x0003e966dcdc760c,0x00047dd5a3cb73ac,0x00061d635f813625,0x0006d76efc6f57ba,0x00054decaca409ff)}, | |||
{FIELD_LITERAL(0x00006abffd1f9a07,0x0006a24984b59c94,0x00001c88b2d5ccab,0x00078756f923d472,0x000523ae194c2908)}, | |||
{FIELD_LITERAL(0x000295f6aed6c95f,0x00063835a88edc2f,0x0000d413a8f5d2be,0x0006d19ac30fb51e,0x000209a4daa47af4)}, | |||
{FIELD_LITERAL(0x0007b3d422474c11,0x00035fd7bbd41a91,0x00038313d567d746,0x00044be2c7641673,0x0003cfb2e79b0db4)}, | |||
{FIELD_LITERAL(0x0007deb72bd44d2d,0x000739424ef1d75e,0x0004018d17e7a6b2,0x0007b6e2a9d39e87,0x000521ea05c6c6dd)}, | |||
{FIELD_LITERAL(0x0001a5e807310023,0x00064308e578ea3e,0x00051e6fd6a01240,0x000274e880dadbdd,0x0001f551c726c373)}, | |||
{FIELD_LITERAL(0x0004d3ce8a1f77f7,0x0003167790f075b1,0x0004e6bce7f4a904,0x0004d2ccd17b0874,0x0007dd01b360f566)}, | |||
{FIELD_LITERAL(0x00073aa273d83a1f,0x000509605eef38e1,0x0002478a49a7bd9c,0x00037b4fffcc9a8f,0x0003de7bfae4d9c0)}, | |||
{FIELD_LITERAL(0x00010ab29d20014a,0x0003dad754471f37,0x0005db76f33e4e9e,0x000233bcc4657dd9,0x00064a6db2e9a1a4)}, | |||
{FIELD_LITERAL(0x00061971ac718eb9,0x0002cedb4d83bc7c,0x000450581aa489e6,0x000085abee0c4ae9,0x000375e304315ad9)}, | |||
{FIELD_LITERAL(0x0004e69a3015eec3,0x00014f8520f65886,0x000603fe316ae01d,0x000266136364ded2,0x0001ca16145255d7)}, | |||
{FIELD_LITERAL(0x000195b299aaa7a2,0x00029dcb30ab6966,0x0007db5d6559e7e8,0x0003080db154f47f,0x00039c84ee5affcf)}, | |||
{FIELD_LITERAL(0x00021a432b19e270,0x0006448861623f70,0x0004383a5006d140,0x000426de3a89b443,0x0001296a8b73e4ab)}, | |||
{FIELD_LITERAL(0x00026b6e1920377f,0x0001fe04f05868d1,0x00035b308dd430aa,0x0004a38a5bd39fc2,0x0007a2a54f12cec0)}, | |||
{FIELD_LITERAL(0x00019031dbbe6961,0x000228c57c496dbd,0x00016d3b12e551b5,0x0006f71b0487b7f1,0x0000576d528efd97)}, | |||
{FIELD_LITERAL(0x0006a3af1de65daa,0x00058620d6a4624a,0x00062c5f94e31af3,0x00065f2be517410c,0x00061ed8888aeaad)}, | |||
{FIELD_LITERAL(0x000460e8ec01abc0,0x00029d22bb6910a9,0x0000bb5a4290fa5c,0x000761396d21fe81,0x00017529bc98149c)}, | |||
{FIELD_LITERAL(0x0001a2d5558fa158,0x00018db5df86dcda,0x000628100de92051,0x0002e1d2985a8b52,0x0000a021ed4469e4)}, | |||
{FIELD_LITERAL(0x0003c1838ccb4f06,0x000433f163939d2f,0x0003c45789e20d0e,0x0004cc1dd7cf2cda,0x0004a3d1db8e2fb0)}, | |||
{FIELD_LITERAL(0x00078bc9fe3174f7,0x0005463ef645ece5,0x0005977ab88ef0f8,0x000143fe3a6097c1,0x00014e54b582e50b)}, | |||
{FIELD_LITERAL(0x000297c2159dd2ea,0x0002225918017b5d,0x0000fd2c877e4d6d,0x0000a876d935de03,0x0003aa2b685088ec)}, | |||
{FIELD_LITERAL(0x000381ec20845ff6,0x00010287499d4119,0x00071f5a1e12659a,0x0007119ecc4ec7fc,0x00065b686f7be346)}, | |||
{FIELD_LITERAL(0x00079aa225363911,0x0004401073991c38,0x0002d622e1b2ab01,0x0006d88484b2ff0e,0x0001af6bad1d0067)}, | |||
{FIELD_LITERAL(0x0004a9bd5d80f94a,0x000200829b9a0578,0x00005d3adbbe3535,0x0004a01abc9f4d78,0x000318228e347c33)}, | |||
{FIELD_LITERAL(0x00078a9576d93baf,0x0002b2a7e675aabc,0x00077ccfec62185f,0x00030ce0149594eb,0x00079ada3764fe9e)}, | |||
{FIELD_LITERAL(0x00019f03aa64e86b,0x000524ed3ec7b93e,0x00051dea71a325e6,0x0006072282cc2dd1,0x0003f6161300548d)}, | |||
{FIELD_LITERAL(0x0003d4e4793a59c5,0x00039088df420d66,0x000059f2dc08ae93,0x0002a529016f70f4,0x00003d508c2008c6)}, | |||
{FIELD_LITERAL(0x0000f3116a3baba1,0x000087e19c7c7a88,0x00064eadf2277a4f,0x0007d9a18deea24e,0x000204fcdb56e2b5)}, | |||
{FIELD_LITERAL(0x000740a868c461a6,0x00008d33fd39e939,0x000546fc277d8361,0x00049a29cc27b47d,0x00066efe0241ab2d)}, | |||
{FIELD_LITERAL(0x0004c02370cdf9e0,0x0002753707967fe5,0x0003e9e845537aa4,0x00052e8412924bcd,0x00035a32466d04a6)}, | |||
{FIELD_LITERAL(0x00056e5f94d6709d,0x0000baa9a44a9de5,0x0002f96da022a0e7,0x000522f1a31020d4,0x0002c56138662fb1)}, | |||
{FIELD_LITERAL(0x0003a975fed6c7ef,0x0005be0807c70f4d,0x00056cb1100a4f60,0x000039e4317fae1e,0x0002d3e8e7c807c5)}, | |||
{FIELD_LITERAL(0x000049cd79d8153d,0x0005f7f1bfb82d68,0x0006329634d9cab0,0x0007bcb505082b4e,0x00053f1ca734f15f)}, | |||
{FIELD_LITERAL(0x0000fdb698137903,0x0005fb51b23a7650,0x00056c97f01bfb0b,0x0002c8a3ede0e6c6,0x0000dffef54d46bd)}, | |||
{FIELD_LITERAL(0x000023fde8f23ca3,0x0003e79e97bcb77c,0x0006682d0da044a2,0x0002b5cc9caad587,0x0007053a7396d844)}, | |||
{FIELD_LITERAL(0x0007325e1ff6a8d7,0x000144c86fd24546,0x000196593acaf904,0x000241f57ca53397,0x00023e58d23dff45)}, | |||
{FIELD_LITERAL(0x00066242f578274b,0x00058a001d88f9f8,0x00036ae87b15be37,0x00016dbd43af7f3e,0x0001ce7f64876085)}, | |||
{FIELD_LITERAL(0x00015f6b0f790623,0x0007d5b90970fb7b,0x00045b6bd21c9701,0x0003fbe8a13740fc,0x00059a684a214173)}, | |||
{FIELD_LITERAL(0x00014da626cba741,0x000101c3468580bb,0x0004c6fb5709eea8,0x000354aaf860f432,0x0003d9501bbcc86d)}, | |||
{FIELD_LITERAL(0x0004100377e37e11,0x0000ac48fe9245e8,0x000098c5097111d5,0x0000c31ff20e0c11,0x0004d19f0fb6c913)}, | |||
{FIELD_LITERAL(0x0007c87f12093bcc,0x000223769c082868,0x00074d424db97824,0x0006d7020a556573,0x0001e0afdef95d3d)}, | |||
{FIELD_LITERAL(0x000201774f4281a6,0x00040d577fbe10c0,0x0001d96faea48a3a,0x00019d06096a4cb9,0x0000c0410e02b892)}, | |||
{FIELD_LITERAL(0x0004ecdd42bcb282,0x00036eb9f22440d6,0x00015738bdfebe58,0x0007da6d7cd185ed,0x000114cd2ee51425)}, | |||
{FIELD_LITERAL(0x00061fb7d973a125,0x00060a3d5f860ddc,0x00058032f5a2bae4,0x0001ae3459e6da16,0x0004d8e17bd386cb)}, | |||
{FIELD_LITERAL(0x0003d4f4a0189763,0x0002ebc953fe02a4,0x00004d165b695009,0x00050cba13806a99,0x0000f5b62c0c84e5)}, | |||
{FIELD_LITERAL(0x0006e654bfbff109,0x0006018351bcbbe2,0x00057964df181f22,0x00033e0673d9cfb1,0x00064efdf98a1040)}, | |||
{FIELD_LITERAL(0x00073ad6128efea0,0x0007c86bdff5a7c5,0x0001a71115a02aff,0x00049b3a3e67b1f4,0x00033315bb103c63)}, | |||
{FIELD_LITERAL(0x0006aac38a327053,0x0005351c17ce82af,0x0000f07d6bbd51f7,0x00039497c5b160b1,0x0001ca565d3b0b4c)}, | |||
{FIELD_LITERAL(0x00030e1e990f426f,0x0000a0a8e67aac06,0x0005d5c4267d1f6c,0x00051b0ebc5614b8,0x0000ca37a6b5f563)}, | |||
{FIELD_LITERAL(0x00009dcbfce95c17,0x0001ea312e0ecf1f,0x0001bfaafa617fde,0x00017565626471ce,0x00057a7e865a0896)}, | |||
{FIELD_LITERAL(0x00036e4ca4b09fec,0x00070559d5d9b147,0x00035855772927b5,0x000651fbdadbcd73,0x0007aea9eb02eba1)}, | |||
{FIELD_LITERAL(0x000447db14883a00,0x0002ccbdfcdd06ca,0x00052ae17d38e284,0x0002d754ce20339c,0x000163594fcc2603)} | |||
}; |
@@ -31,6 +31,7 @@ | |||
#define NO_CONTEXT DECAF_EDDSA_25519_SUPPORTS_CONTEXTLESS_SIGS | |||
#define EDDSA_USE_SIGMA_ISOGENY 1 | |||
#define COFACTOR 8 | |||
#define EDDSA_PREHASH_BYTES 64 | |||
#if NO_CONTEXT | |||
const uint8_t NO_CONTEXT_POINTS_HERE = 0; | |||
@@ -41,7 +42,7 @@ const uint8_t * const DECAF_ED25519_NO_CONTEXT = &NO_CONTEXT_POINTS_HERE; | |||
* Because EdDSA25519 is not on E_d but on the isogenous E_sigma_d, | |||
* its base point is twice ours. | |||
*/ | |||
#define EDDSA_BASE_POINT_RATIO (1+EDDSA_USE_SIGMA_ISOGENY) | |||
#define EDDSA_BASE_POINT_RATIO (1+EDDSA_USE_SIGMA_ISOGENY) /* TODO: remove */ | |||
static void clamp ( | |||
uint8_t secret_scalar_ser[DECAF_EDDSA_25519_PRIVATE_BYTES] | |||
@@ -128,14 +129,14 @@ void decaf_ed25519_derive_public_key ( | |||
* the decaf base point is on Etwist_d, and when converted it effectively | |||
* picks up a factor of 2 from the isogenies. So we might start at 2 instead of 1. | |||
*/ | |||
for (unsigned int c = EDDSA_BASE_POINT_RATIO; c < COFACTOR; c <<= 1) { | |||
for (unsigned int c=1; c<DECAF_255_EDDSA_ENCODE_RATIO; c <<= 1) { | |||
API_NS(scalar_halve)(secret_scalar,secret_scalar); | |||
} | |||
API_NS(point_t) p; | |||
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),secret_scalar); | |||
API_NS(point_mul_by_cofactor_and_encode_like_eddsa)(pubkey, p); | |||
API_NS(point_mul_by_ratio_and_encode_like_eddsa)(pubkey, p); | |||
/* Cleanup */ | |||
API_NS(scalar_destroy)(secret_scalar); | |||
@@ -191,13 +192,13 @@ void decaf_ed25519_sign ( | |||
/* Scalarmul to create the nonce-point */ | |||
API_NS(scalar_t) nonce_scalar_2; | |||
API_NS(scalar_halve)(nonce_scalar_2,nonce_scalar); | |||
for (unsigned int c = 2*EDDSA_BASE_POINT_RATIO; c < COFACTOR; c <<= 1) { | |||
for (unsigned int c = 2; c < DECAF_255_EDDSA_ENCODE_RATIO; c <<= 1) { | |||
API_NS(scalar_halve)(nonce_scalar_2,nonce_scalar_2); | |||
} | |||
API_NS(point_t) p; | |||
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),nonce_scalar_2); | |||
API_NS(point_mul_by_cofactor_and_encode_like_eddsa)(nonce_point, p); | |||
API_NS(point_mul_by_ratio_and_encode_like_eddsa)(nonce_point, p); | |||
API_NS(point_destroy)(p); | |||
API_NS(scalar_destroy)(nonce_scalar_2); | |||
} | |||
@@ -237,7 +238,7 @@ void decaf_ed25519_sign_prehash ( | |||
const uint8_t *context, | |||
uint8_t context_len | |||
) { | |||
uint8_t hash_output[64]; /* MAGIC but true for all existing schemes */ | |||
uint8_t hash_output[EDDSA_PREHASH_BYTES]; | |||
{ | |||
decaf_ed25519_prehash_ctx_t hash_too; | |||
memcpy(hash_too,hash,sizeof(hash_too)); | |||
@@ -259,10 +260,10 @@ decaf_error_t decaf_ed25519_verify ( | |||
uint8_t context_len | |||
) { | |||
API_NS(point_t) pk_point, r_point; | |||
decaf_error_t error = API_NS(point_decode_like_eddsa_and_ignore_cofactor)(pk_point,pubkey); | |||
decaf_error_t error = API_NS(point_decode_like_eddsa_and_mul_by_ratio)(pk_point,pubkey); | |||
if (DECAF_SUCCESS != error) { return error; } | |||
error = API_NS(point_decode_like_eddsa_and_ignore_cofactor)(r_point,signature); | |||
error = API_NS(point_decode_like_eddsa_and_mul_by_ratio)(r_point,signature); | |||
if (DECAF_SUCCESS != error) { return error; } | |||
API_NS(scalar_t) challenge_scalar; | |||
@@ -287,9 +288,10 @@ decaf_error_t decaf_ed25519_verify ( | |||
&signature[DECAF_EDDSA_25519_PUBLIC_BYTES], | |||
DECAF_EDDSA_25519_PRIVATE_BYTES | |||
); | |||
#if EDDSA_BASE_POINT_RATIO == 2 | |||
API_NS(scalar_add)(response_scalar,response_scalar,response_scalar); | |||
#endif | |||
for (unsigned c=1; c<DECAF_255_EDDSA_DECODE_RATIO; c<<=1) { | |||
API_NS(scalar_add)(response_scalar,response_scalar,response_scalar); | |||
} | |||
/* pk_point = -c(x(P)) + (cx + k)G = kG */ | |||
@@ -312,7 +314,7 @@ decaf_error_t decaf_ed25519_verify_prehash ( | |||
) { | |||
decaf_error_t ret; | |||
uint8_t hash_output[64]; /* MAGIC but true for all existing schemes */ | |||
uint8_t hash_output[EDDSA_PREHASH_BYTES]; | |||
{ | |||
decaf_ed25519_prehash_ctx_t hash_too; | |||
memcpy(hash_too,hash,sizeof(hash_too)); | |||
@@ -21,14 +21,18 @@ | |||
#define IMAGINE_TWIST 1 | |||
#define COFACTOR 8 | |||
static const int EDWARDS_D = -121665; | |||
/* End of template stuff */ | |||
extern void API_NS(deisogenize) ( | |||
#define RISTRETTO_FACTOR DECAF_255_RISTRETTO_FACTOR | |||
extern const gf RISTRETTO_FACTOR; | |||
/* End of template stuff */ | |||
extern mask_t API_NS(deisogenize) ( | |||
gf_s *__restrict__ s, | |||
gf_s *__restrict__ minus_t_over_s, | |||
gf_s *__restrict__ inv_el_sum, | |||
gf_s *__restrict__ inv_el_m1, | |||
const point_t p, | |||
mask_t toggle_hibit_s, | |||
mask_t toggle_hibit_t_over_s, | |||
mask_t toggle_altx, | |||
mask_t toggle_rotation | |||
); | |||
@@ -37,7 +41,8 @@ void API_NS(point_from_hash_nonuniform) ( | |||
const unsigned char ser[SER_BYTES] | |||
) { | |||
gf r0,r,a,b,c,N,e; | |||
ignore_result(gf_deserialize(r0,ser,0)); | |||
const uint8_t mask = (uint8_t)(0xFE<<(6)); | |||
ignore_result(gf_deserialize(r0,ser,0,mask)); | |||
gf_strong_reduce(r0); | |||
gf_sqr(a,r0); | |||
gf_mul_qnr(r,a); | |||
@@ -61,7 +66,7 @@ void API_NS(point_from_hash_nonuniform) ( | |||
/* s@a = +-|N.e| */ | |||
gf_mul(a,N,e); | |||
gf_cond_neg(a,gf_hibit(a)^square); /* NB this is - what is listed in the paper */ | |||
gf_cond_neg(a,gf_lobit(a) ^ ~square); | |||
/* t@b = -+ cN(r-1)((a-2d)e)^2 - 1 */ | |||
gf_mulw(c,e,1-2*EDWARDS_D); /* (a-2d)e */ | |||
@@ -107,23 +112,6 @@ void API_NS(point_from_hash_uniform) ( | |||
* log p == 1 mod 8 brainpool curves maybe? | |||
*/ | |||
#define MAX(A,B) (((A)>(B)) ? (A) : (B)) | |||
#define PKP_MASK ((1<<(MAX(8*SER_BYTES + 0 - 255,0)))-1) | |||
#if PKP_MASK != 0 | |||
static DECAF_INLINE mask_t plus_k_p ( | |||
uint8_t x[SER_BYTES], | |||
uint32_t factor_ | |||
) { | |||
uint32_t carry = 0; | |||
uint64_t factor = factor_; | |||
const uint8_t p[SER_BYTES] = { 0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f }; | |||
for (unsigned int i=0; i<SER_BYTES; i++) { | |||
uint64_t tmp = carry + p[i] * factor + x[i]; | |||
/* tmp <= 2^32-1 + (2^32-1)*(2^8-1) + (2^8-1) = 2^40-1 */ | |||
x[i] = tmp; carry = tmp>>8; | |||
} | |||
return word_is_zero(carry); | |||
} | |||
#endif | |||
decaf_error_t | |||
API_NS(invert_elligator_nonuniform) ( | |||
@@ -133,60 +121,73 @@ API_NS(invert_elligator_nonuniform) ( | |||
) { | |||
mask_t hint = hint_; | |||
mask_t sgn_s = -(hint & 1), | |||
sgn_t_over_s = -(hint>>1 & 1), | |||
sgn_altx = -(hint>>1 & 1), | |||
sgn_r0 = -(hint>>2 & 1), | |||
/* FUTURE MAGIC: eventually if there's a curve which needs sgn_ed_T but not sgn_r0, | |||
* change this mask extraction. | |||
*/ | |||
sgn_ed_T = -(hint>>3 & 1); | |||
gf a, b, c, d; | |||
API_NS(deisogenize)(a,c,p,sgn_s,sgn_t_over_s,sgn_ed_T); | |||
gf a,b,c; | |||
API_NS(deisogenize)(a,b,c,p,sgn_s,sgn_altx,sgn_ed_T); | |||
#if 255 == 8*SER_BYTES + 1 /* p521. */ | |||
sgn_r0 = 0; | |||
mask_t is_identity = gf_eq(p->t,ZERO); | |||
#if COFACTOR==4 | |||
gf_cond_sel(b,b,ONE,is_identity & sgn_altx); | |||
gf_cond_sel(c,c,ONE,is_identity & sgn_s &~ sgn_altx); | |||
#elif IMAGINE_TWIST | |||
/* Terrible, terrible special casing due to lots of 0/0 is deisogenize | |||
* Basically we need to generate -D and +- i*RISTRETTO_FACTOR | |||
*/ | |||
gf_mul_i(a,RISTRETTO_FACTOR); | |||
gf_cond_sel(b,b,ONE,is_identity); | |||
gf_cond_neg(a,sgn_altx); | |||
gf_cond_sel(c,c,a,is_identity & sgn_ed_T); | |||
gf_cond_sel(c,c,ZERO,is_identity & ~sgn_ed_T); | |||
gf_mulw(a,ONE,-EDWARDS_D); | |||
gf_cond_sel(c,c,a,is_identity & ~sgn_ed_T &~ sgn_altx); | |||
#else | |||
#error "Different special-casing goes here!" | |||
#endif | |||
/* ok, a = s; c = -t/s */ | |||
#if IMAGINE_TWIST | |||
gf_mulw(a,b,-EDWARDS_D); | |||
#else | |||
gf_mulw(a,b,EDWARDS_D-1); | |||
#endif | |||
gf_add(b,a,b); | |||
gf_sub(a,a,c); | |||
gf_add(b,b,c); | |||
gf_cond_swap(a,b,sgn_s); | |||
gf_mul_qnr(c,b); | |||
gf_mul(b,c,a); | |||
mask_t succ = gf_isr(c,b); | |||
succ |= gf_eq(b,ZERO); | |||
gf_mul(b,c,a); | |||
gf_sub(b,ONE,b); /* t+1 */ | |||
gf_sqr(c,a); /* s^2 */ | |||
mask_t is_identity = gf_eq(p->t,ZERO); | |||
/* identity adjustments */ | |||
/* in case of identity, currently c=0, t=0, b=1, will encode to 1 */ | |||
/* if hint is 0, -> 0 */ | |||
/* if hint is to neg t/s, then go to infinity, effectively set s to 1 */ | |||
gf_cond_sel(c,c,ONE,is_identity & sgn_t_over_s); | |||
gf_cond_sel(b,b,ZERO,is_identity & ~sgn_t_over_s & ~sgn_s); | |||
gf_mulw(d,c,2*EDWARDS_D-1); /* $d = (2d-a)s^2 */ | |||
gf_add(a,b,d); /* num? */ | |||
gf_sub(d,d,b); /* den? */ | |||
gf_mul(b,a,d); /* n*d */ | |||
gf_cond_sel(a,d,a,sgn_s); | |||
gf_mul_qnr(d,b); | |||
mask_t succ = gf_isr(c,d)|gf_eq(d,ZERO); | |||
gf_mul(b,a,c); | |||
gf_cond_neg(b, sgn_r0^gf_hibit(b)); | |||
succ &= ~(gf_eq(b,ZERO) & sgn_r0); | |||
#if COFACTOR == 8 | |||
succ &= ~(is_identity & sgn_ed_T); /* NB: there are no preimages of rotated identity. */ | |||
#endif | |||
#if 255 == 8*SER_BYTES + 1 /* p521. */ | |||
#error "this won't work because it needs to adjust high bit, not low bit" | |||
sgn_r0 = 0; | |||
#endif | |||
gf_cond_neg(b, sgn_r0^gf_lobit(b)); | |||
/* Eliminate duplicate values for identity ... */ | |||
succ &= ~(gf_eq(b,ZERO) & (sgn_r0 | sgn_s)); | |||
// #if COFACTOR == 8 | |||
// succ &= ~(is_identity & sgn_ed_T); /* NB: there are no preimages of rotated identity. */ | |||
// #endif | |||
#if 255 == 8*SER_BYTES + 1 /* p521 */ | |||
gf_serialize(recovered_hash,b,0); | |||
#else | |||
gf_serialize(recovered_hash,b,1); | |||
#if PKP_MASK != 0 | |||
/* Add a multiple of p to make the result either almost-onto or completely onto. */ | |||
#if COFACTOR == 8 | |||
succ &= plus_k_p(recovered_hash, (hint >> 4) & PKP_MASK); | |||
#else | |||
succ &= plus_k_p(recovered_hash, (hint >> 3) & PKP_MASK); | |||
#endif | |||
#endif | |||
#endif | |||
#if 7 | |||
#if COFACTOR==8 | |||
recovered_hash[SER_BYTES-1] ^= (hint>>4)<<7; | |||
#else | |||
recovered_hash[SER_BYTES-1] ^= (hint>>3)<<7; | |||
#endif | |||
#endif | |||
return decaf_succeed_if(mask_to_bool(succ)); | |||
} | |||
@@ -48,10 +48,23 @@ static const scalar_t point_scalarmul_adjustment = {{{ | |||
const uint8_t decaf_x448_base_point[DECAF_X448_PUBLIC_BYTES] = { 0x05 }; | |||
#if COFACTOR==8 || EDDSA_USE_SIGMA_ISOGENY | |||
static const gf SQRT_ONE_MINUS_D = {FIELD_LITERAL( | |||
/* NONE */ | |||
)}; | |||
#define RISTRETTO_FACTOR DECAF_448_RISTRETTO_FACTOR | |||
const gf RISTRETTO_FACTOR = {{{ | |||
0x42ef0f45572736, 0x7bf6aa20ce5296, 0xf4fd6eded26033, 0x968c14ba839a66, 0xb8d54b64a2d780, 0x6aa0a1f1a7b8a5, 0x683bf68d722fa2, 0x22d962fbeb24f7 | |||
}}}; | |||
#if IMAGINE_TWIST | |||
#define TWISTED_D (-(EDWARDS_D)) | |||
#else | |||
#define TWISTED_D ((EDWARDS_D)-1) | |||
#endif | |||
#if TWISTED_D < 0 | |||
#define EFF_D (-(TWISTED_D)) | |||
#define NEG_D 1 | |||
#else | |||
#define EFF_D TWISTED_D | |||
#define NEG_D 0 | |||
#endif | |||
/* End of template stuff */ | |||
@@ -109,128 +122,112 @@ gf_invert(gf y, const gf x, int assert_nonzero) { | |||
gf_copy(y, t2); | |||
} | |||
/** Return high bit of x = low bit of 2x mod p */ | |||
static mask_t gf_lobit(const gf x) { | |||
gf y; | |||
gf_copy(y,x); | |||
gf_strong_reduce(y); | |||
return -(y->limb[0]&1); | |||
} | |||
/** identity = (0,1) */ | |||
const point_t API_NS(point_identity) = {{{{{0}}},{{{1}}},{{{1}}},{{{0}}}}}; | |||
/* Predeclare because not static: called by elligator */ | |||
void API_NS(deisogenize) ( | |||
gf_s *__restrict__ s, | |||
gf_s *__restrict__ minus_t_over_s, | |||
gf_s *__restrict__ inv_el_sum, | |||
gf_s *__restrict__ inv_el_m1, | |||
const point_t p, | |||
mask_t toggle_hibit_s, | |||
mask_t toggle_hibit_t_over_s, | |||
mask_t toggle_s, | |||
mask_t toggle_altx, | |||
mask_t toggle_rotation | |||
); | |||
void API_NS(deisogenize) ( | |||
gf_s *__restrict__ s, | |||
gf_s *__restrict__ minus_t_over_s, | |||
gf_s *__restrict__ inv_el_sum, | |||
gf_s *__restrict__ inv_el_m1, | |||
const point_t p, | |||
mask_t toggle_hibit_s, | |||
mask_t toggle_hibit_t_over_s, | |||
mask_t toggle_s, | |||
mask_t toggle_altx, | |||
mask_t toggle_rotation | |||
) { | |||
#if COFACTOR == 4 && !IMAGINE_TWIST | |||
(void) toggle_rotation; | |||
gf b, d; | |||
gf_s *c = s, *a = minus_t_over_s; | |||
gf_mulw(a, p->y, 1-EDWARDS_D); | |||
gf_mul(c, a, p->t); /* -dYT, with EDWARDS_D = d-1 */ | |||
gf_mul(a, p->x, p->z); | |||
gf_sub(d, c, a); /* aXZ-dYT with a=-1 */ | |||
gf_add(a, p->z, p->y); | |||
gf_sub(b, p->z, p->y); | |||
gf_mul(c, b, a); | |||
gf_mulw(b, c, -EDWARDS_D); /* (a-d)(Z+Y)(Z-Y) */ | |||
mask_t ok = gf_isr (a,b); /* r in the paper */ | |||
(void)ok; assert(ok | gf_eq(b,ZERO)); | |||
gf_mulw (b, a, -EDWARDS_D); /* u in the paper */ | |||
gf_mul(c,a,d); /* r(aZX-dYT) */ | |||
gf_mul(a,b,p->z); /* uZ */ | |||
gf_add(a,a,a); /* 2uZ */ | |||
mask_t tg = toggle_hibit_t_over_s ^ ~gf_hibit(minus_t_over_s); | |||
gf_cond_neg(minus_t_over_s, tg); /* t/s <-? -t/s */ | |||
gf_cond_neg(c, tg); /* u <- -u if negative. */ | |||
gf_add(d,c,p->y); | |||
gf_mul(s,b,d); | |||
gf_cond_neg(s, toggle_hibit_s ^ gf_hibit(s)); | |||
#else | |||
(void)toggle_rotation; /* Only applies to cofactor 8 */ | |||
gf t1; | |||
gf_s *t2 = s, *t3=inv_el_sum, *t4=inv_el_m1; | |||
gf_add(t1,p->x,p->t); | |||
gf_sub(t2,p->x,p->t); | |||
gf_mul(t3,t1,t2); /* t3 = num */ | |||
gf_sqr(t2,p->x); | |||
gf_mul(t1,t2,t3); | |||
gf_mulw(t2,t1,-1-TWISTED_D); /* -x^2 * (a-d) * num */ | |||
gf_isr(t1,t2); /* t1 = isr */ | |||
gf_mul(t2,t1,t3); /* t2 = ratio */ | |||
gf_mul(t4,t2,RISTRETTO_FACTOR); | |||
mask_t negx = gf_lobit(t4) ^ toggle_altx; | |||
gf_cond_neg(t2, negx); | |||
gf_mul(t3,t2,p->z); | |||
gf_sub(t3,t3,p->t); | |||
gf_mul(t2,t3,p->x); | |||
gf_mulw(t4,t2,-1-TWISTED_D); | |||
gf_mul(s,t4,t1); | |||
mask_t lobs = gf_lobit(s); | |||
gf_cond_neg(s,lobs); | |||
gf_copy(inv_el_m1,p->x); | |||
gf_cond_neg(inv_el_m1,~lobs^negx^toggle_s); | |||
gf_add(inv_el_m1,inv_el_m1,p->t); | |||
#elif COFACTOR == 8 && IMAGINE_TWIST | |||
/* More complicated because of rotation */ | |||
/* MAGIC This code is wrong for certain non-Curve25519 curves; | |||
* check if it's because of Cofactor==8 or IMAGINE_TWIST */ | |||
gf c, d; | |||
gf_s *b = s, *a = minus_t_over_s; | |||
#if IMAGINE_TWIST | |||
gf x, t; | |||
gf_div_qnr(x,p->x); | |||
gf_div_qnr(t,p->t); | |||
gf_add ( a, p->z, x ); | |||
gf_sub ( b, p->z, x ); | |||
gf_mul ( c, a, b ); /* "zx" = Z^2 - aX^2 = Z^2 - X^2 */ | |||
#else | |||
const gf_s *x = p->x, *t = p->t; | |||
gf_sqr ( a, p->z ); | |||
gf_sqr ( b, p->x ); | |||
gf_add ( c, a, b ); /* "zx" = Z^2 - aX^2 = Z^2 + X^2 */ | |||
#endif | |||
/* Here: c = "zx" in the SAGE code = Z^2 - aX^2 */ | |||
gf_mul ( a, p->z, t ); /* "tz" = T*Z */ | |||
gf_sqr ( b, a ); | |||
gf_mul ( d, b, c ); /* (TZ)^2 * (Z^2-aX^2) */ | |||
mask_t ok = gf_isr(b, d); | |||
(void)ok; assert(ok | gf_eq(d,ZERO)); | |||
gf_mul ( d, b, a ); /* "osx" = 1 / sqrt(z^2-ax^2) */ | |||
gf_mul ( a, b, c ); | |||
gf_mul ( b, a, d ); /* 1/tz */ | |||
mask_t rotate; | |||
#if (COFACTOR == 8) | |||
gf e; | |||
gf_sqr(e, p->z); | |||
gf_mul(a, e, b); /* z^2 / tz = z/t = 1/xy */ | |||
rotate = gf_hibit(a) ^ toggle_rotation; | |||
/* Curve25519: cond select between zx * 1/tz or sqrt(1-d); y=-x */ | |||
gf_mul ( a, b, c ); | |||
gf_cond_sel ( a, a, SQRT_ONE_MINUS_D, rotate ); | |||
gf_cond_sel ( e, p->y, x, rotate ); | |||
#else | |||
const gf_s *e = x; | |||
(void)toggle_rotation; | |||
rotate = 0; | |||
#endif | |||
gf_mul ( c, a, d ); // new "osx" | |||
gf_mul ( a, c, p->z ); | |||
gf_add ( minus_t_over_s, a, a ); // 2 * "osx" * Z | |||
gf_mul ( d, b, p->z ); | |||
mask_t tg = toggle_hibit_t_over_s ^~ gf_hibit(minus_t_over_s); | |||
gf_cond_neg ( minus_t_over_s, tg ); | |||
gf_cond_neg ( c, rotate ^ tg ); | |||
gf_add ( d, d, c ); | |||
gf_mul ( s, d, e ); /* here "x" = y unless rotate */ | |||
gf_cond_neg ( s, toggle_hibit_s ^ gf_hibit(s) ); | |||
gf t1,t2,t3,t4,t5; | |||
gf_add(t1,p->z,p->y); | |||
gf_sub(t2,p->z,p->y); | |||
gf_mul(t3,t1,t2); /* t3 = num */ | |||
gf_mul(t2,p->x,p->y); /* t2 = den */ | |||
gf_sqr(t1,t2); | |||
gf_mul(t4,t1,t3); | |||
gf_mulw(t1,t4,-1-TWISTED_D); | |||
gf_isr(t4,t1); /* isqrt(num*(a-d)*den^2) */ | |||
gf_mul(t1,t2,t4); | |||
gf_mul(t2,t1,RISTRETTO_FACTOR); /* t2 = "iden" in ristretto.sage */ | |||
gf_mul(t1,t3,t4); /* t1 = "inum" in ristretto.sage */ | |||
/* Calculate altxy = iden*inum*i*t^2*(d-a) */ | |||
gf_mul(t3,t1,t2); | |||
gf_mul_i(t4,t3); | |||
gf_mul(t3,t4,p->t); | |||
gf_mul(t4,t3,p->t); | |||
gf_mulw(t3,t4,TWISTED_D+1); /* iden*inum*i*t^2*(d-1) */ | |||
mask_t rotate = toggle_rotation ^ gf_lobit(t3); | |||
/* Rotate if altxy is negative */ | |||
gf_cond_swap(t1,t2,rotate); | |||
gf_mul_i(t4,p->x); | |||
gf_cond_sel(t4,p->y,t4,rotate); /* t4 = "fac" = ix if rotate, else y */ | |||
gf_mul_i(t5,RISTRETTO_FACTOR); /* t5 = imi */ | |||
gf_mul(t3,t5,t2); /* iden * imi */ | |||
gf_mul(t2,t5,t1); | |||
gf_mul(t5,t2,p->t); /* "altx" = iden*imi*t */ | |||
mask_t negx = gf_lobit(t5) ^ toggle_altx; | |||
gf_cond_neg(t1,negx^rotate); | |||
gf_mul(t2,t1,p->z); | |||
gf_add(t2,t2,ONE); | |||
gf_mul(inv_el_sum,t2,t4); | |||
gf_mul(s,inv_el_sum,t3); | |||
mask_t negs = gf_lobit(s); | |||
gf_cond_neg(s,negs); | |||
mask_t negz = ~negs ^ toggle_s ^ negx; | |||
gf_copy(inv_el_m1,p->z); | |||
gf_cond_neg(inv_el_m1,negz); | |||
gf_sub(inv_el_m1,inv_el_m1,t4); | |||
#else | |||
#error "Cofactor must be 4 (with no IMAGINE_TWIST) or 8 (with IMAGINE_TWIST)" | |||
#endif | |||
} | |||
void API_NS(point_encode)( unsigned char ser[SER_BYTES], const point_t p ) { | |||
gf s, mtos; | |||
API_NS(deisogenize)(s,mtos,p,0,0,0); | |||
gf_serialize(ser,s,0); | |||
gf s,ie1,ie2; | |||
API_NS(deisogenize)(s,ie1,ie2,p,0,0,0); | |||
gf_serialize(ser,s,1); | |||
} | |||
decaf_error_t API_NS(point_decode) ( | |||
@@ -238,89 +235,54 @@ decaf_error_t API_NS(point_decode) ( | |||
const unsigned char ser[SER_BYTES], | |||
decaf_bool_t allow_identity | |||
) { | |||
gf s, a, b, c, d, e, f; | |||
mask_t succ = gf_deserialize(s, ser, 0); | |||
mask_t zero = gf_eq(s, ZERO); | |||
succ &= bool_to_mask(allow_identity) | ~zero; | |||
gf_sqr ( a, s ); /* s^2 */ | |||
gf s, s2, num, tmp; | |||
gf_s *tmp2=s2, *ynum=p->z, *isr=p->x, *den=p->t; | |||
mask_t succ = gf_deserialize(s, ser, 1, 0); | |||
succ &= bool_to_mask(allow_identity) | ~gf_eq(s, ZERO); | |||
succ &= ~gf_lobit(s); | |||
gf_sqr(s2,s); /* s^2 = -as^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub ( f, ONE, a ); /* f = 1-as^2 = 1-s^2*/ | |||
#else | |||
gf_add ( f, ONE, a ); /* f = 1-as^2 = 1+s^2 */ | |||
gf_sub(s2,ZERO,s2); /* -as^2 */ | |||
#endif | |||
succ &= ~ gf_eq( f, ZERO ); | |||
gf_sqr ( b, f ); /* (1-as^2)^2 = 1 - 2as^2 + a^2 s^4 */ | |||
gf_mulw ( c, a, 4*IMAGINE_TWIST-4*EDWARDS_D ); | |||
gf_add ( c, c, b ); /* t^2 = 1 + (2a-4d) s^2 + s^4 */ | |||
gf_mul ( d, f, s ); /* s * (1-as^2) for denoms */ | |||
gf_sqr ( e, d ); /* s^2 * (1-as^2)^2 */ | |||
gf_mul ( b, c, e ); /* t^2 * s^2 * (1-as^2)^2 */ | |||
succ &= gf_isr(e,b) | gf_eq(b,ZERO); /* e = 1/(t s (1-as^2)) */ | |||
gf_mul ( b, e, d ); /* 1 / t */ | |||
gf_mul ( d, e, c ); /* t / (s(1-as^2)) */ | |||
gf_mul ( e, d, f ); /* t / s */ | |||
mask_t negtos = gf_hibit(e); | |||
gf_cond_neg(b, negtos); | |||
gf_cond_neg(d, negtos); | |||
#if IMAGINE_TWIST | |||
gf_add ( p->z, ONE, a); /* Z = 1+as^2 = 1-s^2 */ | |||
#else | |||
gf_sub ( p->z, ONE, a); /* Z = 1+as^2 = 1-s^2 */ | |||
gf_sub(den,ONE,s2); /* 1+as^2 */ | |||
gf_add(ynum,ONE,s2); /* 1-as^2 */ | |||
gf_mulw(num,s2,-4*TWISTED_D); | |||
gf_sqr(tmp,den); /* tmp = den^2 */ | |||
gf_add(num,tmp,num); /* num = den^2 - 4*d*s^2 */ | |||
gf_mul(tmp2,num,tmp); /* tmp2 = num*den^2 */ | |||
succ &= gf_isr(isr,tmp2); /* isr = 1/sqrt(num*den^2) */ | |||
gf_mul(tmp,isr,den); /* isr*den */ | |||
gf_mul(p->y,tmp,ynum); /* isr*den*(1-as^2) */ | |||
gf_mul(tmp2,tmp,s); /* s*isr*den */ | |||
gf_add(tmp2,tmp2,tmp2); /* 2*s*isr*den */ | |||
gf_mul(tmp,tmp2,isr); /* 2*s*isr^2*den */ | |||
gf_mul(p->x,tmp,num); /* 2*s*isr^2*den*num */ | |||
gf_mul(tmp,tmp2,RISTRETTO_FACTOR); /* 2*s*isr*den*magic */ | |||
gf_cond_neg(p->x,gf_lobit(tmp)); /* flip x */ | |||
#if COFACTOR==8 | |||
/* Additionally check y != 0 and x*y*isomagic nonegative */ | |||
succ &= ~gf_eq(p->y,ZERO); | |||
gf_mul(tmp,p->x,p->y); | |||
gf_mul(tmp2,tmp,RISTRETTO_FACTOR); | |||
succ &= ~gf_lobit(tmp2); | |||
#endif | |||
#if COFACTOR == 8 | |||
gf_mul ( a, p->z, d); /* t(1+s^2) / s(1-s^2) = 2/xy */ | |||
succ &= ~gf_lobit(a); /* = ~gf_hibit(a/2), since gf_hibit(x) = gf_lobit(2x) */ | |||
#endif | |||
gf_mul ( a, f, b ); /* y = (1-s^2) / t */ | |||
gf_mul ( p->y, p->z, a ); /* Y = yZ */ | |||
#if IMAGINE_TWIST | |||
gf_add ( b, s, s ); | |||
gf_mul(p->x, b, SQRT_MINUS_ONE); /* Curve25519 */ | |||
#else | |||
gf_add ( p->x, s, s ); | |||
#endif | |||
gf_mul ( p->t, p->x, a ); /* T = 2s (1-as^2)/t */ | |||
#if UNSAFE_CURVE_HAS_POINTS_AT_INFINITY | |||
/* This can't happen for any of the supported configurations. | |||
* | |||
* If it can happen (because s=1), it's because the curve has points | |||
* at infinity, which means that there may be critical security bugs | |||
* elsewhere in the library. In that case, it's better that you hit | |||
* the assertion in point_valid, which will happen in the test suite | |||
* since it tests s=1. | |||
* | |||
* This debugging option is to allow testing of IMAGINE_TWIST = 0 on | |||
* Ed25519, without hitting that assertion. Don't use it in | |||
* production. | |||
*/ | |||
succ &= ~gf_eq(p->z,ZERO); | |||
gf_copy(tmp,p->x); | |||
gf_mul_i(p->x,tmp); | |||
#endif | |||
/* Fill in z and t */ | |||
gf_copy(p->z,ONE); | |||
gf_mul(p->t,p->x,p->y); | |||
p->y->limb[0] -= zero; | |||
assert(API_NS(point_valid)(p) | ~succ); | |||
return decaf_succeed_if(mask_to_bool(succ)); | |||
} | |||
#if IMAGINE_TWIST | |||
#define TWISTED_D (-(EDWARDS_D)) | |||
#else | |||
#define TWISTED_D ((EDWARDS_D)-1) | |||
#endif | |||
#if TWISTED_D < 0 | |||
#define EFF_D (-(TWISTED_D)) | |||
#define NEG_D 1 | |||
#else | |||
#define EFF_D TWISTED_D | |||
#define NEG_D 0 | |||
#endif | |||
void API_NS(point_sub) ( | |||
point_t p, | |||
const point_t q, | |||
@@ -865,7 +827,7 @@ void API_NS(point_debugging_pscale) ( | |||
) { | |||
gf gfac,tmp; | |||
/* NB this means you'll never pscale by negative numbers for p521 */ | |||
ignore_result(gf_deserialize(gfac,factor,0)); | |||
ignore_result(gf_deserialize(gfac,factor,0,0)); | |||
gf_cond_sel(gfac,gfac,ONE,gf_eq(gfac,ZERO)); | |||
gf_mul(tmp,p->x,gfac); | |||
gf_copy(q->x,tmp); | |||
@@ -1078,7 +1040,7 @@ decaf_error_t API_NS(direct_scalarmul) ( | |||
return succ; | |||
} | |||
void API_NS(point_mul_by_cofactor_and_encode_like_eddsa) ( | |||
void API_NS(point_mul_by_ratio_and_encode_like_eddsa) ( | |||
uint8_t enc[DECAF_EDDSA_448_PUBLIC_BYTES], | |||
const point_t p | |||
) { | |||
@@ -1116,15 +1078,20 @@ void API_NS(point_mul_by_cofactor_and_encode_like_eddsa) ( | |||
gf_mul ( y, u, t ); // (x^2+y^2)(2z^2-y^2+x^2) | |||
gf_mul ( u, z, t ); | |||
gf_copy( z, u ); | |||
gf_mul ( u, x, SQRT_ONE_MINUS_D ); | |||
gf_mul ( u, x, RISTRETTO_FACTOR ); | |||
#if IMAGINE_TWIST | |||
gf_mul_i( x, u ); | |||
#else | |||
#error "... probably wrong" | |||
gf_copy( x, u ); | |||
#endif | |||
decaf_bzero(u,sizeof(u)); | |||
} | |||
#elif IMAGINE_TWIST | |||
{ | |||
API_NS(point_double)(q,q); | |||
API_NS(point_double)(q,q); | |||
gf_mul_qnr(x, q->x); | |||
gf_mul_i(x, q->x); | |||
gf_copy(y, q->y); | |||
gf_copy(z, q->z); | |||
} | |||
@@ -1137,7 +1104,7 @@ void API_NS(point_mul_by_cofactor_and_encode_like_eddsa) ( | |||
gf_add( u, x, t ); | |||
gf_add( z, q->y, q->x ); | |||
gf_sqr ( y, z); | |||
gf_sub ( y, u, y ); | |||
gf_sub ( y, y, u ); | |||
gf_sub ( z, t, x ); | |||
gf_sqr ( x, q->z ); | |||
gf_add ( t, x, x); | |||
@@ -1166,7 +1133,7 @@ void API_NS(point_mul_by_cofactor_and_encode_like_eddsa) ( | |||
} | |||
decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
decaf_error_t API_NS(point_decode_like_eddsa_and_mul_by_ratio) ( | |||
point_t p, | |||
const uint8_t enc[DECAF_EDDSA_448_PUBLIC_BYTES] | |||
) { | |||
@@ -1176,7 +1143,7 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
mask_t low = ~word_is_zero(enc2[DECAF_EDDSA_448_PRIVATE_BYTES-1] & 0x80); | |||
enc2[DECAF_EDDSA_448_PRIVATE_BYTES-1] &= ~0x80; | |||
mask_t succ = gf_deserialize(p->y, enc2, 1); | |||
mask_t succ = gf_deserialize(p->y, enc2, 1, 0); | |||
#if 0 == 0 | |||
succ &= word_is_zero(enc2[DECAF_EDDSA_448_PRIVATE_BYTES-1]); | |||
#endif | |||
@@ -1196,7 +1163,7 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
succ &= gf_isr(p->t,p->x); /* 1/sqrt(num * denom) */ | |||
gf_mul(p->x,p->t,p->z); /* sqrt(num / denom) */ | |||
gf_cond_neg(p->x,~gf_lobit(p->x)^low); | |||
gf_cond_neg(p->x,gf_lobit(p->x)^low); | |||
gf_copy(p->z,ONE); | |||
#if EDDSA_USE_SIGMA_ISOGENY | |||
@@ -1221,8 +1188,9 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
gf_sub ( p->t, a, c ); // y^2 - x^2 | |||
gf_sqr ( p->x, p->z ); | |||
gf_add ( p->z, p->x, p->x ); | |||
gf_sub ( a, p->z, p->t ); // 2z^2 - y^2 + x^2 | |||
gf_mul ( c, a, SQRT_ONE_MINUS_D ); | |||
gf_sub ( c, p->z, p->t ); // 2z^2 - y^2 + x^2 | |||
gf_div_i ( a, c ); | |||
gf_mul ( c, a, RISTRETTO_FACTOR ); | |||
gf_mul ( p->x, b, p->t); // (2xy)(y^2-x^2) | |||
gf_mul ( p->z, p->t, c ); // (y^2-x^2)sd(2z^2 - y^2 + x^2) | |||
gf_mul ( p->y, d, c ); // (y^2+x^2)sd(2z^2 - y^2 + x^2) | |||
@@ -1265,6 +1233,7 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
decaf_bzero(enc2,sizeof(enc2)); | |||
assert(API_NS(point_valid)(p) || ~succ); | |||
return decaf_succeed_if(mask_to_bool(succ)); | |||
} | |||
@@ -1274,7 +1243,7 @@ decaf_error_t decaf_x448 ( | |||
const uint8_t scalar[X_PRIVATE_BYTES] | |||
) { | |||
gf x1, x2, z2, x3, z3, t1, t2; | |||
ignore_result(gf_deserialize(x1,base,1)); | |||
ignore_result(gf_deserialize(x1,base,1,0)); | |||
gf_copy(x2,ONE); | |||
gf_copy(z2,ZERO); | |||
gf_copy(x3,x1); | |||
@@ -1345,15 +1314,8 @@ void decaf_ed448_convert_public_key_to_x448 ( | |||
const uint8_t ed[DECAF_EDDSA_448_PUBLIC_BYTES] | |||
) { | |||
gf y; | |||
{ | |||
uint8_t enc2[DECAF_EDDSA_448_PUBLIC_BYTES]; | |||
memcpy(enc2,ed,sizeof(enc2)); | |||
/* retrieve y from the ed compressed point */ | |||
enc2[DECAF_EDDSA_448_PUBLIC_BYTES-1] &= ~0x80; | |||
ignore_result(gf_deserialize(y, enc2, 0)); | |||
decaf_bzero(enc2,sizeof(enc2)); | |||
} | |||
const uint8_t mask = (uint8_t)(0xFE<<(7)); | |||
ignore_result(gf_deserialize(y, ed, 1, mask)); | |||
{ | |||
gf n,d; | |||
@@ -1390,6 +1352,26 @@ void decaf_x448_generate_key ( | |||
decaf_x448_derive_public_key(out,scalar); | |||
} | |||
void API_NS(point_mul_by_ratio_and_encode_like_x448) ( | |||
uint8_t out[X_PUBLIC_BYTES], | |||
const point_t p | |||
) { | |||
point_t q; | |||
#if COFACTOR == 8 | |||
point_double_internal(q,p,1); | |||
#else | |||
API_NS(point_copy)(q,p); | |||
#endif | |||
gf_invert(q->t,q->x,0); /* 1/x */ | |||
gf_mul(q->z,q->t,q->y); /* y/x */ | |||
gf_sqr(q->y,q->z); /* (y/x)^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub(q->y,ZERO,q->y); | |||
#endif | |||
gf_serialize(out,q->y,1); | |||
API_NS(point_destroy(q)); | |||
} | |||
void decaf_x448_derive_public_key ( | |||
uint8_t out[X_PUBLIC_BYTES], | |||
const uint8_t scalar[X_PRIVATE_BYTES] | |||
@@ -1405,39 +1387,13 @@ void decaf_x448_derive_public_key ( | |||
scalar_t the_scalar; | |||
API_NS(scalar_decode_long)(the_scalar,scalar2,sizeof(scalar2)); | |||
/* We're gonna isogenize by 2, so divide by 2. | |||
* | |||
* Why by 2, even though it's a 4-isogeny? | |||
* | |||
* The isogeny map looks like | |||
* Montgomery <-2-> Jacobi <-2-> Edwards | |||
* | |||
* Since the Jacobi base point is the PREimage of the iso to | |||
* the Montgomery curve, and we're going | |||
* Jacobi -> Edwards -> Jacobi -> Montgomery, | |||
* we pick up only a factor of 2 over Jacobi -> Montgomery. | |||
*/ | |||
API_NS(scalar_halve)(the_scalar,the_scalar); | |||
/* Compensate for the encoding ratio */ | |||
for (unsigned i=1; i<DECAF_X448_ENCODE_RATIO; i<<=1) { | |||
API_NS(scalar_halve)(the_scalar,the_scalar); | |||
} | |||
point_t p; | |||
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),the_scalar); | |||
/* Isogenize to Montgomery curve. | |||
* | |||
* Why isn't this just a separate function, eg decaf_encode_like_x448? | |||
* Basically because in general it does the wrong thing if there is a cofactor | |||
* component in the input. In this function though, there isn't a cofactor | |||
* component in the input. | |||
*/ | |||
gf_invert(p->t,p->x,0); /* 1/x */ | |||
gf_mul(p->z,p->t,p->y); /* y/x */ | |||
gf_sqr(p->y,p->z); /* (y/x)^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub(p->y,ZERO,p->y); | |||
#endif | |||
gf_serialize(out,p->y,1); | |||
decaf_bzero(scalar2,sizeof(scalar2)); | |||
API_NS(scalar_destroy)(the_scalar); | |||
API_NS(point_mul_by_ratio_and_encode_like_x448)(out,p); | |||
API_NS(point_destroy)(p); | |||
} | |||
@@ -21,7 +21,7 @@ | |||
#define API_NS(_id) decaf_448_##_id | |||
static const unsigned char base_point_ser_for_pregen[SER_BYTES] = { | |||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01 | |||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33 | |||
}; | |||
/* To satisfy linker. */ | |||
@@ -63,16 +63,25 @@ int main(int argc, char **argv) { | |||
API_NS(point_t) real_point_base; | |||
int ret = API_NS(point_decode)(real_point_base,base_point_ser_for_pregen,0); | |||
if (ret != DECAF_SUCCESS) return 1; | |||
if (ret != DECAF_SUCCESS) { | |||
fprintf(stderr, "Can't decode base point!\n"); | |||
return 1; | |||
} | |||
API_NS(precomputed_s) *pre; | |||
ret = posix_memalign((void**)&pre, API_NS(alignof_precomputed_s), API_NS(sizeof_precomputed_s)); | |||
if (ret || !pre) return 1; | |||
if (ret || !pre) { | |||
fprintf(stderr, "Can't allocate space for precomputed table\n"); | |||
return 1; | |||
} | |||
API_NS(precompute)(pre, real_point_base); | |||
struct niels_s *pre_wnaf; | |||
ret = posix_memalign((void**)&pre_wnaf, API_NS(alignof_precomputed_s), API_NS(sizeof_precomputed_wnafs)); | |||
if (ret || !pre_wnaf) return 1; | |||
if (ret || !pre_wnaf) { | |||
fprintf(stderr, "Can't allocate space for precomputed WNAF table\n"); | |||
return 1; | |||
} | |||
API_NS(precompute_wnafs)(pre_wnaf, real_point_base); | |||
const gf_s *output; | |||
@@ -5,350 +5,350 @@ | |||
#define API_NS(_id) decaf_448_##_id | |||
const API_NS(point_t) API_NS(point_base) = {{ | |||
{FIELD_LITERAL(0x00fffffffffffffe,0x00ffffffffffffff,0x00ffffffffffffff,0x00ffffffffffffff,0x0000000000000003,0x0000000000000000,0x0000000000000000,0x0000000000000000)}, | |||
{FIELD_LITERAL(0x0081e6d37f752992,0x003078ead1c28721,0x00135cfd2394666c,0x0041149c50506061,0x0031d30e4f5490b3,0x00902014990dc141,0x0052341b04c1e328,0x0014237853c10a1b)}, | |||
{FIELD_LITERAL(0x00fffffffffffffb,0x00ffffffffffffff,0x00ffffffffffffff,0x00ffffffffffffff,0x00fffffffffffffe,0x00ffffffffffffff,0x00ffffffffffffff,0x00ffffffffffffff)}, | |||
{FIELD_LITERAL(0x008f205b70660415,0x00881c60cfd3824f,0x00377a638d08500d,0x008c66d5d4672615,0x00e52fa558e08e13,0x0087770ae1b6983d,0x004388f55a0aa7ff,0x00b4d9a785cf1a91)} | |||
{FIELD_LITERAL(0x0000000000000000,0x0000000000000000,0x0000000000000000,0x0080000000000000,0x00fffffffffffffe,0x00ffffffffffffff,0x00ffffffffffffff,0x007fffffffffffff)}, | |||
{FIELD_LITERAL(0x006079b4dfdd4a64,0x000c1e3ab470a1c8,0x0044d73f48e5199b,0x0050452714141818,0x004c74c393d5242c,0x0024080526437050,0x00d48d06c13078ca,0x008508de14f04286)}, | |||
{FIELD_LITERAL(0x0000000000000001,0x0000000000000000,0x0000000000000000,0x0000000000000000,0x0000000000000000,0x0000000000000000,0x0000000000000000,0x0000000000000000)}, | |||
{FIELD_LITERAL(0x00e3c816dc198105,0x0062071833f4e093,0x004dde98e3421403,0x00a319b57519c985,0x00794be956382384,0x00e1ddc2b86da60f,0x0050e23d5682a9ff,0x006d3669e173c6a4)} | |||
}}; | |||
const gf API_NS(precomputed_base_as_fe)[240] | |||
VECTOR_ALIGNED __attribute__((visibility("hidden"))) = { | |||
{FIELD_LITERAL(0x00e614a9f7278dc5,0x002e454ad04c5124,0x00d8f58cee1436f3,0x00c83ed46e4180ec,0x00a41e93274a38fa,0x00c1e7e53257771e,0x0043e0ff03c0392f,0x002c7c6405ce61df)}, | |||
{FIELD_LITERAL(0x0033c4f9dc990b33,0x00c291cb1ceb55c3,0x002ae3f58ade88b2,0x006b1f9f11395474,0x002ded6e4b27ff7c,0x0041012ed4aa10e1,0x003c22d20a36bae7,0x001f584eed472b19)}, | |||
{FIELD_LITERAL(0x00c3514779ee6f60,0x001574c873b20c2b,0x004cd6a46a5a5e65,0x0059a068aeb4204a,0x004c610458bc354d,0x00e94567479d02d2,0x00feaf77ed118e28,0x00f58a8bf115eeb5)}, | |||
{FIELD_LITERAL(0x0046110878fcb20f,0x00df43db21cc6f32,0x00ffdde9f4516644,0x00519917791686b9,0x00b72b441fd34473,0x008d45684cb1c72b,0x0015181370fc17a5,0x00a456d1307f74d3)}, | |||
{FIELD_LITERAL(0x001430f149b607dc,0x00e992ccd16715fc,0x00a62209b0a32a09,0x00b889cedc26b8e4,0x0059bf9a3ac109cf,0x006871bb3b7feac2,0x00f4a4d5fd9a0e6b,0x00b95db460cd69a5)}, | |||
{FIELD_LITERAL(0x0036304418bda702,0x007bc56861561558,0x00f344bc8e30416f,0x00a64537080f59d7,0x00b4c20077d00ace,0x00ee79620b26f8cc,0x00a6a558e0b5403d,0x008f1d2c766f3d19)}, | |||
{FIELD_LITERAL(0x00ef21c0297d3112,0x0073f89bd27c35b1,0x00ec44f9b1ff5e33,0x006bee51d878f1ee,0x001571a4b2aceddb,0x00cd0182d55131d1,0x0026761dbc1844be,0x00f01865af716474)}, | |||
{FIELD_LITERAL(0x0021dfef3f5fe8cc,0x0038c659ed1dbd68,0x0058ded9bcebe283,0x00077bbb094983ee,0x00b7b484e913d70c,0x0063e477a9506397,0x0000b996a6e01629,0x00ab68b41f75cd37)}, | |||
{FIELD_LITERAL(0x00a1fbd946403a4e,0x00be5a4e2d611b05,0x00ea4f210888bc6e,0x0043e9b0e0ae50fe,0x002abc4f6bd86845,0x00c3ed649c67f663,0x00d4eeb391a520e7,0x004b19cf1bfe7584)}, | |||
{FIELD_LITERAL(0x0099a75e6f22999e,0x001f16454c79f659,0x00d776a37fddc812,0x0095fdd63b6b0a78,0x00d232169366e947,0x002ea77dd21e9de7,0x00e8c46e85f97a90,0x00358758651f8cd9)}, | |||
{FIELD_LITERAL(0x002b6f5036a07bdf,0x004f6940af3e2646,0x00866028f8986799,0x00838b26ccb50415,0x0010557417f00b11,0x008a3b6bc447e96b,0x003de3d035e9e0c9,0x00188fca2b6d4011)}, | |||
{FIELD_LITERAL(0x001ca4038635312b,0x0078dc75c1e01c44,0x004340f00b3100a4,0x005e63e36bf6646e,0x008e1efd4b624688,0x00a61c2ffb1525e1,0x0072587505a75b81,0x00a8637140d96e78)}, | |||
{FIELD_LITERAL(0x004a7c41ffac8a41,0x005bf37075b1c20b,0x00c053b570a42408,0x002bb7e278d328e7,0x00b2378b63245100,0x003318bf2a1a368a,0x00f4e3e0bdbe02de,0x0058921e4b1e32f8)}, | |||
{FIELD_LITERAL(0x005e93d6fa1118a0,0x0062b43515d381e2,0x002c42864052e620,0x00af258bae6ccbd3,0x00954247094d654d,0x005db01f5b010810,0x009c8cf25efa8204,0x005f73ced3714ef7)}, | |||
{FIELD_LITERAL(0x0085f89aff2cf49d,0x00f591ee8480f6f0,0x00378ed518114265,0x00f04293e2a09008,0x00c58688db9140ed,0x00e9912696399ff1,0x0055bd1b96367413,0x0023a70cf830f999)}, | |||
{FIELD_LITERAL(0x001c83772944584e,0x00c1ba881e472bcc,0x00af2715a0aef13f,0x00bd0360d25610a6,0x00c42f8b3eebebde,0x00a9e474849788b1,0x00dcd1a1a2efec5c,0x009480d34c2818c0)}, | |||
{FIELD_LITERAL(0x00b4b6e09a565d74,0x0095efcf6175aa48,0x00498defe7ae7810,0x00309b684ed26470,0x007a8873a91d4e44,0x00ea4b3f857eb27a,0x00979b8619d25a9e,0x00721a2770eeb6e9)}, | |||
{FIELD_LITERAL(0x00b422f0f4be195f,0x00e88cfa83bfa2db,0x009fd60666ea4268,0x0095a458f5e801d0,0x00b9eee6882081f6,0x00b27edb37604948,0x00a7f67c4d44d8db,0x00df840ccf290c01)}, | |||
{FIELD_LITERAL(0x00c9fed0d47c9103,0x00ba73ed9294a043,0x005cbbc928e652e1,0x0068419e98ee8215,0x00f63de63786300b,0x009aa9bb6c19f8aa,0x0066c536b573213f,0x00d2b77a5b2f2450)}, | |||
{FIELD_LITERAL(0x00810236c68d5b74,0x00d0a1af1872a011,0x007f23ee29e3801a,0x009a55a678f8dba4,0x0065445dcff9be40,0x00f3978789a9abc5,0x00001f010d23f5e8,0x00ff80042934b0c5)}, | |||
{FIELD_LITERAL(0x00a6749f4b3f9745,0x003ab85f4180e502,0x006a7de9b530ed50,0x0050b5353b0441bf,0x00a093583ac6ede4,0x00c4918ad1406299,0x000f75cf2a353a2b,0x001c6644a0683a56)}, | |||
{FIELD_LITERAL(0x00e8694156c09bfe,0x00f6f3a5bd17ad96,0x0098dbed45edad12,0x00edfe2b84921821,0x0097884330199b67,0x004aab02685b3e9e,0x0068ac0bd2453c30,0x00167c1c1c87d8f5)}, | |||
{FIELD_LITERAL(0x008bba5fbf63f599,0x0059a3c960c7d63f,0x00ce2db75b08b7d9,0x0097e80cb2104171,0x009b68be26a140d0,0x002b9b9954e94c68,0x00023ca8fc411beb,0x00cbc4bcccbada07)}, | |||
{FIELD_LITERAL(0x0053c100e77b678d,0x000f115c400fa96f,0x005928d3de22afa2,0x00e47cd9bdbdbe96,0x00597ecfe84abf19,0x0058bb428e4c7a32,0x00dd582f76ecf584,0x00b1211365eccb79)}, | |||
{FIELD_LITERAL(0x00dbfb9a00a58e68,0x004468189350d82f,0x00b4b12407ee92c6,0x00e27a7908f73455,0x00f071170071b5ae,0x00221a5e6ba229dd,0x001903e3f6a81f83,0x00be36325402775f)}, | |||
{FIELD_LITERAL(0x004d298d6e691756,0x00775644dfce310b,0x00a861887823ea98,0x00cf0b6014fa6e6f,0x005f4e296380826f,0x00bf423392627f90,0x002893bfc8122f6a,0x00440dbc89bea228)}, | |||
{FIELD_LITERAL(0x00acbb4f40a4ab73,0x00d6a82f48fa3366,0x000a7958fc6faac2,0x008a4cdd60a7c33c,0x005e5587dd8b6f1a,0x00e40f63086a88e8,0x0030940cbbcda0ad,0x009a42e3dc35c130)}, | |||
{FIELD_LITERAL(0x00d37716cad825f1,0x00883870cba9552a,0x008ef785f5c762e3,0x006cb253e0469242,0x007b8f17fee9d967,0x00a43de6932b52b6,0x001aca9fe2af783c,0x008967778ff0b680)}, | |||
{FIELD_LITERAL(0x006400c4cdc6c9c3,0x001e8c978691083f,0x00ad74f01f68e0c5,0x00f7feb0372b5f6a,0x002f60d175ade13a,0x0098ec54a221a678,0x00fcfea8a71f244e,0x00dea6660e45ded2)}, | |||
{FIELD_LITERAL(0x002585b4aa8d6752,0x00e62da7615a2089,0x0010c1c741f39b68,0x00569bb1eced9f65,0x00ba6d09e4daa724,0x007d3e20aef281b9,0x00bd7f65aca3ffdc,0x00dea434a50288a8)}, | |||
{FIELD_LITERAL(0x007ba92a2489170f,0x00cd356354d31e9c,0x00a60d47406e5430,0x009c3d5fde8ed877,0x00079eaa50dd08d1,0x0024674d593ffa5f,0x005391be9596c53b,0x00856ca8d50acdd9)}, | |||
{FIELD_LITERAL(0x00d4620aa5e5bdec,0x002303c4b9b5d941,0x003b061f857ebb2a,0x00371f9e856d49fd,0x0071c36c5335051e,0x0040e4346a4d359f,0x00b31dbd959ec40c,0x00d99353a71bf6de)}, | |||
{FIELD_LITERAL(0x0078898adf0f21dd,0x006e09bfedd8604a,0x00efaf0e0f9bb666,0x00b0f685db8852c3,0x0094c86ec566b841,0x00e5c2879ba50dbe,0x00a87cd444cff758,0x00d3e26fd47f23df)}, | |||
{FIELD_LITERAL(0x00b82c07fb1854f8,0x0057f654a06fad9f,0x004c00383250cf92,0x008b91713d291af6,0x002f2521777859b9,0x00533111421f22c8,0x00643da86fab9794,0x00dc7fb0680e3d40)}, | |||
{FIELD_LITERAL(0x00e59ffd40e87788,0x006431e9755a50af,0x00a03ce700fb580a,0x00ad7e70aa3c9b9e,0x0078970a2b4db503,0x00c800451849637a,0x00e7e6a5b49e123f,0x00e1ed15f77bcb4d)}, | |||
{FIELD_LITERAL(0x00bc1d1d1af47f28,0x00ebc5501bbd81f0,0x00aa6b5513547aa4,0x0074ed33551343fe,0x00d2114f6ef7d43b,0x006335b41d518aeb,0x00ebd46919692fb8,0x0052d5d4e3fada95)}, | |||
{FIELD_LITERAL(0x00ebfc9f489799a4,0x00497535b6980688,0x00fef76499e6a51b,0x00018eedde7a18da,0x00f435d9e72b69c7,0x005ab0faa8281675,0x003232d06e290be8,0x005473ec8be0286c)}, | |||
{FIELD_LITERAL(0x00c6eb0d0ebb4874,0x00856a2274119097,0x00380bc7b29e3719,0x00b1ae149f0e424d,0x0009b41855b9de26,0x0098684013d0f53f,0x0082e8554c38a6ff,0x00e76c18c353743a)}, | |||
{FIELD_LITERAL(0x008da1194e1ab61f,0x008edb5f89688805,0x00f4970252f851bd,0x007a46f632b6ad20,0x006d2d1c37e9f90a,0x0060dd09353f665f,0x000a625a80d86657,0x000f93f6fedd0888)}, | |||
{FIELD_LITERAL(0x003b019b31992fb4,0x004f6a2ad1f64c28,0x008a744134e5c571,0x000ca33172f9af3f,0x00d478755a67bb8b,0x009d1f5c48abb223,0x004da4d6f12ee901,0x0084f09541f4140d)}, | |||
{FIELD_LITERAL(0x0031f412f5cacd43,0x00e5afb75dd20e94,0x001ce24b3452740e,0x00176d6dedf30ff1,0x0082e22e564fffca,0x001d56fbe007097f,0x0095b37c851a6918,0x008ec50ef97f8f4c)}, | |||
{FIELD_LITERAL(0x007e2b1c52251f57,0x00cbef37c9380033,0x0037ed652761bceb,0x00f1c2a5dc6dd232,0x0026e1b90d63ce0b,0x00938d732173a6b8,0x00d439aa45da993f,0x00d356b8deaccef7)}, | |||
{FIELD_LITERAL(0x00ed32377f56c67d,0x00c3b6a4de32e4a7,0x00481a36c0dd5d91,0x00bb557d20466ba7,0x00645f6d3200163e,0x005eb4c54df7c48c,0x00fd8e3d08f1e3b4,0x001156353f099147)}, | |||
{FIELD_LITERAL(0x00ae1b4c089b2756,0x00e686d2b916fb5f,0x007ac43ec2437dd8,0x00f7bfdf7e860ed2,0x0097dbcb8b786dc9,0x00ec7a90401c8b2f,0x00425ed017989bdb,0x00444bc9ca6d914d)}, | |||
{FIELD_LITERAL(0x00e5e7b83b53ab7f,0x004e4bed6ca44fc5,0x0008bd7a67c40d4d,0x009dbec74a4a2f0e,0x0077df3f4fc2c73f,0x0046b1af5e73ea8d,0x009f096cb7be8670,0x003ad0a29929141d)}, | |||
{FIELD_LITERAL(0x00991a1222e9b2e1,0x00be7583901d7dc7,0x00fd1d0c8169d3da,0x000fe0a94a68acf9,0x00b77bd05afc78a2,0x00a84f1697f87ebc,0x000097cfdb0c2ecb,0x007d51d70352ed1b)}, | |||
{FIELD_LITERAL(0x0025dc2a60643159,0x001f0d8ff85f95b4,0x00ed74a4bc598a73,0x00f30afe6f0574a9,0x0003788545d4d28c,0x009dc410ad120ac0,0x001950947e69961d,0x001ceb23cb0355b0)}, | |||
{FIELD_LITERAL(0x00ee2202ded9f1bd,0x002fa4fce658976d,0x00e7c15bc9716470,0x004f7ea99d500369,0x004b995a18318376,0x00246c4f8af91911,0x00cc77a07d09dbfe,0x007906f6f1364be6)}, | |||
{FIELD_LITERAL(0x003c97e6384da36e,0x00423d53eac81a09,0x00b70d68f3cdce35,0x00ee7959b354b92c,0x00f4e9718819c8ca,0x009349f12acbffe9,0x005aee7b62cb7da6,0x00d97764154ffc86)}, | |||
{FIELD_LITERAL(0x00cc3b062366f4cc,0x003d6e34e314aa3c,0x00d51c0a7521774d,0x0094e060eec6ab8b,0x00d21291b4d80082,0x00befed12b55ef1e,0x00c3dd2df5c94518,0x00e0a7b112b8d4e6)}, | |||
{FIELD_LITERAL(0x0019eb5608d8723a,0x00d1bab52fb3aedb,0x00270a7311ebc90c,0x0037c12b91be7f13,0x005be16cd8b5c704,0x003e181acda888e1,0x00bc1f00fc3fc6d0,0x00d3839bfa319e20)}, | |||
{FIELD_LITERAL(0x003caeb88611909f,0x00ea8b378c4df3d4,0x00b3295b95a5a19a,0x00a65f97514bdfb5,0x00b39efba743cab1,0x0016ba98b862fd2d,0x0001508812ee71d7,0x000a75740eea114a)}, | |||
{FIELD_LITERAL(0x00ebcf0eb649f823,0x00166d332e98ea03,0x0059ddf64f5cd5f6,0x0047763123d9471b,0x00a64065c53ef62f,0x00978e44c480153d,0x000b5b2a0265f194,0x0046a24b9f32965a)}, | |||
{FIELD_LITERAL(0x00b9eef787034df0,0x0020bc24de3390cd,0x000022160bae99bb,0x00ae66e886e97946,0x0048d4bbe02cbb8b,0x0072ba97b34e38d4,0x00eae7ec8f03e85a,0x005ba92ecf808b2c)}, | |||
{FIELD_LITERAL(0x00c9cfbbe74258fd,0x00843a979ea9eaa7,0x000cbb4371cfbe90,0x0059bac8f7f0a628,0x004b3dff882ff530,0x0011869df4d90733,0x00595aa71f4abfc2,0x0070e2d38990c2e6)}, | |||
{FIELD_LITERAL(0x00de2010c0a01733,0x00c739a612e24297,0x00a7212643141d7c,0x00f88444f6b67c11,0x00484b7b16ec28f2,0x009c1b8856af9c68,0x00ff4669591fe9d6,0x0054974be08a32c8)}, | |||
{FIELD_LITERAL(0x0010de3fd682ceed,0x008c07642d83ca4e,0x0013bb064e00a1cc,0x009411ae27870e11,0x00ea8e5b4d531223,0x0032fe7d2aaece2e,0x00d989e243e7bb41,0x000fe79a508e9b8b)}, | |||
{FIELD_LITERAL(0x005e0426b9bfc5b1,0x0041a5b1d29ee4fa,0x0015b0def7774391,0x00bc164f1f51af01,0x00d543b0942797b9,0x003c129b6398099c,0x002b114c6e5adf18,0x00b4e630e4018a7b)}, | |||
{FIELD_LITERAL(0x00d490afc95f8420,0x00b096bf50c1d9b9,0x00799fd707679866,0x007c74d9334afbea,0x00efaa8be80ff4ed,0x0075c4943bb81694,0x00c21c2fca161f36,0x00e77035d492bfee)}, | |||
{FIELD_LITERAL(0x006658a190dd6661,0x00e0e9bab38609a6,0x0028895c802237ed,0x006a0229c494f587,0x002dcde96c9916b7,0x00d158822de16218,0x00173b917a06856f,0x00ca78a79ae07326)}, | |||
{FIELD_LITERAL(0x00e35bfc79caced4,0x0087238a3e1fe3bb,0x00bcbf0ff4ceff5b,0x00a19c1c94099b91,0x0071e102b49db976,0x0059e3d004eada1e,0x008da78afa58a47e,0x00579c8ebf269187)}, | |||
{FIELD_LITERAL(0x00a16c2905eee75f,0x009d4bcaea2c7e1d,0x00d3bd79bfad19df,0x0050da745193342c,0x006abdb8f6b29ab1,0x00a24fe0a4fef7ef,0x0063730da1057dfb,0x00a08c312c8eb108)}, | |||
{FIELD_LITERAL(0x00b583be005375be,0x00a40c8f8a4e3df4,0x003fac4a8f5bdbf7,0x00d4481d872cd718,0x004dc8749cdbaefe,0x00cce740d5e5c975,0x000b1c1f4241fd21,0x00a76de1b4e1cd07)}, | |||
{FIELD_LITERAL(0x007a076500d30b62,0x000a6e117b7f090f,0x00c8712ae7eebd9a,0x000fbd6c1d5f6ff7,0x003a7977246ebf11,0x00166ed969c6600e,0x00aa42e469c98bec,0x00dc58f307cf0666)}, | |||
{FIELD_LITERAL(0x004b491f65a9a28b,0x006a10309e8a55b7,0x00b67210185187ef,0x00cf6497b12d9b8f,0x0085778c56e2b1ba,0x0015b4c07a814d85,0x00686479e62da561,0x008de5d88f114916)}, | |||
{FIELD_LITERAL(0x00e37c88d6bba7b1,0x003e4577e1b8d433,0x0050d8ea5f510ec0,0x0042fc9f2da9ef59,0x003bd074c1141420,0x00561b8b7b68774e,0x00232e5e5d1013a3,0x006b7f2cb3d7e73f)}, | |||
{FIELD_LITERAL(0x004bdd0f0b41e6a0,0x001773057c405d24,0x006029f99915bd97,0x006a5ba70a17fe2f,0x0046111977df7e08,0x004d8124c89fb6b7,0x00580983b2bb2724,0x00207bf330d6f3fe)}, | |||
{FIELD_LITERAL(0x007efdc93972a48b,0x002f5e50e78d5fee,0x0080dc11d61c7fe5,0x0065aa598707245b,0x009abba2300641be,0x000c68787656543a,0x00ffe0fef2dc0a17,0x00007ffbd6cb4f3a)}, | |||
{FIELD_LITERAL(0x0036012f2b836efc,0x00458c126d6b5fbc,0x00a34436d719ad1e,0x0097be6167117dea,0x0009c219c879cff3,0x0065564493e60755,0x00993ac94a8cdec0,0x002d4885a4d0dbaf)}, | |||
{FIELD_LITERAL(0x00598b60b4c068ba,0x00c547a0be7f1afd,0x009582164acf12af,0x00af4acac4fbbe40,0x005f6ca7c539121a,0x003b6e752ebf9d66,0x00f08a30d5cac5d4,0x00e399bb5f97c5a9)}, | |||
{FIELD_LITERAL(0x007445a0409c0a66,0x00a65c369f3829c0,0x0031d248a4f74826,0x006817f34defbe8e,0x00649741d95ebf2e,0x00d46466ab16b397,0x00fdc35703bee414,0x00343b43334525f8)}, | |||
{FIELD_LITERAL(0x001796bea93f6401,0x00090c5a42e85269,0x00672412ba1252ed,0x001201d47b6de7de,0x006877bccfe66497,0x00b554fd97a4c161,0x009753f42dbac3cf,0x00e983e3e378270a)}, | |||
{FIELD_LITERAL(0x00ac3eff18849872,0x00f0eea3bff05690,0x00a6d72c21dd505d,0x001b832642424169,0x00a6813017b540e5,0x00a744bd71b385cd,0x0022a7d089130a7b,0x004edeec9a133486)}, | |||
{FIELD_LITERAL(0x00b2d6729196e8a9,0x0088a9bb2031cef4,0x00579e7787dc1567,0x0030f49feb059190,0x00a0b1d69c7f7d8f,0x0040bdcc6d9d806f,0x00d76c4037edd095,0x00bbf24376415dd7)}, | |||
{FIELD_LITERAL(0x00240465ff5a7197,0x00bb97e76caf27d0,0x004b4edbf8116d39,0x001d8586f708cbaa,0x000f8ee8ff8e4a50,0x00dde5a1945dd622,0x00e6fc1c0957e07c,0x0041c9cdabfd88a0)}, | |||
{FIELD_LITERAL(0x005344b0bf5b548c,0x002957d0b705cc99,0x00f586a70390553d,0x0075b3229f583cc3,0x00a1aa78227490e4,0x001bf09cf7957717,0x00cf6bf344325f52,0x0065bd1c23ca3ecf)}, | |||
{FIELD_LITERAL(0x009bff3b3239363c,0x00e17368796ef7c0,0x00528b0fe0971f3a,0x0008014fc8d4a095,0x00d09f2e8a521ec4,0x006713ab5dde5987,0x0003015758e0dbb1,0x00215999f1ba212d)}, | |||
{FIELD_LITERAL(0x002c88e93527da0e,0x0077c78f3456aad5,0x0071087a0a389d1c,0x00934dac1fb96dbd,0x008470e801162697,0x005bc2196cd4ad49,0x00e535601d5087c3,0x00769888700f497f)}, | |||
{FIELD_LITERAL(0x00da7a4b557298ad,0x0019d2589ea5df76,0x00ef3e38be0c6497,0x00a9644e1312609a,0x004592f61b2558da,0x0082c1df510d7e46,0x0042809a535c0023,0x00215bcb5afd7757)}, | |||
{FIELD_LITERAL(0x002b9df55a1a4213,0x00dcfc3b464a26be,0x00c4f9e07a8144d5,0x00c8e0617a92b602,0x008e3c93accafae0,0x00bf1bcb95b2ca60,0x004ce2426a613bf3,0x00266cac58e40921)}, | |||
{FIELD_LITERAL(0x008456d5db76e8f0,0x0032ca9cab2ce163,0x0059f2b8bf91abcf,0x0063c2a021712788,0x00f86155af22f72d,0x00db98b2a6c005a0,0x00ac6e416a693ac4,0x007a93572af53226)}, | |||
{FIELD_LITERAL(0x0087767520f0de22,0x0091f64012279fb5,0x001050f1f0644999,0x004f097a2477ad3c,0x006b37913a9947bd,0x001a3d78645af241,0x0057832bbb3008a7,0x002c1d902b80dc20)}, | |||
{FIELD_LITERAL(0x001a6002bf178877,0x009bce168aa5af50,0x005fc318ff04a7f5,0x0052818f55c36461,0x008768f5d4b24afb,0x0037ffbae7b69c85,0x0018195a4b61edc0,0x001e12ea088434b2)}, | |||
{FIELD_LITERAL(0x0047d3f804e7ab07,0x00a809ab5f905260,0x00b3ffc7cdaf306d,0x00746e8ec2d6e509,0x00d0dade8887a645,0x00acceeebde0dd37,0x009bc2579054686b,0x0023804f97f1c2bf)}, | |||
{FIELD_LITERAL(0x0043e2e2e50b80d7,0x00143aafe4427e0f,0x005594aaecab855b,0x008b12ccaaecbc01,0x002deeb091082bc3,0x009cca4be2ae7514,0x00142b96e696d047,0x00ad2a2b1c05256a)}, | |||
{FIELD_LITERAL(0x003914f2f144b78b,0x007a95dd8bee6f68,0x00c7f4384d61c8e6,0x004e51eb60f1bdb2,0x00f64be7aa4621d8,0x006797bfec2f0ac0,0x007d17aab3c75900,0x001893e73cac8bc5)}, | |||
{FIELD_LITERAL(0x00140360b768665b,0x00b68aca4967f977,0x0001089b66195ae4,0x00fe71122185e725,0x000bca2618d49637,0x00a54f0557d7e98a,0x00cdcd2f91d6f417,0x00ab8c13741fd793)}, | |||
{FIELD_LITERAL(0x00725ee6b1e549e0,0x007124a0769777fa,0x000b68fdad07ae42,0x0085b909cd4952df,0x0092d2e3c81606f4,0x009f22f6cac099a0,0x00f59da57f2799a8,0x00f06c090122f777)}, | |||
{FIELD_LITERAL(0x00ce0bed0a3532bc,0x001a5048a22df16b,0x00e31db4cbad8bf1,0x00e89292120cf00e,0x007d1dd1a9b00034,0x00e2a9041ff8f680,0x006a4c837ae596e7,0x00713af1068070b3)}, | |||
{FIELD_LITERAL(0x00c4fe64ce66d04b,0x00b095d52e09b3d7,0x00758bbecb1a3a8e,0x00f35cce8d0650c0,0x002b878aa5984473,0x0062e0a3b7544ddc,0x00b25b290ed116fe,0x007b0f6abe0bebf2)}, | |||
{FIELD_LITERAL(0x0081d4e3addae0a8,0x003410c836c7ffcc,0x00c8129ad89e4314,0x000e3d5a23922dcd,0x00d91e46f29c31f3,0x006c728cde8c5947,0x002bc655ba2566c0,0x002ca94721533108)}, | |||
{FIELD_LITERAL(0x0051e4b3f764d8a9,0x0019792d46e904a0,0x00853bc13dbc8227,0x000840208179f12d,0x0068243474879235,0x0013856fbfe374d0,0x00bda12fe8676424,0x00bbb43635926eb2)}, | |||
{FIELD_LITERAL(0x0012cdc880a93982,0x003c495b21cd1b58,0x00b7e5c93f22a26e,0x0044aa82dfb99458,0x009ba092cdffe9c0,0x00a14b3ab2083b73,0x000271c2f70e1c4b,0x00eea9cac0f66eb8)}, | |||
{FIELD_LITERAL(0x001a1847c4ac5480,0x00b1b412935bb03a,0x00f74285983bf2b2,0x00624138b5b5d0f1,0x008820c0b03d38bf,0x00b94e50a18c1572,0x0060f6934841798f,0x00c52f5d66d6ebe2)}, | |||
{FIELD_LITERAL(0x00da23d59f9bcea6,0x00e0f27007a06a4b,0x00128b5b43a6758c,0x000cf50190fa8b56,0x00fc877aba2b2d72,0x00623bef52edf53f,0x00e6af6b819669e2,0x00e314dc34fcaa4f)}, | |||
{FIELD_LITERAL(0x0066e5eddd164d1e,0x00418a7c6fe28238,0x0002e2f37e962c25,0x00f01f56b5975306,0x0048842fa503875c,0x0057b0e968078143,0x00ff683024f3d134,0x0082ae28fcad12e4)}, | |||
{FIELD_LITERAL(0x0011ddfd21260e42,0x00d05b0319a76892,0x00183ea4368e9b8f,0x00b0815662affc96,0x00b466a5e7ce7c88,0x00db93b07506e6ee,0x0033885f82f62401,0x0086f9090ec9b419)}, | |||
{FIELD_LITERAL(0x00d95d1c5fcb435a,0x0016d1ed6b5086f9,0x00792aa0b7e54d71,0x0067b65715f1925d,0x00a219755ec6176b,0x00bc3f026b12c28f,0x00700c897ffeb93e,0x0089b83f6ec50b46)}, | |||
{FIELD_LITERAL(0x00ad9cdb4544b923,0x00d11664c7284061,0x00815ae86b8f910b,0x005414fb2591c3c6,0x0094ba83e2d7ef9e,0x0001dbc16599386c,0x00c8721f0493911b,0x00c1be6b463c346c)}, | |||
{FIELD_LITERAL(0x0079680ce111ed3b,0x001a1ed82806122c,0x000c2e7466d15df3,0x002c407f6f7150fd,0x00c5e7c96b1b0ce3,0x009aa44626863ff9,0x00887b8b5b80be42,0x00b6023cec964825)}, | |||
{FIELD_LITERAL(0x003c97e6384da36e,0x00423d53eac81a09,0x00b70d68f3cdce35,0x00ee7959b354b92c,0x00f4e9718819c8ca,0x009349f12acbffe9,0x005aee7b62cb7da6,0x00d97764154ffc86)}, | |||
{FIELD_LITERAL(0x00526324babb46dc,0x002ee99b38d7bf9e,0x007ea51794706ef4,0x00abeb04da6e3c39,0x006b457c1d281060,0x00fe243e9a66c793,0x00378de0fb6c6ee4,0x003e4194b9c3cb93)}, | |||
{FIELD_LITERAL(0x00fed3cd80ca2292,0x0015b043a73ca613,0x000a9fd7bf9be227,0x003b5e03de2db983,0x005af72d46904ef7,0x00c0f1b5c49faa99,0x00dc86fc3bd305e1,0x00c92f08c1cb1797)}, | |||
{FIELD_LITERAL(0x001b571efb768f37,0x009d778487cf5cfd,0x00430e37327ebfd4,0x00a92447e5970a41,0x00eb13127c0edbac,0x00ec61e5aefeaf20,0x00447eebf57d2e5c,0x00f01433e550e558)}, | |||
{FIELD_LITERAL(0x0039dd7ce7fc6860,0x00d64f6425653da1,0x003e037c7f57d0af,0x0063477a06e2bcf2,0x001727dbb7ac67e6,0x0049589f5efafe2e,0x00fc0fef2e813d54,0x008baa5d087fb50d)}, | |||
{FIELD_LITERAL(0x0079680ce111ed3b,0x001a1ed82806122c,0x000c2e7466d15df3,0x002c407f6f7150fd,0x00c5e7c96b1b0ce3,0x009aa44626863ff9,0x00887b8b5b80be42,0x00b6023cec964825)}, | |||
{FIELD_LITERAL(0x00e4a8e1048970c8,0x0062887b7830a302,0x00bcf1c8cd81402b,0x0056dbb81a68f5be,0x0014eced83f12452,0x00139e1a510150df,0x00bb81140a82d1a3,0x000febcc1aaf1aa7)}, | |||
{FIELD_LITERAL(0x00a7527958238159,0x0013ec9537a84cd6,0x001d7fee7d562525,0x00b9eefa6191d5e5,0x00dbc97db70bcb8a,0x00481affc7a4d395,0x006f73d3e70c31bb,0x00183f324ed96a61)}, | |||
{FIELD_LITERAL(0x00db04a6264ba838,0x00582b1f9fddc1b3,0x003ee72e4aaa027f,0x007d1de938cd0dd5,0x0032d5d66cf76afa,0x00c9c717c95c1ec2,0x00f27aa11764b8d6,0x00713a482b7ef36e)}, | |||
{FIELD_LITERAL(0x00ece96f95f2b66f,0x00ece7952813a27b,0x0026fc36592e489e,0x007157d1a2de0f66,0x00759dc111d86ddf,0x0012881e5780bb0f,0x00c8ccc83ad29496,0x0012b9bd1929eb71)}, | |||
{FIELD_LITERAL(0x0039dd7ce7fc6860,0x00d64f6425653da1,0x003e037c7f57d0af,0x0063477a06e2bcf2,0x001727dbb7ac67e6,0x0049589f5efafe2e,0x00fc0fef2e813d54,0x008baa5d087fb50d)}, | |||
{FIELD_LITERAL(0x0024fb59d9b457c7,0x00a7d4e060223e4c,0x00c118d1b555fd80,0x0082e216c732f22a,0x00cd2a2993089504,0x003638e836a3e13d,0x000d855ee89b4729,0x008ec5b7d4810c91)}, | |||
{FIELD_LITERAL(0x001bf51f7d65cdfd,0x00d14cdafa16a97d,0x002c38e60fcd10e7,0x00a27446e393efbd,0x000b5d8946a71fdd,0x0063df2cde128f2f,0x006c8679569b1888,0x0059ffc4925d732d)}, | |||
{FIELD_LITERAL(0x00f05ea5df25a20f,0x00cb6224e5b932ce,0x00d3aed52e2718d9,0x00fb89ee0996ce72,0x006197045a6e1e80,0x00bcdf20057fc6f9,0x0059bf78b6ae5c2c,0x0049cacb87455db0)}, | |||
{FIELD_LITERAL(0x006a15bb20f75c0c,0x0079a144027a5d0c,0x00d19116ce0b4d70,0x0059b83bcb0b268e,0x005f58f63f16c127,0x0079958318ee2c37,0x00defbb063d07f82,0x00f1f0b931d2d446)}, | |||
{FIELD_LITERAL(0x00ece96f95f2b66f,0x00ece7952813a27b,0x0026fc36592e489e,0x007157d1a2de0f66,0x00759dc111d86ddf,0x0012881e5780bb0f,0x00c8ccc83ad29496,0x0012b9bd1929eb71)}, | |||
{FIELD_LITERAL(0x000fa15a20da5df0,0x00349ddb1a46cd31,0x002c512ad1d8e726,0x00047611f669318d,0x009e68fba591e17e,0x004320dffa803906,0x00a640874951a3d3,0x00b6353478baa24f)}, | |||
{FIELD_LITERAL(0x009696510000d333,0x00ec2f788bc04826,0x000e4d02b1f67ba5,0x00659aa8dace08b6,0x00d7a38a3a3ae533,0x008856defa8c746b,0x004d7a4402d3da1a,0x00ea82e06229260f)}, | |||
{FIELD_LITERAL(0x0034a1b3c3ca2bdd,0x0072077a35bca880,0x0005af4e935c1b8e,0x00a5f1a71e8b7737,0x004d3133292cb2e5,0x000fe2a2dca1c916,0x0024d181b41935bb,0x00d9f54880ca0332)}, | |||
{FIELD_LITERAL(0x009ffd90abfeae96,0x00cba3c2b624a516,0x005ef08bcee46c91,0x00e6fde30afb6185,0x00f0b4db4f818ce4,0x006c54f45d2127f5,0x00040125035854c7,0x00372658a3287e13)}, | |||
{FIELD_LITERAL(0x006a15bb20f75c0c,0x0079a144027a5d0c,0x00d19116ce0b4d70,0x0059b83bcb0b268e,0x005f58f63f16c127,0x0079958318ee2c37,0x00defbb063d07f82,0x00f1f0b931d2d446)}, | |||
{FIELD_LITERAL(0x00cb5e4c3c35d422,0x008df885ca43577f,0x00fa50b16ca3e471,0x005a0e58e17488c8,0x00b2ceccd6d34d19,0x00f01d5d235e36e9,0x00db2e7e4be6ca44,0x00260ab77f35fccd)}, | |||
{FIELD_LITERAL(0x006f6fd9baac61d5,0x002a7710a020a895,0x009de0db7fc03d4d,0x00cdedcb1875f40b,0x00050caf9b6b1e22,0x005e3a6654456ab0,0x00775fdf8c4423d4,0x0028701ea5738b5d)}, | |||
{FIELD_LITERAL(0x0028f8f04e414d54,0x0087037ba56c7694,0x00976b5b4d0ddb59,0x00a4227e6d462421,0x004c77c678b4c560,0x0006c9e74fb485a8,0x00c1c138a02d3981,0x0040a19403d6b6b5)}, | |||
{FIELD_LITERAL(0x0045e8dda9400888,0x002ff12e5fc05db7,0x00a7098d54afe69c,0x00cdbe846a500585,0x00879c1593ca1882,0x003f7a7fea76c8b0,0x002cd73dd0c8e0a1,0x00645d6ce96f51fe)}, | |||
{FIELD_LITERAL(0x009ffd90abfeae96,0x00cba3c2b624a516,0x005ef08bcee46c91,0x00e6fde30afb6185,0x00f0b4db4f818ce4,0x006c54f45d2127f5,0x00040125035854c7,0x00372658a3287e13)}, | |||
{FIELD_LITERAL(0x00d7070fb1beb2ab,0x0078fc845a93896b,0x006894a4b2f224a6,0x005bdd8192b9dbde,0x00b38839874b3a9e,0x00f93618b04b7a57,0x003e3ec75fd2c67e,0x00bf5e6bfc29494a)}, | |||
{FIELD_LITERAL(0x00f19224ebba2aa5,0x0074f89d358e694d,0x00eea486597135ad,0x0081579a4555c7e1,0x0010b9b872930a9d,0x00f002e87a30ecc0,0x009b9d66b6de56e2,0x00a3c4f45e8004eb)}, | |||
{FIELD_LITERAL(0x00d4817c1edc2929,0x00c67cb908be637f,0x00bd6dd1aa6bfe9c,0x00a1803a9fe7795c,0x001770d311e2cefb,0x0018054eca0d1c88,0x004fa667b240f212,0x00f631f7f055a447)}, | |||
{FIELD_LITERAL(0x00f89335c2a59286,0x00a0f5c905d55141,0x00b41fb836ee9382,0x00e235d51730ca43,0x00a5cb37b5c0a69a,0x009b966ffe136c45,0x00cb2ea10bf80ed1,0x00fb2b370b40dc35)}, | |||
{FIELD_LITERAL(0x0045e8dda9400888,0x002ff12e5fc05db7,0x00a7098d54afe69c,0x00cdbe846a500585,0x00879c1593ca1882,0x003f7a7fea76c8b0,0x002cd73dd0c8e0a1,0x00645d6ce96f51fe)}, | |||
{FIELD_LITERAL(0x002b7e83e123d6d6,0x00398346f7419c80,0x0042922e55940163,0x005e7fc5601886a3,0x00e88f2cee1d3103,0x00e7fab135f2e377,0x00b059984dbf0ded,0x0009ce080faa5bb8)}, | |||
{FIELD_LITERAL(0x0085e78af7758979,0x00275a4ee1631a3a,0x00d26bc0ed78b683,0x004f8355ea21064f,0x00d618e1a32696e5,0x008d8d7b150e5680,0x00a74cd854b278d2,0x001dd62702203ea0)}, | |||
{FIELD_LITERAL(0x0029782e92b11745,0x008eadf422f96200,0x00217a39f2cdcaa2,0x00782d1ca9aefd0b,0x00321c6e47203654,0x001e72961020101a,0x00b562fa6e6ab16e,0x0005c92274af111a)}, | |||
{FIELD_LITERAL(0x006bc3d53011f470,0x00032d6e692b83e8,0x00059722f497cd0b,0x0009b4e6f0c497cc,0x0058a804b7cce6c0,0x002b71d3302bbd5d,0x00e2f82a36765fce,0x008dded99524c703)}, | |||
{FIELD_LITERAL(0x00f89335c2a59286,0x00a0f5c905d55141,0x00b41fb836ee9382,0x00e235d51730ca43,0x00a5cb37b5c0a69a,0x009b966ffe136c45,0x00cb2ea10bf80ed1,0x00fb2b370b40dc35)}, | |||
{FIELD_LITERAL(0x00d687d16d4ee8ba,0x0071520bdd069dff,0x00de85c60d32355d,0x0087d2e3565102f4,0x00cde391b8dfc9aa,0x00e18d69efdfefe5,0x004a9d0591954e91,0x00fa36dd8b50eee5)}, | |||
{FIELD_LITERAL(0x002e788749a865f7,0x006e4dc3116861ea,0x009f1428c37276e6,0x00e7d2e0fc1e1226,0x003aeebc6b6c45f6,0x0071a8073bf500c9,0x004b22ad986b530c,0x00f439e63c0d79d4)}, | |||
{FIELD_LITERAL(0x00b2fa76ac8b829b,0x008fe6bf01865590,0x0059df538e389f40,0x006acd49eeea748a,0x00ab81280b990cfe,0x00c34a54ac57bfe5,0x003889ce9731cedf,0x0081b71cc1b4654d)}, | |||
{FIELD_LITERAL(0x002f194eaafa46dc,0x008e38f57fe87613,0x00dc8e5ae25f4ab2,0x000a17809575e6bd,0x00d3ec7923ba366a,0x003a7e72e0ad75e3,0x0010024b88436e0a,0x00ed3c5444b64051)}, | |||
{FIELD_LITERAL(0x006bc3d53011f470,0x00032d6e692b83e8,0x00059722f497cd0b,0x0009b4e6f0c497cc,0x0058a804b7cce6c0,0x002b71d3302bbd5d,0x00e2f82a36765fce,0x008dded99524c703)}, | |||
{FIELD_LITERAL(0x004d058953747d64,0x00701940fe79aa6f,0x00a620ac71c760bf,0x009532b611158b75,0x00547ed7f466f300,0x003cb5ab53a8401a,0x00c7763168ce3120,0x007e48e33e4b9ab2)}, | |||
{FIELD_LITERAL(0x001b2fc57bf3c738,0x006a3f918993fb80,0x0026f7a14fdec288,0x0075a2cdccef08db,0x00d3ecbc9eecdbf1,0x0048c40f06e5bf7f,0x00d63e423009896b,0x000598bc99c056a8)}, | |||
{FIELD_LITERAL(0x007ce03ecbf50cbd,0x00369ba996b992ca,0x00896d4b33a5f7f0,0x00602b5b8536da60,0x00e1122082ba6d73,0x00c3fbb903ba0d74,0x00d3f8ec55c1daf8,0x006a8f96ca0f0be1)}, | |||
{FIELD_LITERAL(0x001fb73475c45509,0x00d2b2e5ea43345a,0x00cb3c3842077bd1,0x0029f90ad820946e,0x007c11b2380778aa,0x009e54ece62c1704,0x004bc60c41ca01c3,0x004525679a5a0b03)}, | |||
{FIELD_LITERAL(0x002f194eaafa46dc,0x008e38f57fe87613,0x00dc8e5ae25f4ab2,0x000a17809575e6bd,0x00d3ec7923ba366a,0x003a7e72e0ad75e3,0x0010024b88436e0a,0x00ed3c5444b64051)}, | |||
{FIELD_LITERAL(0x00831fc1340af342,0x00c9645669466d35,0x007692b4cc5a080f,0x009fd4a47ac9259f,0x001eeddf7d45928b,0x003c0446fc45f28b,0x002c0713aa3e2507,0x0095706935f0f41e)}, | |||
{FIELD_LITERAL(0x00766ae4190ec6d8,0x0065768cabc71380,0x00b902598416cdc2,0x00380021ad38df52,0x008f0b89d6551134,0x004254d4cc62c5a5,0x000d79f4484b9b94,0x00b516732ae3c50e)}, | |||
{FIELD_LITERAL(0x0039b0422412784c,0x00bf9fe2ee8ce055,0x0063ddb8a4906298,0x00db48625178a0ea,0x009e9012c0fd3c4e,0x00ff30c60950d2c4,0x003b9453f5565977,0x0054dc1d7ff25dfb)}, | |||
{FIELD_LITERAL(0x0017085f4a346148,0x00c7cf7a37f62272,0x001776e129bc5c30,0x009955134c9eef2a,0x001ba5bdf1df07be,0x00ec39497103a55c,0x006578354fda6cfb,0x005f02719d4f15ee)}, | |||
{FIELD_LITERAL(0x001fb73475c45509,0x00d2b2e5ea43345a,0x00cb3c3842077bd1,0x0029f90ad820946e,0x007c11b2380778aa,0x009e54ece62c1704,0x004bc60c41ca01c3,0x004525679a5a0b03)}, | |||
{FIELD_LITERAL(0x00c64fbddbed87b3,0x0040601d11731faa,0x009c22475b6f9d67,0x0024b79dae875f15,0x00616fed3f02c3b0,0x0000cf39f6af2d3b,0x00c46bac0aa9a688,0x00ab23e2800da204)}, | |||
{FIELD_LITERAL(0x000b3a37617632b0,0x00597199fe1cfb6c,0x0042a7ccdfeafdd6,0x004cc9f15ebcea17,0x00f436e596a6b4a4,0x00168861142df0d8,0x000753edfec26af5,0x000c495d7e388116)}, | |||
{FIELD_LITERAL(0x00ad46264a269aa2,0x002b13845e4b9e3c,0x0006a20b68b0d7f4,0x00c271a35ee514ae,0x002b67e14a58f4d8,0x00f5065b099a60d6,0x00ba6737b90514bc,0x00b6265e7c5b898f)}, | |||
{FIELD_LITERAL(0x00b60167d9e7d065,0x00e60ba0d07381e8,0x003a4f17b725c2d4,0x006c19fe176b64fa,0x003b57b31af86ccb,0x0021047c286180fd,0x00bdc8fb00c6dbb6,0x00fe4a9f4bab4f3f)}, | |||
{FIELD_LITERAL(0x0017085f4a346148,0x00c7cf7a37f62272,0x001776e129bc5c30,0x009955134c9eef2a,0x001ba5bdf1df07be,0x00ec39497103a55c,0x006578354fda6cfb,0x005f02719d4f15ee)}, | |||
{FIELD_LITERAL(0x0052b9d9b5d9655d,0x00d4ec7ba1b461c3,0x00f95df4974f280b,0x003d8e5ca11aeb51,0x00d4981eb5a70b26,0x000af9a4f6659f29,0x004598c846faeb43,0x0049d9a183a47670)}, | |||
{FIELD_LITERAL(0x000a72d23dcb3f1f,0x00a3737f84011727,0x00f870c0fbbf4a47,0x00a7aadd04b5c9ca,0x000c7715c67bd072,0x00015a136afcd74e,0x0080d5caea499634,0x0026b448ec7514b7)}, | |||
{FIELD_LITERAL(0x0077003c5e9eee08,0x006eaa1bdba2f437,0x007ae297ddfa8d2a,0x00aa8531e1aeb2d6,0x00ce283cc626efdc,0x00efe2f51d153115,0x00db954c07c84995,0x002ade92c7e00acf)}, | |||
{FIELD_LITERAL(0x00a6295218dc136a,0x00563b3af0e9c012,0x00d3753b0145db1b,0x004550389c043dc1,0x00ea94ae27401bdf,0x002b0b949f2b7956,0x00c63f780ad8e23c,0x00e591c47d6bab15)}, | |||
{FIELD_LITERAL(0x00b60167d9e7d065,0x00e60ba0d07381e8,0x003a4f17b725c2d4,0x006c19fe176b64fa,0x003b57b31af86ccb,0x0021047c286180fd,0x00bdc8fb00c6dbb6,0x00fe4a9f4bab4f3f)}, | |||
{FIELD_LITERAL(0x0088ffc3a16111f7,0x009155e4245d0bc8,0x00851d68220572d5,0x00557ace1e514d29,0x0031d7c339d91022,0x00101d0ae2eaceea,0x00246ab3f837b66a,0x00d5216d381ff530)}, | |||
{FIELD_LITERAL(0x0057e7ea35f36dae,0x00f47d7ad15de22e,0x00d757ea4b105115,0x008311457d579d7e,0x00b49b75b1edd4eb,0x0081c7ff742fd63a,0x00ddda3187433df6,0x00475727d55f9c66)}, | |||
{FIELD_LITERAL(0x00be93a7d4fa7149,0x00bef825a4d3396a,0x004c32daa951139b,0x003f4be7d981a85e,0x00e866d6ca8642d0,0x00b912bba6f1b2f8,0x00e28ba64c9cf5e1,0x0039504574996955)}, | |||
{FIELD_LITERAL(0x002419222c607674,0x00a7f23af89188b3,0x00ad127284e73d1c,0x008bba582fae1c51,0x00fc6aa7ca9ecab1,0x003df5319eb6c2ba,0x002a05af8a8b199a,0x004bf8354558407c)}, | |||
{FIELD_LITERAL(0x00a6295218dc136a,0x00563b3af0e9c012,0x00d3753b0145db1b,0x004550389c043dc1,0x00ea94ae27401bdf,0x002b0b949f2b7956,0x00c63f780ad8e23c,0x00e591c47d6bab15)}, | |||
{FIELD_LITERAL(0x00416c582b058eb6,0x004107da5b2cc695,0x00b3cd2556aeec64,0x00c0b418267e57a1,0x001799293579bd2e,0x0046ed44590e4d07,0x001d7459b3630a1e,0x00c6afba8b6696aa)}, | |||
{FIELD_LITERAL(0x008d6009b26da3f8,0x00898e88ca06b1ca,0x00edb22b2ed7fe62,0x00fbc93516aabe80,0x008b4b470c42ce0d,0x00e0032ba7d0dcbb,0x00d76da3a956ecc8,0x007f20fe74e3852a)}, | |||
{FIELD_LITERAL(0x003182b5cf0f0340,0x002fd3d8d9d60fc2,0x00b73ffe08bff43d,0x00d3dec97fee6a72,0x00675aafc6e16949,0x00d27f499c6f0c86,0x00e0578789f3387a,0x00e52031ab49ec2a)}, | |||
{FIELD_LITERAL(0x006b7a0674f9f8de,0x00a742414e5c7cff,0x0041cbf3c6e13221,0x00e3a64fd207af24,0x0087c05f15fbe8d1,0x004c50936d9e8a33,0x001306ec21042b6d,0x00a4f4137d1141c2)}, | |||
{FIELD_LITERAL(0x002419222c607674,0x00a7f23af89188b3,0x00ad127284e73d1c,0x008bba582fae1c51,0x00fc6aa7ca9ecab1,0x003df5319eb6c2ba,0x002a05af8a8b199a,0x004bf8354558407c)}, | |||
{FIELD_LITERAL(0x00ce7d4a30f0fcbf,0x00d02c272629f03d,0x0048c001f7400bc2,0x002c21368011958d,0x0098a550391e96b5,0x002d80b66390f379,0x001fa878760cc785,0x001adfce54b613d5)}, | |||
{FIELD_LITERAL(0x001ed4dc71fa2523,0x005d0bff19bf9b5c,0x00c3801cee065a64,0x001ed0b504323fbf,0x0003ab9fdcbbc593,0x00df82070178b8d2,0x00a2bcaa9c251f85,0x00c628a3674bd02e)}, | |||
{FIELD_LITERAL(0x00f619046dea974f,0x004c39fedfde6ee7,0x00d593cb9f22afc5,0x00624e10ee9ab4ab,0x009c1b40f41869fd,0x0098f2cb44da6d46,0x002311d093becf31,0x004d97d1771880ab)}, | |||
{FIELD_LITERAL(0x00ddbe0750dd1add,0x004b3c7b885844b8,0x00363e7ecf12f1ae,0x0062e953e6438f9d,0x0023cc73b076afe9,0x00b09fa083b4da32,0x00c7c3d2456c541d,0x005b591ec6b694d4)}, | |||
{FIELD_LITERAL(0x006b7a0674f9f8de,0x00a742414e5c7cff,0x0041cbf3c6e13221,0x00e3a64fd207af24,0x0087c05f15fbe8d1,0x004c50936d9e8a33,0x001306ec21042b6d,0x00a4f4137d1141c2)}, | |||
{FIELD_LITERAL(0x0009e6fb921568b0,0x00b3c60120219118,0x002a6c3460dd503a,0x009db1ef11654b54,0x0063e4bf0be79601,0x00670d34bb2592b9,0x00dcee2f6c4130ce,0x00b2682e88e77f54)}, | |||
{FIELD_LITERAL(0x000d5b4b3da135ab,0x00838f3e5064d81d,0x00d44eb50f6d94ed,0x0008931ab502ac6d,0x00debe01ca3d3586,0x0025c206775f0641,0x005ad4b6ae912763,0x007e2c318ad8f247)}, | |||
{FIELD_LITERAL(0x00d79a91e629d030,0x00ad5b50fc20eb72,0x00edd89a222eb1bd,0x000ddad6fb098ea8,0x00b8be69a49c90c4,0x009bbe2d69ecd346,0x00a1def906a95a48,0x00db8fd6a6d2cca3)}, | |||
{FIELD_LITERAL(0x00c41d1f9c1f1ac1,0x007b2df4e9f19146,0x00b469355fd5ba7a,0x00b5e1965afc852a,0x00388d5f1e2d8217,0x0022079e4c09ae93,0x0014268acd4ef518,0x00c1dd8d9640464c)}, | |||
{FIELD_LITERAL(0x00ddbe0750dd1add,0x004b3c7b885844b8,0x00363e7ecf12f1ae,0x0062e953e6438f9d,0x0023cc73b076afe9,0x00b09fa083b4da32,0x00c7c3d2456c541d,0x005b591ec6b694d4)}, | |||
{FIELD_LITERAL(0x0028656e19d62fcf,0x0052a4af03df148d,0x00122765ddd14e42,0x00f2252904f67157,0x004741965b636f3a,0x006441d296132cb9,0x005e2106f956a5b7,0x00247029592d335c)}, | |||
{FIELD_LITERAL(0x003fe038eb92f894,0x000e6da1b72e8e32,0x003a1411bfcbe0fa,0x00b55d473164a9e4,0x00b9a775ac2df48d,0x0002ddf350659e21,0x00a279a69eb19cb3,0x00f844eab25cba44)}, | |||
{FIELD_LITERAL(0x00c7ad952112f3aa,0x00229739f81c017a,0x0008b9222b75a2a8,0x00bd0d6ad469c483,0x00e344297892a13c,0x00a1cbeb8f435a3d,0x0078e2be1f7a0bec,0x001ac54f670ba8cd)}, | |||
{FIELD_LITERAL(0x00adb2c1566e8b8f,0x0096c68a35771a9a,0x00869933356f334a,0x00ba9c93459f5962,0x009ec73fb6e8ca4b,0x003c3802c27202e1,0x0031f5b733e0c008,0x00f9058c19611fa9)}, | |||
{FIELD_LITERAL(0x00c41d1f9c1f1ac1,0x007b2df4e9f19146,0x00b469355fd5ba7a,0x00b5e1965afc852a,0x00388d5f1e2d8217,0x0022079e4c09ae93,0x0014268acd4ef518,0x00c1dd8d9640464c)}, | |||
{FIELD_LITERAL(0x0038526adeed0c55,0x00dd68c607e3fe85,0x00f746ddd48a5d57,0x0042f2952b963b7c,0x001cbbd6876d5ec2,0x005e341470bca5c2,0x00871d41e085f413,0x00e53ab098f45732)}, | |||
{FIELD_LITERAL(0x004d51124797c831,0x008f5ae3750347ad,0x0070ced94c1a0c8e,0x00f6db2043898e64,0x000d00c9a5750cd0,0x000741ec59bad712,0x003c9d11aab37b7f,0x00a67ba169807714)}, | |||
{FIELD_LITERAL(0x00dc70fe7eb5cbde,0x003cda5bb49331d7,0x00dec9068514f18c,0x00f3537d975b501d,0x00dd02de725b8e4b,0x0062327200072106,0x0034607e7e266644,0x00ebc51a91215cb6)}, | |||
{FIELD_LITERAL(0x00a5187e6ee7341b,0x00e6d52e82d83b6e,0x00df3c41323094a7,0x00b3324f444e9de9,0x00689eb21a35bfe5,0x00f16363becd548d,0x00e187cc98e7f60f,0x00127d9062f0ccab)}, | |||
{FIELD_LITERAL(0x00adb2c1566e8b8f,0x0096c68a35771a9a,0x00869933356f334a,0x00ba9c93459f5962,0x009ec73fb6e8ca4b,0x003c3802c27202e1,0x0031f5b733e0c008,0x00f9058c19611fa9)}, | |||
{FIELD_LITERAL(0x00238f01814a3421,0x00c325a44b6cce28,0x002136f97aeb0e73,0x000cac8268a4afe2,0x0022fd218da471b3,0x009dcd8dfff8def9,0x00cb9f8181d999bb,0x00143ae56edea349)}, | |||
{FIELD_LITERAL(0x0000623bf87622c5,0x00a1966fdd069496,0x00c315b7b812f9fc,0x00bdf5efcd128b97,0x001d464f532e3e16,0x003cd94f081bfd7e,0x00ed9dae12ce4009,0x002756f5736eee70)}, | |||
{FIELD_LITERAL(0x00b528e4ce3d61bf,0x005a03531ed051d6,0x00bbda4aa68d7f12,0x001810a28e93ccb9,0x00ef4ac525bef536,0x006dcefdd9f9f364,0x006e3d9ed78d6381,0x00774bd6ff0713c4)}, | |||
{FIELD_LITERAL(0x00c13c5aae3ae341,0x009c6c9ed98373e7,0x00098f26864577a8,0x0015b886e9488b45,0x0037692c42aadba5,0x00b83170b8e7791c,0x001670952ece1b44,0x00fd932a39276da2)}, | |||
{FIELD_LITERAL(0x00a5187e6ee7341b,0x00e6d52e82d83b6e,0x00df3c41323094a7,0x00b3324f444e9de9,0x00689eb21a35bfe5,0x00f16363becd548d,0x00e187cc98e7f60f,0x00127d9062f0ccab)}, | |||
{FIELD_LITERAL(0x004ad71b31c29e40,0x00a5fcace12fae29,0x004425b5597280ed,0x00e7ef5d716c3346,0x0010b53ada410ac8,0x0092310226060c9b,0x0091c26128729c7e,0x0088b42900f8ec3b)}, | |||
{FIELD_LITERAL(0x00f1e26e9762d4a8,0x00d9d74082183414,0x00ffec9bd57a0282,0x000919e128fd497a,0x00ab7ae7d00fe5f8,0x0054dc442851ff68,0x00c9ebeb3b861687,0x00507f7cab8b698f)}, | |||
{FIELD_LITERAL(0x007e5cda6410cc67,0x00ab7f000be9ef84,0x0031b09f82de4167,0x00c003f7b4be2064,0x00bc2f44effafd2d,0x0013ca0a8a45cd9e,0x0035e70988cff10c,0x001744f57d827ab7)}, | |||
{FIELD_LITERAL(0x009ae3b93a56c404,0x004a410b7a456699,0x00023a619355e6b2,0x009cdc7297387257,0x0055b94d4ae70d04,0x002cbd607f65b005,0x003208b489697166,0x00ea2aa058867370)}, | |||
{FIELD_LITERAL(0x00c13c5aae3ae341,0x009c6c9ed98373e7,0x00098f26864577a8,0x0015b886e9488b45,0x0037692c42aadba5,0x00b83170b8e7791c,0x001670952ece1b44,0x00fd932a39276da2)}, | |||
{FIELD_LITERAL(0x0081a3259bef3398,0x005480fff416107b,0x00ce4f607d21be98,0x003ffc084b41df9b,0x0043d0bb100502d1,0x00ec35f575ba3261,0x00ca18f677300ef3,0x00e8bb0a827d8548)}, | |||
{FIELD_LITERAL(0x00df76b3328ada72,0x002e20621604a7c2,0x00f910638a105b09,0x00ef4724d96ef2cd,0x00377d83d6b8a2f7,0x00b4f48805ade324,0x001cd5da8b152018,0x0045af671a20ca7f)}, | |||
{FIELD_LITERAL(0x000d62da6711c0cd,0x004b53ac7a27d523,0x0089cc150fb20e64,0x0055d2c2883154fe,0x00b5dcfd03448874,0x006d80dda2a505cb,0x00b57162afb80dc8,0x007ddb5162431acf)}, | |||
{FIELD_LITERAL(0x00c845923c084294,0x00072419a201bc25,0x0045f408b5f8e669,0x00e9d6a186b74dfe,0x00e19108c68fa075,0x0017b91d874177b7,0x002f0ca2c7912c5a,0x009400aa385a90a2)}, | |||
{FIELD_LITERAL(0x009ae3b93a56c404,0x004a410b7a456699,0x00023a619355e6b2,0x009cdc7297387257,0x0055b94d4ae70d04,0x002cbd607f65b005,0x003208b489697166,0x00ea2aa058867370)}, | |||
{FIELD_LITERAL(0x00f29d2598ee3f32,0x00b4ac5385d82adc,0x007633eaf04df19b,0x00aa2d3d77ceab01,0x004a2302fcbb778a,0x00927f225d5afa34,0x004a8e9d5047f237,0x008224ae9dbce530)}, | |||
{FIELD_LITERAL(0x001cf640859b02f8,0x00758d1d5d5ce427,0x00763c784ef4604c,0x005fa81aee205270,0x00ac537bfdfc44cb,0x004b919bd342d670,0x00238508d9bf4b7a,0x00154888795644f3)}, | |||
{FIELD_LITERAL(0x008eeef4feb7de7b,0x003012ffbb0d4107,0x00cb0d6fe30b99d1,0x00c4b51d598067cb,0x003356469016b7ee,0x00addaf85188542f,0x004538bdd8de18c1,0x00999dd4f0c59d4f)}, | |||
{FIELD_LITERAL(0x0026ef1614e160af,0x00c023f9edfc9c76,0x00cff090da5f57ba,0x0076db7a66643ae9,0x0019462f8c646999,0x008fec00b3854b22,0x00d55041692a0a1c,0x0065db894215ca00)}, | |||
{FIELD_LITERAL(0x00c845923c084294,0x00072419a201bc25,0x0045f408b5f8e669,0x00e9d6a186b74dfe,0x00e19108c68fa075,0x0017b91d874177b7,0x002f0ca2c7912c5a,0x009400aa385a90a2)}, | |||
{FIELD_LITERAL(0x0071110b01482184,0x00cfed0044f2bef8,0x0034f2901cf4662e,0x003b4ae2a67f9834,0x00cca9b96fe94810,0x00522507ae77abd0,0x00bac7422721e73e,0x0066622b0f3a62b0)}, | |||
{FIELD_LITERAL(0x00f8ac5cf4705b6a,0x00867d82dcb457e3,0x007e13ab2ccc2ce9,0x009ee9a018d3930e,0x008370f8ecb42df8,0x002d9f019add263e,0x003302385b92d196,0x00a15654536e2c0c)}, | |||
{FIELD_LITERAL(0x0056dafc91f5bae3,0x00d5fc6f3c94933e,0x000d8fdf26f76b0b,0x00726f2ad342c280,0x001e2fec8c6d0c46,0x000fe83ea74ae570,0x00353cec2c128243,0x0046657e1c14bd2c)}, | |||
{FIELD_LITERAL(0x008cc9cd236315c0,0x0031d9c5b39fda54,0x00a5713ef37e1171,0x00293d5ae2886325,0x00c4aba3e05015e1,0x0003f35ef78e4fc6,0x0039d6bd3ac1527b,0x0019d7c3afb77106)}, | |||
{FIELD_LITERAL(0x0026ef1614e160af,0x00c023f9edfc9c76,0x00cff090da5f57ba,0x0076db7a66643ae9,0x0019462f8c646999,0x008fec00b3854b22,0x00d55041692a0a1c,0x0065db894215ca00)}, | |||
{FIELD_LITERAL(0x00a925036e0a451c,0x002a0390c36b6cc1,0x00f27020d90894f4,0x008d90d52cbd3d7f,0x00e1d0137392f3b8,0x00f017c158b51a8f,0x00cac313d3ed7dbc,0x00b99a81e3eb42d3)}, | |||
{FIELD_LITERAL(0x00b54850275fe626,0x0053a3fd1ec71140,0x00e3d2d7dbe096fa,0x00e4ac7b595cce4c,0x0077bad449c0a494,0x00b7c98814afd5b3,0x0057226f58486cf9,0x00b1557154f0cc57)}, | |||
{FIELD_LITERAL(0x0084e9d6ce567a50,0x0052bf5d1f2558ec,0x00920d83bff60ee7,0x00afc160b1d17413,0x008ae58837d3e7d1,0x00fd676c8896dba4,0x00004e170540611a,0x00f7ccb8f91f6541)}, | |||
{FIELD_LITERAL(0x004246bfcecc627a,0x004ba431246c03a4,0x00bd1d101872d497,0x003b73d3f185ee16,0x001feb2e2678c0e3,0x00ff13c5a89dec76,0x00ed06042e771d8f,0x00a4fd2a897a83dd)}, | |||
{FIELD_LITERAL(0x008cc9cd236315c0,0x0031d9c5b39fda54,0x00a5713ef37e1171,0x00293d5ae2886325,0x00c4aba3e05015e1,0x0003f35ef78e4fc6,0x0039d6bd3ac1527b,0x0019d7c3afb77106)}, | |||
{FIELD_LITERAL(0x007b162931a985af,0x00ad40a2e0daa713,0x006df27c4009f118,0x00503e9f4e2e8bec,0x00751a77c82c182d,0x000298937769245b,0x00ffb1e8fabf9ee5,0x0008334706e09abe)}, | |||
{FIELD_LITERAL(0x00dbca4e98a7dcd9,0x00ee29cfc78bde99,0x00e4a3b6995f52e9,0x0045d70189ae8096,0x00fd2a8a3b9b0d1b,0x00af1793b107d8e1,0x00dbf92cbe4afa20,0x00da60f798e3681d)}, | |||
{FIELD_LITERAL(0x0065b5c41af29a68,0x0021ce9a03a5ef69,0x00b0c0a91cba4f38,0x0008408de2a54743,0x00bcec1b84f673ae,0x001b382a3f1e5244,0x00d1c1c24c9afae1,0x005b7f3d32956904)}, | |||
{FIELD_LITERAL(0x004ede34af2813f3,0x00d4a8e11c9e8216,0x004796d5041de8a5,0x00c4c6b4d21cc987,0x00e8a433ee07fa1e,0x0055720b5abcc5a1,0x008873ea9c74b080,0x005b3fec1ab65d48)}, | |||
{FIELD_LITERAL(0x004246bfcecc627a,0x004ba431246c03a4,0x00bd1d101872d497,0x003b73d3f185ee16,0x001feb2e2678c0e3,0x00ff13c5a89dec76,0x00ed06042e771d8f,0x00a4fd2a897a83dd)}, | |||
{FIELD_LITERAL(0x009a4a3be50d6597,0x00de3165fc5a1096,0x004f3f56e345b0c7,0x00f7bf721d5ab8bc,0x004313e47b098c50,0x00e4c7d5c0e1adbb,0x002e3e3db365051e,0x00a480c2cd6a96fb)}, | |||
{FIELD_LITERAL(0x00417fa30a7119ed,0x00af257758419751,0x00d358a487b463d4,0x0089703cc720b00d,0x00ce56314ff7f271,0x0064db171ade62c1,0x00640b36d4a22fed,0x00424eb88696d23f)}, | |||
{FIELD_LITERAL(0x00b81ad88248f13a,0x00f5f69399248294,0x004be9b33e8cfea6,0x00b56087c018df01,0x0057e8846bbb6242,0x006a5db00b65a660,0x00963e3a87daf343,0x00badfe6dec2140b)}, | |||
{FIELD_LITERAL(0x001bd59c09e982ea,0x00f72daeb937b289,0x0018b76dca908e0e,0x00edb498512384ad,0x00ce0243b6cc9538,0x00f96ff690cb4e70,0x007c77bf9f673c8d,0x005bf704c088a528)}, | |||
{FIELD_LITERAL(0x004ede34af2813f3,0x00d4a8e11c9e8216,0x004796d5041de8a5,0x00c4c6b4d21cc987,0x00e8a433ee07fa1e,0x0055720b5abcc5a1,0x008873ea9c74b080,0x005b3fec1ab65d48)}, | |||
{FIELD_LITERAL(0x0047e5277db70ec5,0x000a096c66db7d6b,0x00b4164cc1730159,0x004a9f783fe720fe,0x00a8177b94449dbc,0x0095a24ff49a599f,0x0069c1c578250cbc,0x00452019213debf4)}, | |||
{FIELD_LITERAL(0x0021ce99e09ebda3,0x00fcbd9f91875ad0,0x009bbf6b7b7a0b5f,0x00388886a69b1940,0x00926a56d0f81f12,0x00e12903c3358d46,0x005dfce4e8e1ce9d,0x0044cfa94e2f7e23)}, | |||
{FIELD_LITERAL(0x006c2b9d7234cc41,0x006ad9c2ae2bda7d,0x00b64cdddba701f9,0x00180318c49ac580,0x00c35d14319f4c95,0x003a21dc65cd415b,0x009c474c28e04940,0x00c65114875e57c6)}, | |||
{FIELD_LITERAL(0x00fb22bb5fd3ce50,0x0017b48aada7ae54,0x00fd5c44ad19a536,0x000ccc4e4e55e45c,0x00fd637d45b4c3f5,0x0038914e023c37cf,0x00ac1881d6a8d898,0x00611ed8d3d943a8)}, | |||
{FIELD_LITERAL(0x001bd59c09e982ea,0x00f72daeb937b289,0x0018b76dca908e0e,0x00edb498512384ad,0x00ce0243b6cc9538,0x00f96ff690cb4e70,0x007c77bf9f673c8d,0x005bf704c088a528)}, | |||
{FIELD_LITERAL(0x0093d4628dcb33be,0x0095263d51d42582,0x0049b3222458fe06,0x00e7fce73b653a7f,0x003ca2ebce60b369,0x00c5de239a32bea4,0x0063b8b3d71fb6bf,0x0039aeeb78a1a839)}, | |||
{FIELD_LITERAL(0x007dc52da400336c,0x001fded1e15b9457,0x00902e00f5568e3a,0x00219bef40456d2d,0x005684161fb3dbc9,0x004a4e9be49a76ea,0x006e685ae88b78ff,0x0021c42f13042d3c)}, | |||
{FIELD_LITERAL(0x00a91dda62eec2d4,0x00a6b7e64d7b13e9,0x00384086b44c9969,0x008de118af683239,0x0008e416fb85d76c,0x0020945ebda9b120,0x0096a7f485e7b172,0x000fa91c7035f011)}, | |||
{FIELD_LITERAL(0x005e8694077a1535,0x008bef75f71c8f1d,0x000a7c1316423511,0x00906e1d70604320,0x003fc46c1a2ffbd6,0x00d1d5022e68f360,0x002515fba37bbf46,0x00ca16234e023b44)}, | |||
{FIELD_LITERAL(0x00fb22bb5fd3ce50,0x0017b48aada7ae54,0x00fd5c44ad19a536,0x000ccc4e4e55e45c,0x00fd637d45b4c3f5,0x0038914e023c37cf,0x00ac1881d6a8d898,0x00611ed8d3d943a8)}, | |||
{FIELD_LITERAL(0x0056e2259d113d2b,0x00594819b284ec16,0x00c7bf794bb36696,0x00721ee75097cdc6,0x00f71be9047a2892,0x00df6ba142564edf,0x0069580b7a184e8d,0x00f056e38fca0fee)}, | |||
{FIELD_LITERAL(0x009df98566a18c6d,0x00cf3a200968f219,0x0044ba60da6d9086,0x00dbc9c0e344da03,0x000f9401c4466855,0x00d46a57c5b0a8d1,0x00875a635d7ac7c6,0x00ef4a933b7e0ae6)}, | |||
{FIELD_LITERAL(0x00878366a9e0b96f,0x0057a8573ea9e0d8,0x005ef206ddc3f601,0x0046756a9d1c4eab,0x00bccf478bb3c12c,0x001f97ed7f813a3b,0x001b309582460e1c,0x0026a4f760ecd5cb)}, | |||
{FIELD_LITERAL(0x00139078397030bd,0x000e3c447e859a00,0x0064a5b334c82393,0x00b8aabeb7358093,0x00020778bb9ae73b,0x0032ee94c7892a18,0x008215253cb41bda,0x005e2797593517ae)}, | |||
{FIELD_LITERAL(0x005e8694077a1535,0x008bef75f71c8f1d,0x000a7c1316423511,0x00906e1d70604320,0x003fc46c1a2ffbd6,0x00d1d5022e68f360,0x002515fba37bbf46,0x00ca16234e023b44)}, | |||
{FIELD_LITERAL(0x00787c99561f4690,0x00a857a8c1561f27,0x00a10df9223c09fe,0x00b98a9562e3b154,0x004330b8744c3ed2,0x00e06812807ec5c4,0x00e4cf6a7db9f1e3,0x00d95b089f132a34)}, | |||
{FIELD_LITERAL(0x002922b39ca33eec,0x0090d12a5f3ab194,0x00ab60c02fb5f8ed,0x00188d292abba1cf,0x00e10edec9698f6e,0x0069a4d9934133c8,0x0024aac40e6d3d06,0x001702c2177661b0)}, | |||
{FIELD_LITERAL(0x007c89a5a07aa2b5,0x00ae492ecae4711d,0x00ee921ab74f0844,0x007842778fc5005f,0x006a4d33cb28022c,0x007b327e4ac0f437,0x007a9d0366acaf12,0x005c6544e6c9ae1c)}, | |||
{FIELD_LITERAL(0x0091868594265aa2,0x00797accae98ca6d,0x0008d8c5f0f8a184,0x00d1f4f1c2b2fe6e,0x0036783dfb48a006,0x008c165120503527,0x0025fd780058ce9b,0x0068beb007be7d27)}, | |||
{FIELD_LITERAL(0x00139078397030bd,0x000e3c447e859a00,0x0064a5b334c82393,0x00b8aabeb7358093,0x00020778bb9ae73b,0x0032ee94c7892a18,0x008215253cb41bda,0x005e2797593517ae)}, | |||
{FIELD_LITERAL(0x0083765a5f855d4a,0x0051b6d1351b8ee2,0x00116de548b0f7bb,0x0087bd88703affa0,0x0095b2cc34d7fdd2,0x0084cd81b53f0bc8,0x008562fc995350ed,0x00a39abb193651e3)}, | |||
{FIELD_LITERAL(0x0019e23f0474b114,0x00eb94c2ad3b437e,0x006ddb34683b75ac,0x00391f9209b564c6,0x00083b3bb3bff7aa,0x00eedcd0f6dceefc,0x00b50817f794fe01,0x0036474deaaa75c9)}, | |||
{FIELD_LITERAL(0x002f007755836f3d,0x004d39f2530acc6b,0x006b58d7b2699929,0x004126fdd3185e62,0x003aeaac0f32897c,0x003c0478f4edb66d,0x0072f43ac66a9364,0x0003730da744777a)}, | |||
{FIELD_LITERAL(0x0045fdc16487cda3,0x00b2d8e844cf2ed7,0x00612c50e88c1607,0x00a08aabc66c1672,0x006031fdcbb24d97,0x001b639525744b93,0x004409d62639ab17,0x00a1853d0347ab1d)}, | |||
{FIELD_LITERAL(0x0091868594265aa2,0x00797accae98ca6d,0x0008d8c5f0f8a184,0x00d1f4f1c2b2fe6e,0x0036783dfb48a006,0x008c165120503527,0x0025fd780058ce9b,0x0068beb007be7d27)}, | |||
{FIELD_LITERAL(0x00d0ff88aa7c90c2,0x00b2c60dacf53394,0x0094a7284d9666d6,0x00bed9022ce7a19d,0x00c51553f0cd7682,0x00c3fb870b124992,0x008d0bc539956c9b,0x00fc8cf258bb8885)}, | |||
{FIELD_LITERAL(0x003667bf998406f8,0x0000115c43a12975,0x001e662f3b20e8fd,0x0019ffa534cb24eb,0x00016be0dc8efb45,0x00ff76a8b26243f5,0x00ae20d241a541e3,0x0069bd6af13cd430)}, | |||
{FIELD_LITERAL(0x008a5e5a9140a3de,0x005c18d41653ac12,0x0010321e9d6e8f3d,0x00fbdda016e10aca,0x0077fb6038c20257,0x00b5438b7a81ed77,0x00db1dbcb9a8ce83,0x0026734c2c1aabc3)}, | |||
{FIELD_LITERAL(0x007e32c049b5c477,0x009d2bfdbd9bcfd8,0x00636e93045938c6,0x007fde4af7687298,0x0046a5184fafa5d3,0x0079b1e7f13a359b,0x00875adf1fb927d6,0x00333e21c61bcad2)}, | |||
{FIELD_LITERAL(0x0045fdc16487cda3,0x00b2d8e844cf2ed7,0x00612c50e88c1607,0x00a08aabc66c1672,0x006031fdcbb24d97,0x001b639525744b93,0x004409d62639ab17,0x00a1853d0347ab1d)}, | |||
{FIELD_LITERAL(0x0075a1a56ebf5c21,0x00a3e72be9ac53ed,0x00efcde1629170c2,0x0004225fe91ef535,0x0088049fc73dfda7,0x004abc74857e1288,0x0024e2434657317c,0x00d98cb3d3e5543c)}, | |||
{FIELD_LITERAL(0x00b4b53eab6bdb19,0x009b22d8b43711d0,0x00d948b9d961785d,0x00cb167b6f279ead,0x00191de3a678e1c9,0x00d9dd9511095c2e,0x00f284324cd43067,0x00ed74fa535151dd)}, | |||
{FIELD_LITERAL(0x00fb7feb08c27472,0x008a97b55f699c77,0x006d41820f923b83,0x006831432f0aa975,0x00a58ffb263b3955,0x004f13449a66db38,0x0026fccd22b6d583,0x00a803eb20eeb6c2)}, | |||
{FIELD_LITERAL(0x007df6cbb926830b,0x00d336058ae37865,0x007af47dac696423,0x0048d3011ec64ac8,0x006b87666e40049f,0x0036a2e0e51303d7,0x00ba319bd79dbc55,0x003e2737ecc94f53)}, | |||
{FIELD_LITERAL(0x007e32c049b5c477,0x009d2bfdbd9bcfd8,0x00636e93045938c6,0x007fde4af7687298,0x0046a5184fafa5d3,0x0079b1e7f13a359b,0x00875adf1fb927d6,0x00333e21c61bcad2)}, | |||
{FIELD_LITERAL(0x00048014f73d8b8d,0x0075684aa0966388,0x0092be7df06dc47c,0x0097cebcd0f5568a,0x005a7004d9c4c6a9,0x00b0ecbb659924c7,0x00d90332dd492a7c,0x0057fc14df11493d)}, | |||
{FIELD_LITERAL(0x0008ed8ea0ad95be,0x0041d324b9709645,0x00e25412257a19b4,0x0058df9f3423d8d2,0x00a9ab20def71304,0x009ae0dbf8ac4a81,0x00c9565977e4392a,0x003c9269444baf55)}, | |||
{FIELD_LITERAL(0x002d69008d9d8d26,0x00092f686d7030a8,0x001f19e95aa28fec,0x002150bab1261538,0x008c5a941210b26c,0x009330209036d1e6,0x0062e11ec8e58de7,0x0011c3d11bb9d27f)}, | |||
{FIELD_LITERAL(0x008132ae5c5d8cd1,0x00121d68324a1d9f,0x00d6be9dafcb8c76,0x00684d9070edf745,0x00519fbc96d7448e,0x00388182fdc1f27e,0x000235baed41f158,0x00bf6cf6f1a1796a)}, | |||
{FIELD_LITERAL(0x007df6cbb926830b,0x00d336058ae37865,0x007af47dac696423,0x0048d3011ec64ac8,0x006b87666e40049f,0x0036a2e0e51303d7,0x00ba319bd79dbc55,0x003e2737ecc94f53)}, | |||
{FIELD_LITERAL(0x00d296ff726272d9,0x00f6d097928fcf57,0x00e0e616a55d7013,0x00deaf454ed9eac7,0x0073a56bedef4d92,0x006ccfdf6fc92e19,0x009d1ee1371a7218,0x00ee3c2ee4462d80)}, | |||
{FIELD_LITERAL(0x00437bce9bccdf9d,0x00e0c8e2f85dc0a3,0x00c91a7073995a19,0x00856ec9fe294559,0x009e4b33394b156e,0x00e245b0dc497e5c,0x006a54e687eeaeff,0x00f1cd1cd00fdb7c)}, | |||
{FIELD_LITERAL(0x00d523b4b2eb7de6,0x00cf7b525f2c56f5,0x00b9217554f0d1b1,0x00bad2cbd5984a02,0x002b4af0fe2b21dd,0x002492603f310486,0x0073e7b3795b9d32,0x001e837c89b2bd25)}, | |||
{FIELD_LITERAL(0x00ce382dc7993d92,0x00021153e938b4c8,0x00096f7567f48f51,0x0058f81ddfe4b0d5,0x00cc379a56b355c7,0x002c760770d3e819,0x00ee22d1d26e5a40,0x00de6d93d5b082d7)}, | |||
{FIELD_LITERAL(0x008132ae5c5d8cd1,0x00121d68324a1d9f,0x00d6be9dafcb8c76,0x00684d9070edf745,0x00519fbc96d7448e,0x00388182fdc1f27e,0x000235baed41f158,0x00bf6cf6f1a1796a)}, | |||
{FIELD_LITERAL(0x002adc4b4d148219,0x003084ada0d3a90a,0x0046de8aab0f2e4e,0x00452d342a67b5fd,0x00d4b50f01d4de21,0x00db6d9fc0cefb79,0x008c184c86a462cd,0x00e17c83764d42da)}, | |||
{FIELD_LITERAL(0x007b2743b9a1e01a,0x007847ffd42688c4,0x006c7844d610a316,0x00f0cb8b250aa4b0,0x00a19060143b3ae6,0x0014eb10b77cfd80,0x000170905729dd06,0x00063b5b9cd72477)}, | |||
{FIELD_LITERAL(0x00f56e5bd3ad1fa9,0x00e7a09488031815,0x00f7fc3ae69d094a,0x00ddad7a7d45a9c2,0x00bc07fbf167a928,0x007a5d6137e0479f,0x00a0659eeab60a00,0x003e068b1342b4f9)}, | |||
{FIELD_LITERAL(0x00ffc5c89d2b0cba,0x00d363d42e3e6fc3,0x0019a1a0118e2e8a,0x00f7baeff48882e1,0x001bd5af28c6b514,0x0055476ca2253cb2,0x00d8eb1977e2ddf3,0x00b173b1adb228a1)}, | |||
{FIELD_LITERAL(0x00ce382dc7993d92,0x00021153e938b4c8,0x00096f7567f48f51,0x0058f81ddfe4b0d5,0x00cc379a56b355c7,0x002c760770d3e819,0x00ee22d1d26e5a40,0x00de6d93d5b082d7)}, | |||
{FIELD_LITERAL(0x000a91a42c52e056,0x00185f6b77fce7ea,0x000803c51962f6b5,0x0022528582ba563d,0x0043f8040e9856d6,0x0085a29ec81fb860,0x005f9a611549f5ff,0x00c1f974ecbd4b06)}, | |||
{FIELD_LITERAL(0x005b64c6fd65ec97,0x00c1fdd7f877bc7f,0x000d9cc6c89f841c,0x005c97b7f1aff9ad,0x0075e3c61475d47e,0x001ecb1ba8153011,0x00fe7f1c8d71d40d,0x003fa9757a229832)}, | |||
{FIELD_LITERAL(0x000d346622f528f8,0x001e1f7497a62227,0x00fff70d2f9af433,0x002812c6d079ea3c,0x006898af56b25d7f,0x00c17c44f1349645,0x00207172ea3eb539,0x000608e8bd6a263d)}, | |||
{FIELD_LITERAL(0x002389319450f9ba,0x003677f31aa1250a,0x0092c3db642f38cb,0x00f8b64c0dfc9773,0x00cd49fe3505b795,0x0068105a4090a510,0x00df0ba2072a8bb6,0x00eb396143afd8be)}, | |||
{FIELD_LITERAL(0x00ffc5c89d2b0cba,0x00d363d42e3e6fc3,0x0019a1a0118e2e8a,0x00f7baeff48882e1,0x001bd5af28c6b514,0x0055476ca2253cb2,0x00d8eb1977e2ddf3,0x00b173b1adb228a1)}, | |||
{FIELD_LITERAL(0x00f2cb99dd0ad707,0x00e1e08b6859ddd8,0x000008f2d0650bcc,0x00d7ed392f8615c3,0x00976750a94da27f,0x003e83bb0ecb69ba,0x00df8e8d15c14ac6,0x00f9f7174295d9c2)}, | |||
{FIELD_LITERAL(0x00f11cc8e0e70bcb,0x00e5dc689974e7dd,0x0014e409f9ee5870,0x00826e6689acbd63,0x008a6f4e3d895d88,0x00b26a8da41fd4ad,0x000fb7723f83efd7,0x009c749db0a5f6c3)}, | |||
{FIELD_LITERAL(0x005f2b1304db3200,0x0022507ff7459b86,0x000f4c1c92b4f0bb,0x00c8cb42c50e0eb9,0x004781d1038aad80,0x002dcf20aa2254af,0x00d9ecda851a93e2,0x0043f6b92eca6cb2)}, | |||
{FIELD_LITERAL(0x0067f8f0c4fe26c9,0x0079c4a3cc8f67b9,0x0082b1e62f23550d,0x00f2d409caefd7f5,0x0080e67dcdb26e81,0x0087ae993ea1f98a,0x00aa108becf61d03,0x001acf11efb608a3)}, | |||
{FIELD_LITERAL(0x002389319450f9ba,0x003677f31aa1250a,0x0092c3db642f38cb,0x00f8b64c0dfc9773,0x00cd49fe3505b795,0x0068105a4090a510,0x00df0ba2072a8bb6,0x00eb396143afd8be)}, | |||
{FIELD_LITERAL(0x00a0d4ecfb24cdff,0x00ddaf8008ba6479,0x00f0b3e36d4b0f44,0x003734bd3af1f146,0x00b87e2efc75527e,0x00d230df55ddab50,0x002613257ae56c1d,0x00bc0946d135934d)}, | |||
{FIELD_LITERAL(0x00468711bd994651,0x0033108fa67561bf,0x0089d760192a54b4,0x00adc433de9f1871,0x000467d05f36e050,0x007847e0f0579f7f,0x00a2314ad320052d,0x00b3a93649f0b243)}, | |||
{FIELD_LITERAL(0x007dda014454af26,0x000c49fa1b22df7c,0x005cd4d7e761dc2d,0x002af81a1a14b368,0x00a5e57b1cfd7ddf,0x00f90ab3e3a0f738,0x005cb83734d7bc0f,0x00f608c16abb405a)}, | |||
{FIELD_LITERAL(0x00e828333c297f8b,0x009ef3cf8c3f7e1f,0x00ab45f8fff31cb9,0x00c8b4178cb0b013,0x00d0c50dd3260a3f,0x0097126ac257f5bc,0x0042376cc90c705a,0x001d96fdb4a1071e)}, | |||
{FIELD_LITERAL(0x0067f8f0c4fe26c9,0x0079c4a3cc8f67b9,0x0082b1e62f23550d,0x00f2d409caefd7f5,0x0080e67dcdb26e81,0x0087ae993ea1f98a,0x00aa108becf61d03,0x001acf11efb608a3)}, | |||
{FIELD_LITERAL(0x008225febbab50d9,0x00f3b605e4dd2083,0x00a32b28189e23d2,0x00d507e5e5eb4c97,0x005a1a84e302821f,0x0006f54c1c5f08c7,0x00a347c8cb2843f0,0x0009f73e9544bfa5)}, | |||
{FIELD_LITERAL(0x006c59c9ae744185,0x009fc32f1b4282cd,0x004d6348ca59b1ac,0x00105376881be067,0x00af4096013147dc,0x004abfb5a5cb3124,0x000d2a7f8626c354,0x009c6ed568e07431)}, | |||
{FIELD_LITERAL(0x00abd2bb27611e57,0x00cf99bd1fbbd267,0x006f7ac78d478cc7,0x00dc9d340dd23fbb,0x00d3ddd520099c46,0x009836dbb6a03486,0x00f19de267c36883,0x0020885613349904)}, | |||
{FIELD_LITERAL(0x00832d02369b482c,0x00cba52ff0d93450,0x003fa9c908d554db,0x008d1e357b54122f,0x00abd91c2dc950c6,0x007eff1df4c0ec69,0x003f6aeb13fb2d31,0x00002d6179fc5b2c)}, | |||
{FIELD_LITERAL(0x00e828333c297f8b,0x009ef3cf8c3f7e1f,0x00ab45f8fff31cb9,0x00c8b4178cb0b013,0x00d0c50dd3260a3f,0x0097126ac257f5bc,0x0042376cc90c705a,0x001d96fdb4a1071e)}, | |||
{FIELD_LITERAL(0x00542d44d89ee1a8,0x00306642e0442d98,0x0090853872b87338,0x002362cbf22dc044,0x002c222adff663b8,0x0067c924495fcb79,0x000e621d983c977c,0x00df77a9eccb66fb)}, | |||
{FIELD_LITERAL(0x002809e4bbf1814a,0x00b9e854f9fafb32,0x00d35e67c10f7a67,0x008f1bcb76e748cf,0x004224d9515687d2,0x005ba0b774e620c4,0x00b5e57db5d54119,0x00e15babe5683282)}, | |||
{FIELD_LITERAL(0x00b9361257e36376,0x0049f348e3709d03,0x00dd0a597c455aa7,0x00078ce603320668,0x00635f64ae3195dc,0x00a4ed450b508288,0x0075b9adb5e1cc1d,0x00fca588167741f2)}, | |||
{FIELD_LITERAL(0x00a9e7730a819691,0x00d9cc73c4992b70,0x00e299bde067de5a,0x008c314eb705192a,0x00e7226f17e8a3cc,0x0029dfd956e65a47,0x0053a8e839073b12,0x006f942b2ab1597e)}, | |||
{FIELD_LITERAL(0x00832d02369b482c,0x00cba52ff0d93450,0x003fa9c908d554db,0x008d1e357b54122f,0x00abd91c2dc950c6,0x007eff1df4c0ec69,0x003f6aeb13fb2d31,0x00002d6179fc5b2c)}, | |||
{FIELD_LITERAL(0x0046c9eda81c9c89,0x00b60cb71c8f62fc,0x0022f5a683baa558,0x00f87319fccdf997,0x009ca09b51ce6a22,0x005b12baf4af7d77,0x008a46524a1e33e2,0x00035a77e988be0d)}, | |||
{FIELD_LITERAL(0x00a7efe46a7dbe2f,0x002f66fd55014fe7,0x006a428afa1ff026,0x0056caaa9604ab72,0x0033f3bcd7fac8ae,0x00ccb1aa01c86764,0x00158d1edf13bf40,0x009848ee76fcf3b4)}, | |||
{FIELD_LITERAL(0x00e3c287f132a1c6,0x006b0db804233a01,0x002a387902ad889b,0x00490b258b0f24d5,0x007f0e0745232a02,0x000c95c8c52d1dc4,0x0007fb060bcbc40d,0x002e50bf139dc67d)}, | |||
{FIELD_LITERAL(0x0039343746531ebe,0x00c8509d835d429d,0x00e79eceff6b0018,0x004abfd31e8efce5,0x007bbfaaa1e20210,0x00e3be89c193e179,0x001c420f4c31d585,0x00f414a315bef5ae)}, | |||
{FIELD_LITERAL(0x00a9e7730a819691,0x00d9cc73c4992b70,0x00e299bde067de5a,0x008c314eb705192a,0x00e7226f17e8a3cc,0x0029dfd956e65a47,0x0053a8e839073b12,0x006f942b2ab1597e)}, | |||
{FIELD_LITERAL(0x001c3d780ecd5e39,0x0094f247fbdcc5fe,0x00d5c786fd527764,0x00b6f4da74f0db2a,0x0080f1f8badcd5fc,0x00f36a373ad2e23b,0x00f804f9f4343bf2,0x00d1af40ec623982)}, | |||
{FIELD_LITERAL(0x0082aeace5f1b144,0x00f68b3108cf4dd3,0x00634af01dde3020,0x000beab5df5c2355,0x00e8b790d1b49b0b,0x00e48d15854e36f4,0x0040ab2d95f3db9f,0x002711c4ed9e899a)}, | |||
{FIELD_LITERAL(0x0083d695db66f207,0x002a2f8ada58aa77,0x002271eec16b4818,0x008443a70141f337,0x00d60ae50640352b,0x00816cee1385490c,0x006577b21e989cbc,0x00af2a0d2317b416)}, | |||
{FIELD_LITERAL(0x0098cddc8b39549a,0x006da37e3b05d22c,0x00ce633cfd4eb3cb,0x00fda288ef526acd,0x0025338878c5d30a,0x00f34438c4e5a1b4,0x00584efea7c310f1,0x0041a551f1b660ad)}, | |||
{FIELD_LITERAL(0x0039343746531ebe,0x00c8509d835d429d,0x00e79eceff6b0018,0x004abfd31e8efce5,0x007bbfaaa1e20210,0x00e3be89c193e179,0x001c420f4c31d585,0x00f414a315bef5ae)}, | |||
{FIELD_LITERAL(0x007c296a24990df8,0x00d5d07525a75588,0x00dd8e113e94b7e7,0x007bbc58febe0cc8,0x0029f51af9bfcad3,0x007e9311ec7ab6f3,0x009a884de1676343,0x0050d5f2dce84be9)}, | |||
{FIELD_LITERAL(0x005fa020cca2450a,0x00491c29db6416d8,0x0037cefe3f9f9a85,0x003d405230647066,0x0049e835f0fdbe89,0x00feb78ac1a0815c,0x00828e4b32dc9724,0x00db84f2dc8d6fd4)}, | |||
{FIELD_LITERAL(0x002808570429bc85,0x009d78dbec40c8ac,0x0052b4434bc3a7b4,0x00801b6419fe281c,0x008839a68764540a,0x0014ba034f958be4,0x00a31dbb6ec068f7,0x0077bd9bfe8c9cd9)}, | |||
{FIELD_LITERAL(0x00a0b68ec1eb72d2,0x002c03235c0d45a0,0x00553627323fe8c5,0x006186e94b17af94,0x00a9906196e29f14,0x0025b3aee6567733,0x007e0dd840080517,0x0018eb5801a4ba93)}, | |||
{FIELD_LITERAL(0x0098cddc8b39549a,0x006da37e3b05d22c,0x00ce633cfd4eb3cb,0x00fda288ef526acd,0x0025338878c5d30a,0x00f34438c4e5a1b4,0x00584efea7c310f1,0x0041a551f1b660ad)}, | |||
{FIELD_LITERAL(0x00d7f7a8fbd6437a,0x0062872413bf3753,0x00ad4bbcb43c584b,0x007fe49be601d7e3,0x0077c659789babf4,0x00eb45fcb06a741b,0x005ce244913f9708,0x0088426401736326)}, | |||
{FIELD_LITERAL(0x007bf562ca768d7c,0x006c1f3a174e387c,0x00f024b447fee939,0x007e7af75f01143f,0x003adb70b4eed89d,0x00e43544021ad79a,0x0091f7f7042011f6,0x0093c1a1ee3a0ddc)}, | |||
{FIELD_LITERAL(0x0028018fe84095bf,0x0091c0f9db41f3bd,0x0000445dfaca7dba,0x000603d307e6bdc6,0x00726c4c840ea4b0,0x009220d1c741716a,0x00d4918640a03006,0x0054caa25bda1d21)}, | |||
{FIELD_LITERAL(0x003973d8938971d6,0x002aca26fa80c1f5,0x00108af1faa6b513,0x00daae275d7924e6,0x0053634ced721308,0x00d2355fe0bbd443,0x00357612b2d22095,0x00f9bb9dd4136cf3)}, | |||
{FIELD_LITERAL(0x00a0b68ec1eb72d2,0x002c03235c0d45a0,0x00553627323fe8c5,0x006186e94b17af94,0x00a9906196e29f14,0x0025b3aee6567733,0x007e0dd840080517,0x0018eb5801a4ba93)}, | |||
{FIELD_LITERAL(0x00d7fe7017bf6a40,0x006e3f0624be0c42,0x00ffbba205358245,0x00f9fc2cf8194239,0x008d93b37bf15b4e,0x006ddf2e38be8e95,0x002b6e79bf5fcff9,0x00ab355da425e2de)}, | |||
{FIELD_LITERAL(0x00938f97e20be973,0x0099141a36aaf306,0x0057b0ca29e545a1,0x0085db571f9fbc13,0x008b333c554b4693,0x0043ab6ef3e241cb,0x0054fb20aa1e5c70,0x00be0ff852760adf)}, | |||
{FIELD_LITERAL(0x00d400ed30a1fc5a,0x00e424e0575e6307,0x0036e3986c07b2c6,0x0007960e4d145650,0x00a643ab823cdc93,0x0026e9ee292c7976,0x001f9d2555d3fdeb,0x0012c3fb833d437d)}, | |||
{FIELD_LITERAL(0x0062dd0fb31be374,0x00fcc96b84c8e727,0x003f64f1375e6ae3,0x0057d9b6dd1af004,0x00d6a167b1103c7b,0x00dd28f3180fb537,0x004ff27ad7167128,0x008934c33461f2ac)}, | |||
{FIELD_LITERAL(0x003973d8938971d6,0x002aca26fa80c1f5,0x00108af1faa6b513,0x00daae275d7924e6,0x0053634ced721308,0x00d2355fe0bbd443,0x00357612b2d22095,0x00f9bb9dd4136cf3)}, | |||
{FIELD_LITERAL(0x002bff12cf5e03a5,0x001bdb1fa8a19cf8,0x00c91c6793f84d39,0x00f869f1b2eba9af,0x0059bc547dc3236b,0x00d91611d6d38689,0x00e062daaa2c0214,0x00ed3c047cc2bc82)}, | |||
{FIELD_LITERAL(0x000050d70c32b31a,0x001939d576d437b3,0x00d709e598bf9fe6,0x00a885b34bd2ee9e,0x00dd4b5c08ab1a50,0x0091bebd50b55639,0x00cf79ff64acdbc6,0x006067a39d826336)}, | |||
{FIELD_LITERAL(0x009a4b8d486fffbc,0x00458102d00ef9b4,0x00f498293b3cfdf0,0x00ed2d7b960b1b92,0x00ce3cd6c68fc137,0x004b60f431eccf99,0x00081efbe9e7e2b8,0x00a36f0ae7981133)}, | |||
{FIELD_LITERAL(0x0006918f5dfce6dc,0x00d4bf1c793c57fb,0x0069a3f649435364,0x00e89a50e5b0cd6e,0x00b9f6a237e973af,0x006d4ed8b104e41d,0x00498946a3924cd2,0x00c136ec5ac9d4f7)}, | |||
{FIELD_LITERAL(0x0062dd0fb31be374,0x00fcc96b84c8e727,0x003f64f1375e6ae3,0x0057d9b6dd1af004,0x00d6a167b1103c7b,0x00dd28f3180fb537,0x004ff27ad7167128,0x008934c33461f2ac)}, | |||
{FIELD_LITERAL(0x0065b472b7900043,0x00ba7efd2ff1064b,0x000b67d6c4c3020f,0x0012d28469f4e46d,0x0031c32939703ec7,0x00b49f0bce133066,0x00f7e10416181d47,0x005c90f51867eecc)}, | |||
{FIELD_LITERAL(0x0051207abd179101,0x00fc2a5c20d9c5da,0x00fb9d5f2701b6df,0x002dd040fdea82b8,0x00f163b0738442ff,0x00d9736bd68855b8,0x00e0d8e93005e61c,0x00df5a40b3988570)}, | |||
{FIELD_LITERAL(0x00ee563d6f53acc9,0x00d465d2b5959acc,0x006575973bba26c8,0x00c9e4d84f81a1a3,0x00c3fbc4e8aa468a,0x0048149930eeaa11,0x008850a6f611000d,0x006709f6788337f9)}, | |||
{FIELD_LITERAL(0x00b373076597455f,0x00e83f1af53ac0f5,0x0041f63c01dc6840,0x0097dea19b0c6f4b,0x007f9d63b4c1572c,0x00e692d492d0f5f0,0x00cbcb392e83b4ad,0x0069c0f39ed9b1a8)}, | |||
{FIELD_LITERAL(0x0006918f5dfce6dc,0x00d4bf1c793c57fb,0x0069a3f649435364,0x00e89a50e5b0cd6e,0x00b9f6a237e973af,0x006d4ed8b104e41d,0x00498946a3924cd2,0x00c136ec5ac9d4f7)}, | |||
{FIELD_LITERAL(0x0011a9c290ac5336,0x002b9a2d4a6a6533,0x009a8a68c445d937,0x00361b27b07e5e5c,0x003c043b1755b974,0x00b7eb66cf1155ee,0x0077af5909eefff2,0x0098f609877cc806)}, | |||
{FIELD_LITERAL(0x00ab13af436bf8f4,0x000bcf0a0dac8574,0x00d50c864f705045,0x00c40e611debc842,0x0085010489bd5caa,0x007c5050acec026f,0x00f67d943c8da6d1,0x00de1da0278074c6)}, | |||
{FIELD_LITERAL(0x0079efcffed8f836,0x00604423802b5504,0x0070a6e294aab7dd,0x0020f75be15e7521,0x0062827c19bd5414,0x006738e425c48700,0x00dd37618fde0ffa,0x00bb2d65c01e1c3b)}, | |||
{FIELD_LITERAL(0x00c903ee6d825540,0x00add6c4cf98473e,0x007636efed4227f1,0x00905124ae55e772,0x00e6b38fab12ed53,0x0045e132b863fe55,0x003974662edb366a,0x00b1787052be8208)}, | |||
{FIELD_LITERAL(0x00b373076597455f,0x00e83f1af53ac0f5,0x0041f63c01dc6840,0x0097dea19b0c6f4b,0x007f9d63b4c1572c,0x00e692d492d0f5f0,0x00cbcb392e83b4ad,0x0069c0f39ed9b1a8)}, | |||
{FIELD_LITERAL(0x00861030012707c9,0x009fbbdc7fd4aafb,0x008f591d6b554822,0x00df08a41ea18ade,0x009d7d83e642abea,0x0098c71bda3b78ff,0x0022c89e7021f005,0x0044d29a3fe1e3c4)}, | |||
{FIELD_LITERAL(0x00e748cd7b5c52f2,0x00ea9df883f89cc3,0x0018970df156b6c7,0x00c5a46c2a33a847,0x00cbde395e32aa09,0x0072474ebb423140,0x00fb00053086a23d,0x001dafcfe22d4e1f)}, | |||
{FIELD_LITERAL(0x0059eb4ff288a383,0x00283876be3388ab,0x00bdd22974a2543b,0x0059eef0fe982d74,0x0097a5cf63dad778,0x004bc6002aebc99f,0x00c9a91d6118c690,0x0038364612a527ab)}, | |||
{FIELD_LITERAL(0x00006e34a35d9fbc,0x00eee4e48b2f019a,0x006b344743003a5f,0x00541d514f04a7e3,0x00e81f9ee7647455,0x005e2b916c438f81,0x00116f8137b7eff0,0x009bd3decc7039d1)}, | |||
{FIELD_LITERAL(0x00c903ee6d825540,0x00add6c4cf98473e,0x007636efed4227f1,0x00905124ae55e772,0x00e6b38fab12ed53,0x0045e132b863fe55,0x003974662edb366a,0x00b1787052be8208)}, | |||
{FIELD_LITERAL(0x00a614b00d775c7c,0x00d7c78941cc7754,0x00422dd68b5dabc4,0x00a6110f0167d28b,0x00685a309c252886,0x00b439ffd5143660,0x003656e29ee7396f,0x00c7c9b9ed5ad854)}, | |||
{FIELD_LITERAL(0x0040f7e7c5b37bf2,0x0064e4dc81181bba,0x00a8767ae2a366b6,0x001496b4f90546f2,0x002a28493f860441,0x0021f59513049a3a,0x00852d369a8b7ee3,0x00dd2e7d8b7d30a9)}, | |||
{FIELD_LITERAL(0x00fa2dd90bcbeef2,0x00507d774710de2a,0x00b585ad10e7e373,0x0041f487e4b4f921,0x00191c9d8212f81d,0x001bc55cbdd8d474,0x0017954bdba8827b,0x0004d6d3a991ca44)}, | |||
{FIELD_LITERAL(0x00e38abece3c82ab,0x005a51f18a2c7a86,0x009dafa2e86d592e,0x00495a62eb688678,0x00b79df74c0eb212,0x0023e8cc78b75982,0x005998cb91075e13,0x00735aa9ba61bc76)}, | |||
{FIELD_LITERAL(0x00006e34a35d9fbc,0x00eee4e48b2f019a,0x006b344743003a5f,0x00541d514f04a7e3,0x00e81f9ee7647455,0x005e2b916c438f81,0x00116f8137b7eff0,0x009bd3decc7039d1)}, | |||
{FIELD_LITERAL(0x0005d226f434110d,0x00af8288b8ef21d5,0x004a7a52ef181c8c,0x00be0b781b4b06de,0x00e6e3627ded07e1,0x00e43aa342272b8b,0x00e86ab424577d84,0x00fb292c566e35bb)}, | |||
{FIELD_LITERAL(0x00334f5303ea1222,0x00dfb3dbeb0a5d3e,0x002940d9592335c1,0x00706a7a63e8938a,0x005a533558bc4caf,0x00558e33192022a9,0x00970d9faf74c133,0x002979fcb63493ca)}, | |||
{FIELD_LITERAL(0x00260857d22419d7,0x005e0387d77651f0,0x008e0025ed2eb499,0x00c830b135804c2a,0x0037f43dbd3a77f6,0x008a4073d2f7379c,0x0072be0ce503ad58,0x00e6869d130c78be)}, | |||
{FIELD_LITERAL(0x00bfc5fa1e4ea21f,0x00c21d7b6bb892e6,0x00cf043f3acf0291,0x00c13f2f849b3c90,0x00d1a97ebef10891,0x0061e130a445e7fe,0x0019513fdedbf22b,0x001d60c813bff841)}, | |||
{FIELD_LITERAL(0x00e38abece3c82ab,0x005a51f18a2c7a86,0x009dafa2e86d592e,0x00495a62eb688678,0x00b79df74c0eb212,0x0023e8cc78b75982,0x005998cb91075e13,0x00735aa9ba61bc76)}, | |||
{FIELD_LITERAL(0x00d9f7a82ddbe628,0x00a1fc782889ae0f,0x0071ffda12d14b66,0x0037cf4eca7fb3d5,0x00c80bc242c58808,0x0075bf8c2d08c863,0x008d41f31afc52a7,0x00197962ecf38741)}, | |||
{FIELD_LITERAL(0x006e9f475cccf2ee,0x00454b9cd506430c,0x00224a4fb79ee479,0x0062e3347ef0b5e2,0x0034fd2a3512232a,0x00b8b3cb0f457046,0x00eb20165daa38ec,0x00128eebc2d9c0f7)}, | |||
{FIELD_LITERAL(0x00e6a9e38030fdec,0x001c23597bc14288,0x0097156a46356df1,0x00642048f0daca6a,0x003970a6e7955fd4,0x00a511e335e3cfc6,0x0054865756c85e31,0x00465f1ab66a6190)}, | |||
{FIELD_LITERAL(0x003e4964fa8a8fc8,0x00f6a1cdbcf41689,0x00943cb18fe7fda7,0x00606dafbf34440a,0x005d37a86399c789,0x00e79a2a69417403,0x00fe34f7e68b8866,0x0011f448ed2df10e)}, | |||
{FIELD_LITERAL(0x00bfc5fa1e4ea21f,0x00c21d7b6bb892e6,0x00cf043f3acf0291,0x00c13f2f849b3c90,0x00d1a97ebef10891,0x0061e130a445e7fe,0x0019513fdedbf22b,0x001d60c813bff841)}, | |||
{FIELD_LITERAL(0x0019561c7fcf0213,0x00e3dca6843ebd77,0x0068ea95b9ca920e,0x009bdfb70f253595,0x00c68f59186aa02a,0x005aee1cca1c3039,0x00ab79a8a937a1ce,0x00b9a0e549959e6f)}, | |||
{FIELD_LITERAL(0x00c79e0b6d97dfbd,0x00917c71fd2bc6e8,0x00db7529ccfb63d8,0x00be5be957f17866,0x00a9e11fdc2cdac1,0x007b91a8e1f44443,0x00a3065e4057d80f,0x004825f5b8d5f6d4)}, | |||
{FIELD_LITERAL(0x000e0a81033e033b,0x00aec986ee821eab,0x00d1a4a48379273c,0x00609b79a9e06304,0x00e9618b4fe8f307,0x006ffdfa50b50969,0x009530224887ac0c,0x0020e7b36f0cef97)}, | |||
{FIELD_LITERAL(0x00fd579ffb691713,0x00b76af4f81c412d,0x00f239de96110f82,0x00e965fb437f0306,0x00ca7e9436900921,0x00e487f1325fa24a,0x00633907de476380,0x00721c62ac5b8ea0)}, | |||
{FIELD_LITERAL(0x003e4964fa8a8fc8,0x00f6a1cdbcf41689,0x00943cb18fe7fda7,0x00606dafbf34440a,0x005d37a86399c789,0x00e79a2a69417403,0x00fe34f7e68b8866,0x0011f448ed2df10e)}, | |||
{FIELD_LITERAL(0x00f1f57efcc1fcc4,0x00513679117de154,0x002e5b5b7c86d8c3,0x009f6486561f9cfb,0x00169e74b0170cf7,0x00900205af4af696,0x006acfddb77853f3,0x00df184c90f31068)}, | |||
{FIELD_LITERAL(0x00b37396c3320791,0x00fc7b67175c5783,0x00c36d2cd73ecc38,0x0080ebcc0b328fc5,0x0043a5b22b35d35d,0x00466c9f1713c9da,0x0026ad346dcaa8da,0x007c684e701183a6)}, | |||
{FIELD_LITERAL(0x003f2ab1abd14b06,0x00b129a8e8e37230,0x0048bc5b083d5c64,0x0002606c12933a98,0x00cf8051ceec1a73,0x00a755a8836c3ce6,0x002dabaa90ca4cb9,0x00b6e5525ddfc0f2)}, | |||
{FIELD_LITERAL(0x00c4a1fb48635413,0x00b5dd54423ad59f,0x009ff5d53fd24a88,0x003c98d267fc06a7,0x002db7cb20013641,0x00bd1d6716e191f2,0x006dbc8b29094241,0x0044bbf233dafa2c)}, | |||
{FIELD_LITERAL(0x00fd579ffb691713,0x00b76af4f81c412d,0x00f239de96110f82,0x00e965fb437f0306,0x00ca7e9436900921,0x00e487f1325fa24a,0x00633907de476380,0x00721c62ac5b8ea0)}, | |||
{FIELD_LITERAL(0x00c0d54e542eb4f9,0x004ed657171c8dcf,0x00b743a4f7c2a39b,0x00fd9f93ed6cc567,0x00307fae3113e58b,0x0058aa577c93c319,0x00d254556f35b346,0x00491aada2203f0d)}, | |||
{FIELD_LITERAL(0x00dff3103786ff34,0x000144553b1f20c3,0x0095613baeb930e4,0x00098058275ea5d4,0x007cd1402b046756,0x0074d74e4d58aee3,0x005f93fc343ff69b,0x00873df17296b3b0)}, | |||
{FIELD_LITERAL(0x00aa7c72be0ace19,0x004095d22fc37e4d,0x00a7d85f9e3b7c61,0x00ff21d344c9553c,0x00d105d6268e8b86,0x000616d733758845,0x003ecb4ba7210610,0x006a75e7dddc03b7)}, | |||
{FIELD_LITERAL(0x007860d99db787cf,0x00fda8983018f4a8,0x008c8866bac4743c,0x00ef471f84c82a3f,0x00abea5976d3b8e7,0x00714882896cd015,0x00b49fae584ddac5,0x008e33a1a0b69c81)}, | |||
{FIELD_LITERAL(0x00c4a1fb48635413,0x00b5dd54423ad59f,0x009ff5d53fd24a88,0x003c98d267fc06a7,0x002db7cb20013641,0x00bd1d6716e191f2,0x006dbc8b29094241,0x0044bbf233dafa2c)}, | |||
{FIELD_LITERAL(0x0055838d41f531e6,0x00bf6a2dd03c81b2,0x005827a061c4839e,0x0000de2cbb36aac3,0x002efa29d9717478,0x00f9e928cc8a77ba,0x00c134b458def9ef,0x00958a182223fc48)}, | |||
{FIELD_LITERAL(0x000a9ee23c06881f,0x002c727d3d871945,0x00f47d971512d24a,0x00671e816f9ef31a,0x00883af2cfaad673,0x00601f98583d6c9a,0x00b435f5adc79655,0x00ad87b71c04bff2)}, | |||
{FIELD_LITERAL(0x0084911d36175613,0x00dbaa24427629dd,0x009b6f30b1554fc7,0x0026da093cf7ea9e,0x00eac4cfb8218c7c,0x00c4bde074231490,0x0089e5b5afb62587,0x0067fcb73adfdbcc)}, | |||
{FIELD_LITERAL(0x00eebfd4e2312cc3,0x00474b2564e4fc8c,0x003303ef14b1da9b,0x003c93e0e66beb1d,0x0013619b0566925a,0x008817c24d901bf3,0x00b62bd8898d218b,0x0075a7716f1e88a2)}, | |||
{FIELD_LITERAL(0x007860d99db787cf,0x00fda8983018f4a8,0x008c8866bac4743c,0x00ef471f84c82a3f,0x00abea5976d3b8e7,0x00714882896cd015,0x00b49fae584ddac5,0x008e33a1a0b69c81)}, | |||
{FIELD_LITERAL(0x007b6ee2c9e8a9ec,0x002455dbbd89d622,0x006490cf4eaab038,0x00d925f6c3081561,0x00153b3047de7382,0x003b421f8bdceb6f,0x00761a4a5049da78,0x00980348c5202433)}, | |||
{FIELD_LITERAL(0x007f8a43da97dd5c,0x00058539c800fc7b,0x0040f3cf5a28414a,0x00d68dd0d95283d6,0x004adce9da90146e,0x00befa41c7d4f908,0x007603bc2e3c3060,0x00bdf360ab3545db)}, | |||
{FIELD_LITERAL(0x00f6de725e1976f0,0x00d96f80a02fda8a,0x00b25412a0e629fa,0x00c540e7e78fdb62,0x004ad02fb7336d3a,0x004922ae1bea5a3a,0x0026147d42d4bfeb,0x00d379a5bc4b94bc)}, | |||
{FIELD_LITERAL(0x00c338b915d8fef0,0x00a893292045c39a,0x0028ab4f2eba6887,0x0060743cb519fd61,0x0006213964093ac0,0x007c0b7a43f6266d,0x008e3557c4fa5bda,0x002da976de7b8d9d)}, | |||
{FIELD_LITERAL(0x00eebfd4e2312cc3,0x00474b2564e4fc8c,0x003303ef14b1da9b,0x003c93e0e66beb1d,0x0013619b0566925a,0x008817c24d901bf3,0x00b62bd8898d218b,0x0075a7716f1e88a2)}, | |||
{FIELD_LITERAL(0x0009218da1e6890f,0x0026907f5fd02575,0x004dabed5f19d605,0x003abf181870249d,0x00b52fd048cc92c4,0x00b6dd51e415a5c5,0x00d9eb82bd2b4014,0x002c865a43b46b43)}, | |||
{FIELD_LITERAL(0x0070047189452f4c,0x00f7ad12e1ce78d5,0x00af1ba51ec44a8b,0x005f39f63e667cd6,0x00058eac4648425e,0x00d7fdab42bea03b,0x0028576a5688de15,0x00af973209e77c10)}, | |||
{FIELD_LITERAL(0x00b78d6075749232,0x0001dc47a33b2cdc,0x0018c7b2e91b24f1,0x00b5bdc68f9876bd,0x0013f489ccba2b44,0x003b8846066128de,0x003d6252c8884dcf,0x00e3ae84b9908209)}, | |||
{FIELD_LITERAL(0x00aa2261022d883f,0x00ebcca4548010ac,0x002528512e28a437,0x0070ca7676b66082,0x0084bda170f7c6d3,0x00581b4747c9b8bb,0x005c96a01061c7e2,0x00fb7c4a362b5273)}, | |||
{FIELD_LITERAL(0x00c338b915d8fef0,0x00a893292045c39a,0x0028ab4f2eba6887,0x0060743cb519fd61,0x0006213964093ac0,0x007c0b7a43f6266d,0x008e3557c4fa5bda,0x002da976de7b8d9d)}, | |||
{FIELD_LITERAL(0x0048729f8a8b6dcd,0x00fe23b85cc4d323,0x00e7384d16e4db0e,0x004a423970678942,0x00ec0b763345d4ba,0x00c477b9f99ed721,0x00c29dad3777b230,0x001c517b466f7df6)}, | |||
{FIELD_LITERAL(0x006366c380f7b574,0x001c7d1f09ff0438,0x003e20a7301f5b22,0x00d3efb1916d28f6,0x0049f4f81060ce83,0x00c69d91ea43ced1,0x002b6f3e5cd269ed,0x005b0fb22ce9ec65)}, | |||
{FIELD_LITERAL(0x003cffdf14aed2fd,0x009f0d77d7c5b2d9,0x004812ec41321d9f,0x008a1448bddf0916,0x008fef86030175df,0x00e3d703200a76c7,0x00d1babb470b2094,0x009f3a43b0e5828c)}, | |||
{FIELD_LITERAL(0x00a94700032a093f,0x0076e96c225216e7,0x00a63a4316e45f91,0x007d8bbb4645d3b2,0x00340a6ff22793eb,0x006f935d4572aeb7,0x00b1fb69f00afa28,0x009e8f3423161ed3)}, | |||
{FIELD_LITERAL(0x00aa2261022d883f,0x00ebcca4548010ac,0x002528512e28a437,0x0070ca7676b66082,0x0084bda170f7c6d3,0x00581b4747c9b8bb,0x005c96a01061c7e2,0x00fb7c4a362b5273)}, | |||
{FIELD_LITERAL(0x00c30020eb512d02,0x0060f288283a4d26,0x00b7ed13becde260,0x0075ebb74220f6e9,0x00701079fcfe8a1f,0x001c28fcdff58938,0x002e4544b8f4df6b,0x0060c5bc4f1a7d73)}, | |||
{FIELD_LITERAL(0x00ae307cf069f701,0x005859f222dd618b,0x00212d6c46ec0b0d,0x00a0fe4642afb62d,0x00420d8e4a0a8903,0x00a80ff639bdf7b0,0x0019bee1490b5d8e,0x007439e4b9c27a86)}, | |||
{FIELD_LITERAL(0x00610b6394a312e8,0x005aaa19d96160f5,0x008190e286138c4a,0x006538796a5cd53b,0x00fe28804432a97c,0x007315e011f55112,0x000bd4157d5acb9d,0x00d1b95469350336)}, | |||
{FIELD_LITERAL(0x0060db815bc4786c,0x006fab25beedc434,0x00c610d06084797c,0x000c48f08537bec0,0x0031aba51c5b93da,0x007968fa6e01f347,0x0030070da52840c6,0x00c043c225a4837f)}, | |||
{FIELD_LITERAL(0x00a94700032a093f,0x0076e96c225216e7,0x00a63a4316e45f91,0x007d8bbb4645d3b2,0x00340a6ff22793eb,0x006f935d4572aeb7,0x00b1fb69f00afa28,0x009e8f3423161ed3)}, | |||
{FIELD_LITERAL(0x009ef49c6b5ced17,0x00a555e6269e9f0a,0x007e6f1d79ec73b5,0x009ac78695a32ac4,0x0001d77fbbcd5682,0x008cea1fee0aaeed,0x00f42bea82a53462,0x002e46ab96cafcc9)}, | |||
{FIELD_LITERAL(0x0051cfcc5885377a,0x00dce566cb1803ca,0x00430c7643f2c7d4,0x00dce1a1337bdcc0,0x0010d5bd7283c128,0x003b1b547f9b46fe,0x000f245e37e770ab,0x007b72511f022b37)}, | |||
{FIELD_LITERAL(0x00e4302ff9b6116c,0x0092314b81d5f02a,0x000d31425f30702f,0x004946262e04213c,0x007ead9d19b6f9ed,0x001080a31ce8989f,0x001b632f36672a74,0x00a03933d9645a83)}, | |||
{FIELD_LITERAL(0x004a2902926f8d3f,0x00ad79b42637ab75,0x0088f60b90f2d4e8,0x0030f54ef0e398c4,0x00021dc9bf99681e,0x007ebf66fde74ee3,0x004ade654386e9a4,0x00e7485066be4c27)}, | |||
{FIELD_LITERAL(0x0060db815bc4786c,0x006fab25beedc434,0x00c610d06084797c,0x000c48f08537bec0,0x0031aba51c5b93da,0x007968fa6e01f347,0x0030070da52840c6,0x00c043c225a4837f)}, | |||
{FIELD_LITERAL(0x001bcfd00649ee93,0x006dceb47e2a0fd5,0x00f2cebda0cf8fd0,0x00b6b9d9d1fbdec3,0x00815262e6490611,0x00ef7f5ce3176760,0x00e49cd0c998d58b,0x005fc6cc269ba57c)}, | |||
{FIELD_LITERAL(0x008940211aa0d633,0x00addae28136571d,0x00d68fdbba20d673,0x003bc6129bc9e21a,0x000346cf184ebe9a,0x0068774d741ebc7f,0x0019d5e9e6966557,0x0003cbd7f981b651)}, | |||
{FIELD_LITERAL(0x00bba0ed9c67c41f,0x00b30c8e225ba195,0x008bb5762a5cef18,0x00e0df31b06fb7cc,0x0018b912141991d5,0x00f6ed54e093eac2,0x0009e288264dbbb3,0x00feb663299b89ef)} | |||
{FIELD_LITERAL(0x004a2902926f8d3f,0x00ad79b42637ab75,0x0088f60b90f2d4e8,0x0030f54ef0e398c4,0x00021dc9bf99681e,0x007ebf66fde74ee3,0x004ade654386e9a4,0x00e7485066be4c27)}, | |||
{FIELD_LITERAL(0x00445f1263983be0,0x004cf371dda45e6a,0x00744a89d5a310e7,0x001f20ce4f904833,0x00e746edebe66e29,0x000912ab1f6c153d,0x00f61d77d9b2444c,0x0001499cd6647610)} | |||
}; | |||
const gf API_NS(precomputed_wnaf_as_fe)[96] | |||
VECTOR_ALIGNED __attribute__((visibility("hidden"))) = { | |||
{FIELD_LITERAL(0x00cfc32590115acd,0x0079f0e2a5c7af1b,0x00dd94605b8d7332,0x0097dd6c75f5f3f3,0x00d9c59e36156de9,0x00edfbfd6cde47d7,0x0095b97c9f67c39a,0x007d7b90f587debc)}, | |||
{FIELD_LITERAL(0x00cfc32590115acd,0x0079f0e2a5c7af1b,0x00dd94605b8d7332,0x0017dd6c75f5f3f3,0x00d9c59e36156de8,0x00edfbfd6cde47d7,0x0095b97c9f67c39a,0x00fd7b90f587debc)}, | |||
{FIELD_LITERAL(0x001071dd4d8ae672,0x004f14ebe5f4f174,0x00e0987625c34c73,0x0092d00712c6f8c1,0x009ef424965e980b,0x00a8e0cf9369764b,0x000aa81907b4d207,0x00d5002c74d37924)}, | |||
{FIELD_LITERAL(0x00f3c4efe62b8b17,0x001e6acc1b6add7b,0x003367ef45836df5,0x000efc2d87a6ba53,0x00405a96933964ca,0x00572c2ae16357c6,0x00a9dc34ba6a7946,0x00151831e32ad161)}, | |||
{FIELD_LITERAL(0x00315f0372d1774a,0x007de9ed2960e79d,0x008b3d7c4c198add,0x00a5e6a45fa57892,0x00f32201aa80115a,0x007fb9386a433a1a,0x00abf6960b291ee6,0x002d8069294ebc2a)}, | |||
{FIELD_LITERAL(0x00fa5e878ae22827,0x00d33c7bb3963bd0,0x0053401a101efac6,0x0063df0bcbce59a5,0x007bca269c8b584b,0x00611a8a9978842c,0x00bb96e8da12b8a8,0x00e17844d01d394d)}, | |||
{FIELD_LITERAL(0x00c107c50e9b4d0d,0x00f6b65a5fada2f2,0x000bb67e79353fae,0x0018853f610ed92d,0x008c51f4d36d6915,0x00e3e9c096dd1c12,0x009d6b9ea6cde415,0x00304864dd66f4c6)}, | |||
{FIELD_LITERAL(0x00f3123b214085fb,0x00d005bafffb8f53,0x00d1606987dfe6ea,0x00e825edf73b018d,0x0082aa733829a933,0x00c857d8d7830d76,0x00ebdb8d2cbbe7e6,0x0063de0e9930722e)}, | |||
{FIELD_LITERAL(0x004ffebce35619ab,0x00d281a1543365c5,0x00ad17eeb3d098b8,0x008653b06bb7806d,0x0040026e64a28b62,0x00d9e06d52ea19df,0x008e7c684856876a,0x003ebbc191443f3b)}, | |||
{FIELD_LITERAL(0x00c0a062813b8884,0x0054d18cc36e636b,0x00e4493fcadba51a,0x005cda5b6577c9cf,0x00cc165615c315cf,0x001bbd5e155f17bb,0x004dee92a4f18e47,0x003e95412929bfb8)}, | |||
{FIELD_LITERAL(0x0015326f3e1f5fb6,0x0076886ca4eb6041,0x00fb34645ee36c23,0x006042a4cb8f7bb2,0x00b43e736403dd2f,0x00a8986566e7c60c,0x0010ea48904bf6d1,0x008b5ae8c5ddafbe)}, | |||
{FIELD_LITERAL(0x003a9f4a12faee9a,0x00e6ba523a29af6b,0x001dde79a8ef06ef,0x0033ed4361647314,0x00b0556ae76eb1c9,0x00e8b892762bd092,0x004709c83705e374,0x0077382d86f79b47)}, | |||
{FIELD_LITERAL(0x006638c5cee4113d,0x005c100c7276ed52,0x00d10562e281768d,0x0008e851e1eb2ed9,0x00d7cc086a7af373,0x00993ed528eb7942,0x0051677625b7df14,0x0029fbbcf6aaa3f7)}, | |||
{FIELD_LITERAL(0x001081503e396419,0x007a2c7aa8870415,0x00d372a4baf3490a,0x00b18821a1e18013,0x00b83fa876c54211,0x00e4bcf47a2ae1e9,0x0069a384ba9bf3c3,0x00b784d44ee9d468)}, | |||
{FIELD_LITERAL(0x00b4e3ad7c2ea1be,0x009962715cf7008a,0x00fbc6fdcc089d5e,0x001e29847c349313,0x00c1145569b3874d,0x0094f50069a1499b,0x004cec2bb8f423c8,0x0077eb0034c34627)}, | |||
{FIELD_LITERAL(0x008f00d279b21a44,0x00a5c81149c8116a,0x00cc8be3da721e9f,0x001935a34e6770b9,0x00e315426d5db99d,0x00cf6a842aff01bf,0x00e3cc9d5016ed3a,0x00ae78776098742d)}, | |||
{FIELD_LITERAL(0x0068db473197248f,0x0089874a12ff90c2,0x00420b4763f5428c,0x00d668b71fb38392,0x0022279b6d3c3687,0x003a5801405cf566,0x00127b8ea4b4fd44,0x00ce6a975208fb79)}, | |||
{FIELD_LITERAL(0x00797ca039d44238,0x0063cae935b6ef5e,0x006a938e072ff87c,0x006a3870309cdca0,0x0003800945fa3ddc,0x0032274c0728b5ad,0x0053a51e9217da91,0x00162b41712b79db)}, | |||
{FIELD_LITERAL(0x000911f06768bdc6,0x00bd27650f82c5b0,0x007b948017bcb94a,0x0095de039572c65e,0x0053743dabe00d25,0x0092b1d5888cd8cd,0x0065c6496b33c0d0,0x007a3f55d5bfb370)}, | |||
{FIELD_LITERAL(0x003f31eebfa20d27,0x00b1c0c84d6c2849,0x00dbefe8d1e53924,0x00472400b407ebc2,0x00c584bf62a91498,0x00c1f095f2010650,0x007e3b1b2c9ba41e,0x003189f894ed89dc)}, | |||
{FIELD_LITERAL(0x004d9eefe5de7ab7,0x003e35169bdbd884,0x0079625f58822d97,0x0043f4f607137c15,0x0029efd80717d455,0x0055b37a66623198,0x00153cecd460c01e,0x000464f30e396a2d)}, | |||
{FIELD_LITERAL(0x0057b28375dc4b6e,0x00771e6557974d80,0x00fa6792bc187316,0x000d7fed0f9f92d7,0x00e821281efdb64b,0x00a12bf7b4dc5064,0x00464f56bfa9bb8d,0x00526fa933114e0b)}, | |||
{FIELD_LITERAL(0x00bcf86d6aaed0f2,0x00b95ff679e8a71f,0x00c11d7bd57f8c87,0x00cb3362ed671b05,0x0068bb14b2ce4c10,0x00505313699af32f,0x005376e4cec89e51,0x00179b292d918f75)}, | |||
{FIELD_LITERAL(0x00246e4ca8018aa1,0x005e55abb4eaca63,0x0050b6ce5fe6aa8b,0x008979edb01ee510,0x002e152c38461080,0x00550a03a7f073ea,0x0018d841eb811e13,0x00c39e3e1ea88479)}, | |||
{FIELD_LITERAL(0x007f1264364f8cc7,0x000315388ba2d9ad,0x007562aa0a0d3396,0x0069318d20cfe53a,0x000acdcd1868b277,0x008e8d738518c6b8,0x006faf89fda8f887,0x00347e30277c4e4d)}, | |||
{FIELD_LITERAL(0x0062c03567cddf30,0x0032ee53437ac23b,0x00e8a6fbf62d80e2,0x002de89967f7d7fd,0x0005fedae4d7c736,0x0022d685f264ae39,0x0028936d3fba7df5,0x00acb4383b936fcc)}, | |||
{FIELD_LITERAL(0x00afee55215c8c25,0x00c57a8713769fcb,0x000df59aca05928e,0x00aead2ce1a57830,0x00d453e3719735cd,0x004f1cdc24b3ec7e,0x000e2a69482a51da,0x00151ba7f6834b1f)}, | |||
{FIELD_LITERAL(0x003eaec329954173,0x00fec61feee76bb2,0x009b544347f7f444,0x004c4f7dfdb8cebd,0x0039d610da25dbfb,0x000f513ccef26480,0x00af4ddd8b8d2732,0x00093756dd2be04b)}, | |||
{FIELD_LITERAL(0x006df537f064f2de,0x0007f0808cbfedb9,0x00792c87b64aa829,0x00fd42b4ce848ad1,0x004d9b9c66c5bd43,0x00df8fbdd58c4ed6,0x00cbe5355fc7f34c,0x00abe6eb22995e4d)}, | |||
{FIELD_LITERAL(0x00ef8a330d9484e0,0x0044944dece8fbcc,0x0016b6e52d9d2586,0x00610b0b72d2c7b3,0x00766d88f8990f61,0x00ea7bc69494eefe,0x0050c07989360110,0x00db9fc3bfd96ee7)}, | |||
{FIELD_LITERAL(0x0069991db096c6b8,0x0008ebceed962ba0,0x00ef0053e2f37ae3,0x009917f3c8c9cb68,0x000e0b52fef39f4e,0x00ea378bf7b8f008,0x009ae2a16388995b,0x007ec77e628ee921)}, | |||
{FIELD_LITERAL(0x0062284cece6ad83,0x00e18536b7278c56,0x0005ab4b910698c5,0x009910472a4fd019,0x008ab4e2c6d75150,0x00fbd9d538d59094,0x0086482b65914fd9,0x00ced958acabfefd)}, | |||
{FIELD_LITERAL(0x00c6cb4ee3a8dac4,0x0010cf7120de0b91,0x001ab166385e9e67,0x007f2a8eca89b19c,0x008ae3d846b943da,0x0022c7631b161ed6,0x005e5d402e327b23,0x00d0518c1aeb64cd)}, | |||
{FIELD_LITERAL(0x000d45c95be55ebb,0x005f3dd26b911e70,0x00755171065eb066,0x00110b2864e644c9,0x00718a31c2d84e02,0x0059a255fc4d65d8,0x0026337c97b14eba,0x0061e127f33d128b)}, | |||
{FIELD_LITERAL(0x006ee9a82004b322,0x003eff4833aac2f9,0x00bb62f8a13b9833,0x008f9deff439b18f,0x00bc30790842de17,0x000bfe23b4868215,0x00addb504d09d19a,0x002e121c04a5bd41)}, | |||
{FIELD_LITERAL(0x004126ac2e668677,0x0046c12e8a5dbed7,0x0078e3a69c049c9a,0x0035d20dffeb5878,0x000a263e2f4cbcdc,0x00090a6bd7e724f5,0x00b33f6e0b6366f9,0x00175e7759f40060)}, | |||
{FIELD_LITERAL(0x0083b4b835838c18,0x00ac69ddefc68cb4,0x00749b220f1ba281,0x004052a50d7a193d,0x007138ee3a4e5e56,0x003099ccfedc8067,0x006e811c0e9aaed9,0x00bead0cc8101227)}, | |||
{FIELD_LITERAL(0x00cd3889dfcd0517,0x001bf78dcd1f43de,0x000898cbb491727a,0x00440c964893d55d,0x0075e0b9391ea8f2,0x00ec9732687fc960,0x008ca65c62f86bcf,0x00fc9b9aed6debcb)}, | |||
{FIELD_LITERAL(0x00f8381236cfa255,0x00f5999b0d8c8fe3,0x000918786a1dff4e,0x00a2fa46132db8c1,0x00eb0a0e8379a878,0x003802d2e990566a,0x00b6c65d27147f1f,0x00ddbb45f6bd3e66)}, | |||
{FIELD_LITERAL(0x000f68a71ee1c67a,0x00e96102429b052c,0x0017776482925329,0x00ca322a71577df6,0x004325b8a79280b5,0x00c322234d786f77,0x00e9258fe7816ab4,0x006aa915d16d5532)}, | |||
{FIELD_LITERAL(0x00cde18980fd9d30,0x00d1a82889350971,0x0040d36b7eb0fbc8,0x003cc6e695329dd0,0x00e24b3318e1d88e,0x00e212a22459111d,0x00879f754eaab372,0x00f9801f5489c9a4)}, | |||
{FIELD_LITERAL(0x007354e942e00768,0x004c7668d3208ac0,0x0015712e1b92023f,0x00b018106b3a760b,0x00d4751647fa130b,0x00da3f7276d78b5a,0x00dc6c71672bb3b3,0x0008a6ecb3540963)}, | |||
{FIELD_LITERAL(0x00e13a624c26a6f1,0x00e161c0e3c0e7d2,0x00ba563c13d354eb,0x00f7e67a8d51498c,0x0088c48bf9742e97,0x00edaca155c6abcb,0x00bb24561c4448b5,0x00d045b2c38b42f1)}, | |||
{FIELD_LITERAL(0x0093d57b9871b4c4,0x0085e6b5532e7970,0x0012fdda50bdb89e,0x0025f590d6c39b47,0x00ef9d53a39585e6,0x00cf0a88a575110b,0x00fd53552894850f,0x00bef47029c5a860)}, | |||
{FIELD_LITERAL(0x00bd40f701996dd3,0x00cce747044b6173,0x0028a6b9ffb55eb3,0x0009fea794bd40e3,0x0038b30e26ed0198,0x005434c968b4cf52,0x00814878df362d47,0x0060ab54842b207a)}, | |||
{FIELD_LITERAL(0x00bd19d97479e8ae,0x00f722fb96aff3e9,0x004ae4a83cc75c02,0x0033bb6827a30094,0x00d0ec294a83cb5a,0x007c9ad150cfeefa,0x0033cbbd6b336c57,0x009f0b2fd7ef1d8f)}, | |||
{FIELD_LITERAL(0x00246036b708c7d9,0x000574c8b9127116,0x00ecd349a550414d,0x003c900c0186da47,0x007c82512cac2d00,0x001399e41f99830b,0x00a414712d16fdfb,0x0028822961a9b698)}, | |||
{FIELD_LITERAL(0x00576abc9c32ae74,0x0052e8eedb433484,0x009a0b95b52551ff,0x00e4e5a4d5691aff,0x00bc01db07dccd79,0x00996692751e0d3c,0x003acf0cd9be9606,0x003f06d2f83095a8)}, | |||
{FIELD_LITERAL(0x0028c4051a1ff7bb,0x0040ba689904a0ad,0x009e4b0a5acec321,0x00bc6d2b3c46aaeb,0x00f2caae4ef88adb,0x00ff6677bf11a28e,0x0092191cbfbb7484,0x00dae55afb78a291)}, | |||
{FIELD_LITERAL(0x00c95aa397ea26bc,0x007372e21066c24c,0x00d1f1e17008ce70,0x00277c5b46d24ff5,0x00d0a187e51cc6f8,0x00e58d524dca3f92,0x000d1a618c916355,0x00e5b4a71cfce6eb)}, | |||
{FIELD_LITERAL(0x00c40cbcbd853cbd,0x00523f5879bd473a,0x00fc476ce8a57ceb,0x009e5cb521a8fc43,0x0015c157448e29cc,0x0041f2065e0e673d,0x00b9227183e9ca04,0x000eadc022da2a1a)}, | |||
{FIELD_LITERAL(0x00d6313aad8c08f2,0x008fbb11d8a39cbf,0x00bf09c856cfea1d,0x00cc7448724a5516,0x00eb6e4d59ecdeb7,0x005eda293019421c,0x00a0853a9e457996,0x00e2a1515c045530)}, | |||
{FIELD_LITERAL(0x009cc09c03622bf9,0x0018ec007f1fb5bc,0x009f39168f0d29de,0x005a83280f20e76e,0x000dbf95aaf9af43,0x004f9bd6f102397b,0x00e154febb2e86e9,0x0032ea079c3d6c54)}, | |||
{FIELD_LITERAL(0x00fab169ca1c41ce,0x00f1bc0ce1d78d41,0x002fa4e361cc67be,0x009053af427e0267,0x0032387ad15144f5,0x00b00ae64f9e66e4,0x006f6617ef82b37a,0x00d8c1db3c95b59e)}, | |||
{FIELD_LITERAL(0x0035175500c7799c,0x00a167c5ca225e38,0x00854efcf271c80b,0x001b76bf0a2fcd01,0x0095c90610cf4ccd,0x0064190fc6a738a8,0x0079dce31456ebff,0x00742f0847dc1855)}, | |||
{FIELD_LITERAL(0x00f8f4bbbe10d3b9,0x00105a4fd7fe5ef6,0x0040f473c119b520,0x0075981f4cbad167,0x00e6e94e0d05858a,0x00287e587009323c,0x00797d31a81a36e6,0x0033eef622def25c)}, | |||
{FIELD_LITERAL(0x003077e1410a5ba5,0x00b14158718390d3,0x006f256df630d95f,0x0021d4d1b388a47b,0x008e29fce3c3ea50,0x002616d810e8828f,0x0076b1173dc76902,0x001c4c4bfe1be552)}, | |||
{FIELD_LITERAL(0x00a2657cac024d24,0x00aa33dfb739670f,0x00093b53769a8de7,0x00adafcb28c0514d,0x00bca8890425c381,0x008f15acedcdc343,0x0085efa2bb2f9604,0x0092437292387955)}, | |||
{FIELD_LITERAL(0x00dfb010d979be8f,0x007e6d963a211f07,0x00404b8ec1368699,0x00d9cc6590cb2087,0x00e0d919b389e23c,0x001001c50cec349f,0x001e848fec709fe4,0x000e91e3326121a1)}, | |||
{FIELD_LITERAL(0x00e8300e632c6b13,0x00010847ef6dda78,0x0019b7c68f200ab7,0x00220c952978bd9b,0x0019e887adc0331c,0x006c5993f36c4db5,0x0002c98eeb248079,0x0089ad282231d922)}, | |||
{FIELD_LITERAL(0x0059811830606614,0x00a8ec4d8a0d0097,0x000e2ac957beaec2,0x007dc4a64fdb8ed1,0x0063b9462f2c7312,0x00324ea6a55d282b,0x007c8a4cbdc26507,0x00f54f4ae9268708)}, | |||
{FIELD_LITERAL(0x0026d312845ed7bc,0x0051563888e17918,0x00b99c696ccab084,0x0059d7244957f3b8,0x00c5f4faf8c8d6ab,0x00bdeeec54ba3f26,0x001aba0f7c9d5485,0x00d731f784b29269)}, | |||
{FIELD_LITERAL(0x00bd7234c3aef4f0,0x00a7a9f815db44b1,0x00c8c940e9fc9785,0x003b81a973b01c38,0x00c32ffd7d7b79f9,0x00bc5b783c46e6c6,0x00b003fb1ef6a5f9,0x005b36765c2b46e7)}, | |||
{FIELD_LITERAL(0x0030b09f9659a719,0x00ac35ad7a6bc959,0x009b466b281c1ee8,0x0034b96465f80acb,0x00304970c66162b7,0x000f2347253e3918,0x000d54980ac74c5a,0x00aaabb0e875468a)}, | |||
{FIELD_LITERAL(0x00578872f1bd6085,0x00b3fd4fa6efa597,0x00e99ac49f625c00,0x002aef842e5ed2d8,0x004b8f706588e353,0x00449c499dfcc096,0x008d0cdddbf18dea,0x00e6bba4a6396ddd)}, | |||
{FIELD_LITERAL(0x0066485d97a2ac73,0x001d0e768483ffe7,0x00c5253731b7251c,0x00f76d892a3af3f3,0x00e8d035f85298e7,0x0034e58d0abf961a,0x00b11bd0eccaba4c,0x0087a079aec9d0e9)}, | |||
{FIELD_LITERAL(0x00d38488bd2e2026,0x00d35414e79dc3fe,0x00faa0a1c1fbbbb9,0x0093df0c4b10ab45,0x0039ffebe1394c9f,0x00cab0bc80e5cd5c,0x00453b9db5cadf06,0x003b7c08cb56f96e)}, | |||
{FIELD_LITERAL(0x00b63453c7af61ee,0x00eadcbafa2bd320,0x0086b04f4a7bf0e3,0x00b69bc8cbbfba5a,0x00ce4926bb1b064e,0x004df8ce753e0a27,0x00ff37bf2580a3a2,0x00ad90c8c5a377eb)}, | |||
{FIELD_LITERAL(0x00ac58c82bdd6e72,0x0008035e278a79da,0x003c9fcc92524fb3,0x000c71c26ea75e47,0x009631c4be717b38,0x00a2e968135e9152,0x00074295ca131ec2,0x00877a203d4a5015)}, | |||
{FIELD_LITERAL(0x00a49896f002be26,0x00ad6b0d720ae906,0x005786d8dbed0346,0x00f6749d6592e372,0x000542c37faf79a4,0x003281a4f5c7863a,0x00eacdc7def0cbdc,0x00ca8353efe160bd)}, | |||
{FIELD_LITERAL(0x003c9e851d9f8893,0x004df23c1696dd28,0x005e587fddb98f95,0x00359afa5adbfdbb,0x00ddb949d26e687c,0x00ebc6efd285564c,0x001750eec619bdd3,0x0037772e4ad0d4fa)}, | |||
{FIELD_LITERAL(0x0076e84babbbb048,0x000a6db83681bbe4,0x0059dff597eaead2,0x00f65bdd79fe2dab,0x00e3fc9faa642c8a,0x008a9cc9dfc634c9,0x00428a4b728b1cd4,0x00e80aea53cb6617)}, | |||
{FIELD_LITERAL(0x002ab17fdf7d2bd3,0x005aa55f23183393,0x009b88469f8c0eb9,0x007d101b314bca6b,0x0056dd4345fd97b9,0x00880e62e548ae7d,0x003d44d8c87b91a6,0x00fb2811386e22cc)}, | |||
{FIELD_LITERAL(0x00eacd58001be3a5,0x0014e1231ca72940,0x0022453384987584,0x0075848f0c37be5c,0x000e6dc40d82c0b2,0x00f4d8ec1270878c,0x00550981d6fb86fd,0x00bb66b58f4c6892)}, | |||
{FIELD_LITERAL(0x00bba772e57e297f,0x004f56f68df71b07,0x00ded9facaf23a81,0x00d78e832d78eedc,0x0004f7c3eff02685,0x00ba5fa931f9c020,0x005a29fb4b2295be,0x00e2543f745b1dc9)}, | |||
{FIELD_LITERAL(0x00712177652580f9,0x00e9ee16e21d1eca,0x0002465ba75b8e46,0x00a9cb7b1fc8ef2e,0x00ce337e6da1cf8e,0x009d3684c507fffa,0x00058cc115d71214,0x0017dba81e144377)}, | |||
{FIELD_LITERAL(0x003b778e67285805,0x00dbb06704ba87b5,0x00ba6ee1ea5ea2fe,0x00e2cdc2c8b3f699,0x006983c6eae69a9c,0x00c6c8c542d0c398,0x00f2d3a9ebcedbdc,0x00be30ddeabbd31c)}, | |||
{FIELD_LITERAL(0x0095f20a016490a6,0x005f2b00b9fbf26d,0x00b583124906cdaf,0x002e2077aa473ca8,0x0018c5b9f7902fa6,0x00b704f5229201a6,0x00e1fc5d70e4b1c2,0x00578e366ccf7289)}, | |||
{FIELD_LITERAL(0x00932127be1d579d,0x00e6729f50f54904,0x00e70f6247f618af,0x00b1953989fe9d9c,0x0015032e9df69633,0x00d3687b35cb6e82,0x00ab0fff86869218,0x0026054a3a68ddfb)}, | |||
{FIELD_LITERAL(0x00cf244d2e899137,0x00a793f52ec7aaa1,0x002e5cb0616e3883,0x009cbf752f176feb,0x0029edce4fa090a3,0x00f6540a960a0275,0x00513985eef0e3bc,0x00ce2e586f6c7228)}, | |||
{FIELD_LITERAL(0x00b42f011dbc757c,0x004a8e19d4f07c42,0x00a6d7828318b7ff,0x0004c9ce49ba3c0f,0x005fe71688087b6a,0x006e1d8f9a3d84ed,0x0089693e7e8e9a1f,0x0073bf4183ba45c5)}, | |||
{FIELD_LITERAL(0x0029e8ce35530d30,0x00d20f389f61fe3a,0x00cf9e8ddf74e1d4,0x004bec01b04d4979,0x007d92c9f6fd5ddd,0x00c072fa91981808,0x009afda4fe8a1676,0x00c96522ee879a14)}, | |||
{FIELD_LITERAL(0x005f0cd9cd83497b,0x00e382f098d97f00,0x0073e37e004eed2e,0x000707fe98b12237,0x0016d92a2b73d561,0x00a42926ab390165,0x00b394db4b1cc8fc,0x002fa14a3f6efa33)}, | |||
{FIELD_LITERAL(0x0055076a513d05ee,0x00f076d43cec14ad,0x00a4e386b252faf4,0x00c0713b79b313eb,0x00507efa72f46f19,0x00141bc1e7c66844,0x005629ef060c19ea,0x0085327113d1772c)}, | |||
{FIELD_LITERAL(0x00ed490108514e35,0x006bed897e6b4958,0x0000f2cae0dc546c,0x008175eb3e5008e4,0x0093e3fe8f3aed42,0x00e9dbc15fd54d1a,0x00844979a4cfc0c1,0x00ea3194d64ea60b)}, | |||
{FIELD_LITERAL(0x00b64d054ec7ed5c,0x007b924cd329fbce,0x00fe8805a8737293,0x00fb82f1d52b43ae,0x004ea745c72e1a76,0x0095ba2552861c0c,0x00f66846c3547784,0x003b815bd05dc23c)}, | |||
{FIELD_LITERAL(0x00669e32fd197ef7,0x001dfca2c5e2f7c9,0x00a2ae0964a1e5e2,0x00b4334b15c91232,0x0096419585110d96,0x009c0b2262172a58,0x009d7c87cf6d35ca,0x008a5ce50d3cabf6)}, | |||
{FIELD_LITERAL(0x00888b9c1cf73530,0x00375346c6afecd2,0x00142240b35b74d3,0x00d952835f86a5f5,0x000665c2658eaf9a,0x00f29f43062b2033,0x00a19a58c5bc85f9,0x00e62ac95724a937)}, | |||
{FIELD_LITERAL(0x003bedc9ae9d1730,0x00fedd7c04cbc775,0x00c19abc4540c61d,0x00115294c57fb687,0x00663fceb174cd8f,0x001671f572b885b0,0x002d14694ed85978,0x00127282078a8e44)}, | |||
{FIELD_LITERAL(0x00e6d2822aa72eca,0x00d832957cdc0058,0x00dc60e5bed23e18,0x00b94b4c418b03a3,0x00df3b85d410a430,0x0055e81b70bc79d4,0x00081d9369cbd1a0,0x00f7fee3acf0c656)}, | |||
{FIELD_LITERAL(0x003baba41b5abffb,0x00661ee09fca8193,0x00e0c6c92e6aea59,0x00886c207bcbe591,0x00aef9e7798e8004,0x00164f599f4d707a,0x00bb1597a76d21f2,0x00fda82d5e025626)}, | |||
{FIELD_LITERAL(0x00552b53a9640f0e,0x005985236f4d88bf,0x00b7aaec965a8ae5,0x00cedada7b5ccf95,0x007b1ea2088f1902,0x0028445e38b4a7fa,0x0057f10ddc50efed,0x007637a3147bc5cb)}, | |||
{FIELD_LITERAL(0x008174fe4db53757,0x00930c4f4a35ecc8,0x000e9f82c1c95a8f,0x00c6480547d66e5e,0x00dce888f9a7bf39,0x006671a5022cb906,0x004823c19b5337a0,0x00455338b7fec529)}, | |||
{FIELD_LITERAL(0x005ac123fdc45964,0x00395057c2221d17,0x003c09c74cf84eb1,0x00b5ca859bbebf9d,0x001b26b274a7d235,0x00e8c63508e96a48,0x00edbce4d51d721e,0x00c49436797d6f83)}, | |||
{FIELD_LITERAL(0x0071595be88a7f40,0x00a05e6ac1c0fc87,0x00a01bf6538b29eb,0x00badcd80b881fb8,0x005bfe7af8049f8b,0x0084918e6ae35537,0x00ed4bd54759316e,0x007f135988d6b548)}, | |||
{FIELD_LITERAL(0x0075656c41e06629,0x0086059d83396637,0x004f304ecb457b37,0x00e3b4887db6be65,0x0020b54c263bb0be,0x0060a69193e561c3,0x00e6863f20dc8ce9,0x00afe16ac56e6478)} | |||
{FIELD_LITERAL(0x00303cda6feea532,0x00860f1d5a3850e4,0x00226b9fa4728ccd,0x00e822938a0a0c0c,0x00263a61c9ea9216,0x001204029321b828,0x006a468360983c65,0x0002846f0a782143)}, | |||
{FIELD_LITERAL(0x00303cda6feea532,0x00860f1d5a3850e4,0x00226b9fa4728ccd,0x006822938a0a0c0c,0x00263a61c9ea9215,0x001204029321b828,0x006a468360983c65,0x0082846f0a782143)}, | |||
{FIELD_LITERAL(0x00ef8e22b275198d,0x00b0eb141a0b0e8b,0x001f6789da3cb38c,0x006d2ff8ed39073e,0x00610bdb69a167f3,0x00571f306c9689b4,0x00f557e6f84b2df8,0x002affd38b2c86db)}, | |||
{FIELD_LITERAL(0x00cea0fc8d2e88b5,0x00821612d69f1862,0x0074c283b3e67522,0x005a195ba05a876d,0x000cddfe557feea4,0x008046c795bcc5e5,0x00540969f4d6e119,0x00d27f96d6b143d5)}, | |||
{FIELD_LITERAL(0x000c3b1019d474e8,0x00e19533e4952284,0x00cc9810ba7c920a,0x00f103d2785945ac,0x00bfa5696cc69b34,0x00a8d3d51e9ca839,0x005623cb459586b9,0x00eae7ce1cd52e9e)}, | |||
{FIELD_LITERAL(0x0005a178751dd7d8,0x002cc3844c69c42f,0x00acbfe5efe10539,0x009c20f43431a65a,0x008435d96374a7b3,0x009ee57566877bd3,0x0044691725ed4757,0x001e87bb2fe2c6b2)}, | |||
{FIELD_LITERAL(0x000cedc4debf7a04,0x002ffa45000470ac,0x002e9f9678201915,0x0017da1208c4fe72,0x007d558cc7d656cb,0x0037a827287cf289,0x00142472d3441819,0x009c21f166cf8dd1)}, | |||
{FIELD_LITERAL(0x003ef83af164b2f2,0x000949a5a0525d0d,0x00f4498186cac051,0x00e77ac09ef126d2,0x0073ae0b2c9296e9,0x001c163f6922e3ed,0x0062946159321bea,0x00cfb79b22990b39)}, | |||
{FIELD_LITERAL(0x00b001431ca9e654,0x002d7e5eabcc9a3a,0x0052e8114c2f6747,0x0079ac4f94487f92,0x00bffd919b5d749c,0x00261f92ad15e620,0x00718397b7a97895,0x00c1443e6ebbc0c4)}, | |||
{FIELD_LITERAL(0x00eacd90c1e0a049,0x008977935b149fbe,0x0004cb9ba11c93dc,0x009fbd5b3470844d,0x004bc18c9bfc22cf,0x0057679a991839f3,0x00ef15b76fb4092e,0x0074a5173a225041)}, | |||
{FIELD_LITERAL(0x003f5f9d7ec4777b,0x00ab2e733c919c94,0x001bb6c035245ae5,0x00a325a49a883630,0x0033e9a9ea3cea2f,0x00e442a1eaa0e844,0x00b2116d5b0e71b8,0x00c16abed6d64047)}, | |||
{FIELD_LITERAL(0x00c560b5ed051165,0x001945adc5d65094,0x00e221865710f910,0x00cc12bc9e9b8ceb,0x004faa9518914e35,0x0017476d89d42f6d,0x00b8f637c8fa1c8b,0x0088c7d2790864b8)}, | |||
{FIELD_LITERAL(0x00ef7eafc1c69be6,0x0085d3855778fbea,0x002c8d5b450cb6f5,0x004e77de5e1e7fec,0x0047c057893abded,0x001b430b85d51e16,0x00965c7b45640c3c,0x00487b2bb1162b97)}, | |||
{FIELD_LITERAL(0x0099c73a311beec2,0x00a3eff38d8912ad,0x002efa9d1d7e8972,0x00f717ae1e14d126,0x002833f795850c8b,0x0066c12ad71486bd,0x00ae9889da4820eb,0x00d6044309555c08)}, | |||
{FIELD_LITERAL(0x004b1c5283d15e41,0x00669d8ea308ff75,0x0004390233f762a1,0x00e1d67b83cb6cec,0x003eebaa964c78b1,0x006b0aff965eb664,0x00b313d4470bdc37,0x008814ffcb3cb9d8)}, | |||
{FIELD_LITERAL(0x009724b8ce68db70,0x007678b5ed006f3d,0x00bdf4b89c0abd73,0x00299748e04c7c6d,0x00ddd86492c3c977,0x00c5a7febfa30a99,0x00ed84715b4b02bb,0x00319568adf70486)}, | |||
{FIELD_LITERAL(0x0070ff2d864de5bb,0x005a37eeb637ee95,0x0033741c258de160,0x00e6ca5cb1988f46,0x001ceabd92a24661,0x0030957bd500fe40,0x001c3362afe912c5,0x005187889f678bd2)}, | |||
{FIELD_LITERAL(0x0086835fc62bbdc7,0x009c3516ca4910a1,0x00956c71f8d00783,0x0095c78fcf63235f,0x00fc7ff6ba05c222,0x00cdd8b3f8d74a52,0x00ac5ae16de8256e,0x00e9d4be8ed48624)}, | |||
{FIELD_LITERAL(0x00c0ce11405df2d8,0x004e3f37b293d7b6,0x002410172e1ac6db,0x00b8dbff4bf8143d,0x003a7b409d56eb66,0x003e0f6a0dfef9af,0x0081c4e4d3645be1,0x00ce76076b127623)}, | |||
{FIELD_LITERAL(0x00f6ee0f98974239,0x0042d89af07d3a4f,0x00846b7fe84346b5,0x006a21fc6a8d39a1,0x00ac8bc2541ff2d9,0x006d4e2a77732732,0x009a39b694cc3f2f,0x0085c0aa2a404c8f)}, | |||
{FIELD_LITERAL(0x00b261101a218548,0x00c1cae96424277b,0x00869da0a77dd268,0x00bc0b09f8ec83ea,0x00d61027f8e82ba9,0x00aa4c85999dce67,0x00eac3132b9f3fe1,0x00fb9b0cf1c695d2)}, | |||
{FIELD_LITERAL(0x0043079295512f0d,0x0046a009861758e0,0x003ee2842a807378,0x0034cc9d1298e4fa,0x009744eb4d31b3ee,0x00afacec96650cd0,0x00ac891b313761ae,0x00e864d6d26e708a)}, | |||
{FIELD_LITERAL(0x00a84d7c8a23b491,0x0088e19aa868b27f,0x0005986d43e78ce9,0x00f28012f0606d28,0x0017ded7e10249b3,0x005ed4084b23af9b,0x00b9b0a940564472,0x00ad9056cceeb1f4)}, | |||
{FIELD_LITERAL(0x00db91b357fe755e,0x00a1aa544b15359c,0x00af4931a0195574,0x007686124fe11aef,0x00d1ead3c7b9ef7e,0x00aaf5fc580f8c15,0x00e727be147ee1ec,0x003c61c1e1577b86)}, | |||
{FIELD_LITERAL(0x009d3fca983220cf,0x00cd11acbc853dc4,0x0017590409d27f1d,0x00d2176698082802,0x00fa01251b2838c8,0x00dd297a0d9b51c6,0x00d76c92c045820a,0x00534bc7c46c9033)}, | |||
{FIELD_LITERAL(0x0080ed9bc9b07338,0x00fceac7745d2652,0x008a9d55f5f2cc69,0x0096ce72df301ac5,0x00f53232e7974d87,0x0071728c7ae73947,0x0090507602570778,0x00cb81cfd883b1b2)}, | |||
{FIELD_LITERAL(0x005011aadea373da,0x003a8578ec896034,0x00f20a6535fa6d71,0x005152d31e5a87cf,0x002bac1c8e68ca31,0x00b0e323db4c1381,0x00f1d596b7d5ae25,0x00eae458097cb4e0)}, | |||
{FIELD_LITERAL(0x00920ac80f9b0d21,0x00f80f7f73401246,0x0086d37849b557d6,0x0002bd4b317b752e,0x00b26463993a42bb,0x002070422a73b129,0x00341acaa0380cb3,0x00541914dd66a1b2)}, | |||
{FIELD_LITERAL(0x00c1513cd66abe8c,0x000139e01118944d,0x0064abbcb8080bbb,0x00b3b08202473142,0x00c629ef25da2403,0x00f0aec3310d9b7f,0x0050b2227472d8cd,0x00f6c8a922d41fb4)}, | |||
{FIELD_LITERAL(0x001075ccf26b7b1f,0x00bb6bb213170433,0x00e9491ad262da79,0x009ef4f48d2d384c,0x008992770766f09d,0x001584396b6b1101,0x00af3f8676c9feef,0x0024603c40269118)}, | |||
{FIELD_LITERAL(0x009dd7b31319527c,0x001e7ac948d873a9,0x00fa54b46ef9673a,0x0066efb8d5b02fe6,0x00754b1d3928aeae,0x0004262ac72a6f6b,0x0079b7d49a6eb026,0x003126a753540102)}, | |||
{FIELD_LITERAL(0x009666e24f693947,0x00f714311269d45f,0x0010ffac1d0c851c,0x0066e80c37363497,0x00f1f4ad010c60b0,0x0015c87408470ff7,0x00651d5e9c7766a4,0x008138819d7116de)}, | |||
{FIELD_LITERAL(0x003934b11c57253b,0x00ef308edf21f46e,0x00e54e99c7a16198,0x0080d57135764e63,0x00751c27b946bc24,0x00dd389ce4e9e129,0x00a1a2bfd1cd84dc,0x002fae73e5149b32)}, | |||
{FIELD_LITERAL(0x00911657dffb4cdd,0x00c100b7cc553d06,0x00449d075ec467cc,0x007062100bc64e70,0x0043cf86f7bd21e7,0x00f401dc4b797dea,0x005224afb2f62e65,0x00d1ede3fb5a42be)}, | |||
{FIELD_LITERAL(0x00f2ba36a41aa144,0x00a0c22d946ee18f,0x008aae8ef9a14f99,0x00eef4d79b19bb36,0x008e75ce3d27b1fc,0x00a65daa03b29a27,0x00d9cc83684eb145,0x009e1ed80cc2ed74)}, | |||
{FIELD_LITERAL(0x00bed953d1997988,0x00b93ed175a24128,0x00871c5963fb6365,0x00ca2df20014a787,0x00f5d9c1d0b34322,0x00f6f5942818db0a,0x004cc091f49c9906,0x00e8a188a60bff9f)}, | |||
{FIELD_LITERAL(0x0032c7762032fae8,0x00e4087232e0bc21,0x00f767344b6e8d85,0x00bbf369b76c2aa2,0x008a1f46c6e1570c,0x001368cd9780369f,0x007359a39d079430,0x0003646512921434)}, | |||
{FIELD_LITERAL(0x007c4b47ca7c73e7,0x005396221039734b,0x008b64ddf0e45d7e,0x00bfad5af285e6c2,0x008ec711c5b1a1a8,0x00cf663301237f98,0x00917ee3f1655126,0x004152f337efedd8)}, | |||
{FIELD_LITERAL(0x0007c7edc9305daa,0x000a6664f273701c,0x00f6e78795e200b1,0x005d05b9ecd2473e,0x0014f5f17c865786,0x00c7fd2d166fa995,0x004939a2d8eb80e0,0x002244ba0942c199)}, | |||
{FIELD_LITERAL(0x00321e767f0262cf,0x002e57d776caf68e,0x00bf2c94814f0437,0x00c339196acd622f,0x001db4cce71e2770,0x001ded5ddba6eee2,0x0078608ab1554c8d,0x00067fe0ab76365b)}, | |||
{FIELD_LITERAL(0x00f09758e11e3985,0x00169efdbd64fad3,0x00e8889b7d6dacd6,0x0035cdd58ea88209,0x00bcda47586d7f49,0x003cdddcb2879088,0x0016da70187e954b,0x009556ea2e92aacd)}, | |||
{FIELD_LITERAL(0x008cab16bd1ff897,0x00b389972cdf753f,0x00ea8ed1e46dfdc0,0x004fe7ef94c589f4,0x002b8ae9b805ecf3,0x0025c08d892874a5,0x0023938e98d44c4c,0x00f759134cabf69c)}, | |||
{FIELD_LITERAL(0x006c2a84678e4b3b,0x007a194aacd1868f,0x00ed0225af424761,0x00da0a6f293c64b8,0x001062ac5c6a7a18,0x0030f5775a8aeef4,0x0002acaad76b7af0,0x00410b8fd63a579f)}, | |||
{FIELD_LITERAL(0x001ec59db3d9590e,0x001e9e3f1c3f182d,0x0045a9c3ec2cab14,0x0008198572aeb673,0x00773b74068bd167,0x0012535eaa395434,0x0044dba9e3bbb74a,0x002fba4d3c74bd0e)}, | |||
{FIELD_LITERAL(0x0042bf08fe66922c,0x003318b8fbb49e8c,0x00d75946004aa14c,0x00f601586b42bf1c,0x00c74cf1d912fe66,0x00abcb36974b30ad,0x007eb78720c9d2b8,0x009f54ab7bd4df85)}, | |||
{FIELD_LITERAL(0x00db9fc948f73826,0x00fa8b3746ed8ee9,0x00132cb65aafbeb2,0x00c36ff3fe7925b8,0x00837daed353d2fe,0x00ec661be0667cf4,0x005beb8ed2e90204,0x00d77dd69e564967)}, | |||
{FIELD_LITERAL(0x0042e6268b861751,0x0008dd0469500c16,0x00b51b57c338a3fd,0x00cc4497d85cff6b,0x002f13d6b57c34a4,0x0083652eaf301105,0x00cc344294cc93a8,0x0060f4d02810e270)}, | |||
{FIELD_LITERAL(0x00a8954363cd518b,0x00ad171124bccb7b,0x0065f46a4adaae00,0x001b1a5b2a96e500,0x0043fe24f8233285,0x0066996d8ae1f2c3,0x00c530f3264169f9,0x00c0f92d07cf6a57)}, | |||
{FIELD_LITERAL(0x0036a55c6815d943,0x008c8d1def993db3,0x002e0e1e8ff7318f,0x00d883a4b92db00a,0x002f5e781ae33906,0x001a72adb235c06d,0x00f2e59e736e9caa,0x001a4b58e3031914)}, | |||
{FIELD_LITERAL(0x00d73bfae5e00844,0x00bf459766fb5f52,0x0061b4f5a5313cde,0x004392d4c3b95514,0x000d3551b1077523,0x0000998840ee5d71,0x006de6e340448b7b,0x00251aa504875d6e)}, | |||
{FIELD_LITERAL(0x003bf343427ac342,0x00adc0a78642b8c5,0x0003b893175a8314,0x0061a34ade5703bc,0x00ea3ea8bb71d632,0x00be0df9a1f198c2,0x0046dd8e7c1635fb,0x00f1523fdd25d5e5)}, | |||
{FIELD_LITERAL(0x00633f63fc9dd406,0x00e713ff80e04a43,0x0060c6e970f2d621,0x00a57cd7f0df1891,0x00f2406a550650bb,0x00b064290efdc684,0x001eab0144d17916,0x00cd15f863c293ab)}, | |||
{FIELD_LITERAL(0x0029cec55273f70d,0x007044ee275c6340,0x0040f637a93015e2,0x00338bb78db5aae9,0x001491b2a6132147,0x00a125d6cfe6bde3,0x005f7ac561ba8669,0x001d5eaea3fbaacf)}, | |||
{FIELD_LITERAL(0x00054e9635e3be31,0x000e43f31e2872be,0x00d05b1c9e339841,0x006fac50bd81fd98,0x00cdc7852eaebb09,0x004ff519b061991b,0x009099e8107d4c85,0x00273e24c36a4a61)}, | |||
{FIELD_LITERAL(0x00070b4441ef2c46,0x00efa5b02801a109,0x00bf0b8c3ee64adf,0x008a67e0b3452e98,0x001916b1f2fa7a74,0x00d781a78ff6cdc3,0x008682ce57e5c919,0x00cc1109dd210da3)}, | |||
{FIELD_LITERAL(0x00cae8aaff388663,0x005e983a35dda1c7,0x007ab1030d8e37f4,0x00e48940f5d032fe,0x006a36f9ef30b331,0x009be6f03958c757,0x0086231ceba91400,0x008bd0f7b823e7aa)}, | |||
{FIELD_LITERAL(0x00cf881ebef5a45a,0x004ebea78e7c6f2c,0x0090da9209cf26a0,0x00de2b2e4c775b84,0x0071d6031c3c15ae,0x00d9e927ef177d70,0x00894ee8c23896fd,0x00e3b3b401e41aad)}, | |||
{FIELD_LITERAL(0x00204fef26864170,0x00819269c5dee0f8,0x00bfb4713ec97966,0x0026339a6f34df78,0x001f26e64c761dc2,0x00effe3af313cb60,0x00e17b70138f601b,0x00f16e1ccd9ede5e)}, | |||
{FIELD_LITERAL(0x005d9a8353fdb2db,0x0055cc2048c698f0,0x00f6c4ac89657218,0x00525034d73faeb2,0x00435776fbda3c7d,0x0070ea5312323cbc,0x007a105d44d069fb,0x006dbc8d6dc786aa)}, | |||
{FIELD_LITERAL(0x0017cff19cd394ec,0x00fef7b810922587,0x00e6483970dff548,0x00ddf36ad6874264,0x00e61778523fcce2,0x0093a66c0c93b24a,0x00fd367114db7f86,0x007652d7ddce26dd)}, | |||
{FIELD_LITERAL(0x00d92ced7ba12843,0x00aea9c7771e86e7,0x0046639693354f7b,0x00a628dbb6a80c47,0x003a0b0507372953,0x00421113ab45c0d9,0x00e545f08362ab7a,0x0028ce087b4d6d96)}, | |||
{FIELD_LITERAL(0x00a67ee7cf9f99eb,0x005713b275f2ff68,0x00f1d536a841513d,0x00823b59b024712e,0x009c46b9d0d38cec,0x00cdb1595aa2d7d4,0x008375b3423d9af8,0x000ab0b516d978f7)}, | |||
{FIELD_LITERAL(0x00428dcb3c510b0f,0x00585607ea24bb4e,0x003736bf1603687a,0x00c47e568c4fe3c7,0x003cd00282848605,0x0043a487c3b91939,0x004ffc04e1095a06,0x00a4c989a3d4b918)}, | |||
{FIELD_LITERAL(0x00a8778d0e429f7a,0x004c02b059105a68,0x0016653b609da3ff,0x00d5107bd1a12d27,0x00b4708f9a771cab,0x00bb63b662033f69,0x0072f322240e7215,0x0019445b59c69222)}, | |||
{FIELD_LITERAL(0x00cf4f6069a658e6,0x0053ca52859436a6,0x0064b994d7e3e117,0x00cb469b9a07f534,0x00cfb68f399e9d47,0x00f0dcb8dac1c6e7,0x00f2ab67f538b3a5,0x0055544f178ab975)}, | |||
{FIELD_LITERAL(0x0099b7a2685d538c,0x00e2f1897b7c0018,0x003adac8ce48dae3,0x00089276d5c50c0c,0x00172fca07ad6717,0x00cb1a72f54069e5,0x004ee42f133545b3,0x00785f8651362f16)}, | |||
{FIELD_LITERAL(0x0049cbac38509e11,0x0015234505d42cdf,0x00794fb0b5840f1c,0x00496437344045a5,0x0031b6d944e4f9b0,0x00b207318ac1f5d8,0x0000c840da7f5c5d,0x00526f373a5c8814)}, | |||
{FIELD_LITERAL(0x002c7b7742d1dfd9,0x002cabeb18623c01,0x00055f5e3e044446,0x006c20f3b4ef54ba,0x00c600141ec6b35f,0x00354f437f1a32a3,0x00bac4624a3520f9,0x00c483f734a90691)}, | |||
{FIELD_LITERAL(0x0053a737d422918d,0x00f7fca1d8758625,0x00c360336dadb04c,0x00f38e3d9158a1b8,0x0069ce3b418e84c6,0x005d1697eca16ead,0x00f8bd6a35ece13d,0x007885dfc2b5afea)}, | |||
{FIELD_LITERAL(0x00c3617ae260776c,0x00b20dc3e96922d7,0x00a1a7802246706a,0x00ca6505a5240244,0x002246b62d919782,0x001439102d7aa9b3,0x00e8af1139e6422c,0x00c888d1b52f2b05)}, | |||
{FIELD_LITERAL(0x005b67690ffd41d9,0x005294f28df516f9,0x00a879272412fcb9,0x00098b629a6d1c8d,0x00fabd3c8050865a,0x00cd7e5b0a3879c5,0x00153238210f3423,0x00357cac101e9f42)}, | |||
{FIELD_LITERAL(0x008917b454444fb7,0x00f59247c97e441b,0x00a6200a6815152d,0x0009a4228601d254,0x001c0360559bd374,0x007563362039cb36,0x00bd75b48d74e32b,0x0017f515ac3499e8)}, | |||
{FIELD_LITERAL(0x001532a7ffe41c5a,0x00eb1edce358d6bf,0x00ddbacc7b678a7b,0x008a7b70f3c841a3,0x00f1923bf27d3f4c,0x000b2713ed8f7873,0x00aaf67e29047902,0x0044994a70b3976d)}, | |||
{FIELD_LITERAL(0x00d54e802082d42c,0x00a55aa0dce7cc6c,0x006477b96073f146,0x0082efe4ceb43594,0x00a922bcba026845,0x0077f19d1ab75182,0x00c2bb2737846e59,0x0004d7eec791dd33)}, | |||
{FIELD_LITERAL(0x0044588d1a81d680,0x00b0a9097208e4f8,0x00212605350dc57e,0x0028717cd2871123,0x00fb083c100fd979,0x0045a056ce063fdf,0x00a5d604b4dd6a41,0x001dabc08ba4e236)}, | |||
{FIELD_LITERAL(0x00c4887198d7a7fa,0x00244f98fb45784a,0x0045911e15a15d01,0x001d323d374c0966,0x00967c3915196562,0x0039373abd2f3c67,0x000d2c5614312423,0x0041cf2215442ce3)}, | |||
{FIELD_LITERAL(0x008ede889ada7f06,0x001611e91de2e135,0x00fdb9a458a471b9,0x00563484e03710d1,0x0031cc81925e3070,0x0062c97b3af80005,0x00fa733eea28edeb,0x00e82457e1ebbc88)}, | |||
{FIELD_LITERAL(0x006a0df5fe9b6f59,0x00a0d4ff46040d92,0x004a7cedb6f93250,0x00d1df8855b8c357,0x00e73a46086fd058,0x0048fb0add6dfe59,0x001e03a28f1b4e3d,0x00a871c993308d76)}, | |||
{FIELD_LITERAL(0x0030dbb2d1766ec8,0x00586c0ad138555e,0x00d1a34f9e91c77c,0x0063408ad0e89014,0x00d61231b05f6f5b,0x0009abf569f5fd8a,0x00aec67a110f1c43,0x0031d1a790938dd7)}, | |||
{FIELD_LITERAL(0x006cded841e2a862,0x00198d60af0ab6fb,0x0018f09db809e750,0x004e6ac676016263,0x00eafcd1620969cb,0x002c9784ca34917d,0x0054f00079796de7,0x00d9fab5c5972204)}, | |||
{FIELD_LITERAL(0x004bd0fee2438a83,0x00b571e62b0f83bd,0x0059287d7ce74800,0x00fb3631b645c3f0,0x00a018e977f78494,0x0091e27065c27b12,0x007696c1817165e0,0x008c40be7c45ba3a)}, | |||
{FIELD_LITERAL(0x00a0f326327cb684,0x001c7d0f672680ff,0x008c1c81ffb112d1,0x00f8f801674eddc8,0x00e926d5d48c2a9d,0x005bd6d954c6fe9a,0x004c6b24b4e33703,0x00d05eb5c09105cc)}, | |||
{FIELD_LITERAL(0x00d61731caacf2cf,0x002df0c7609e01c5,0x00306172208b1e2b,0x00b413fe4fb2b686,0x00826d360902a221,0x003f8d056e67e7f7,0x0065025b0175e989,0x00369add117865eb)}, | |||
{FIELD_LITERAL(0x00aaf895aec2fa11,0x000f892bc313eb52,0x005b1c794dad050b,0x003f8ec4864cec14,0x00af81058d0b90e5,0x00ebe43e183997bb,0x00a9d610f9f3e615,0x007acd8eec2e88d3)}, | |||
{FIELD_LITERAL(0x0049b2fab13812a3,0x00846db32cd60431,0x000177fa578c8d6c,0x00047d0e2ad4bc51,0x00b158ba38d1e588,0x006a45daad79e3f3,0x000997b93cab887b,0x00c47ea42fa23dc3)}, | |||
{FIELD_LITERAL(0x0012b6fef7aeb1ca,0x009412768194b6a7,0x00ff0d351f23ab93,0x007e8a14c1aff71b,0x006c1c0170c512bc,0x0016243ea02ab2e5,0x007bb6865b303f3e,0x0015ce6b29b159f4)}, | |||
{FIELD_LITERAL(0x009961cd02e68108,0x00e2035d3a1d0836,0x005d51f69b5e1a1d,0x004bccb4ea36edcd,0x0069be6a7aeef268,0x0063f4dd9de8d5a7,0x006283783092ca35,0x0075a31af2c35409)}, | |||
{FIELD_LITERAL(0x00c412365162e8cf,0x00012283fb34388a,0x003e6543babf39e2,0x00eead6b3a804978,0x0099c0314e8b326f,0x00e98e0a8d477a4f,0x00d2eb96b127a687,0x00ed8d7df87571bb)}, | |||
{FIELD_LITERAL(0x00777463e308cacf,0x00c8acb93950132d,0x00ebddbf4ca48b2c,0x0026ad7ca0795a0a,0x00f99a3d9a715064,0x000d60bcf9d4dfcc,0x005e65a73a437a06,0x0019d536a8db56c8)}, | |||
{FIELD_LITERAL(0x00192d7dd558d135,0x0027cd6a8323ffa7,0x00239f1a412dc1e7,0x0046b4b3be74fc5c,0x0020c47a2bef5bce,0x00aa17e48f43862b,0x00f7e26c96342e5f,0x0008011c530f39a9)}, | |||
{FIELD_LITERAL(0x00aad4ac569bf0f1,0x00a67adc90b27740,0x0048551369a5751a,0x0031252584a3306a,0x0084e15df770e6fc,0x00d7bba1c74b5805,0x00a80ef223af1012,0x0089c85ceb843a34)}, | |||
{FIELD_LITERAL(0x00c4545be4a54004,0x0099e11f60357e6c,0x001f3936d19515a6,0x007793df84341a6e,0x0051061886717ffa,0x00e9b0a660b28f85,0x0044ea685892de0d,0x000257d2a1fda9d9)}, | |||
{FIELD_LITERAL(0x007e8b01b24ac8a8,0x006cf3b0b5ca1337,0x00f1607d3e36a570,0x0039b7fab82991a1,0x00231777065840c5,0x00998e5afdd346f9,0x00b7dc3e64acc85f,0x00baacc748013ad6)}, | |||
{FIELD_LITERAL(0x008ea6a4177580bf,0x005fa1953e3f0378,0x005fe409ac74d614,0x00452327f477e047,0x00a4018507fb6073,0x007b6e71951caac8,0x0012b42ab8a6ce91,0x0080eca677294ab7)}, | |||
{FIELD_LITERAL(0x00a53edc023ba69b,0x00c6afa83ddde2e8,0x00c3f638b307b14e,0x004a357a64414062,0x00e4d94d8b582dc9,0x001739caf71695b7,0x0012431b2ae28de1,0x003b6bc98682907c)}, | |||
{FIELD_LITERAL(0x008a9a93be1f99d6,0x0079fa627cc699c8,0x00b0cfb134ba84c8,0x001c4b778249419a,0x00df4ab3d9c44f40,0x009f596e6c1a9e3c,0x001979c0df237316,0x00501e953a919b87)} | |||
}; |
@@ -31,6 +31,7 @@ | |||
#define NO_CONTEXT DECAF_EDDSA_448_SUPPORTS_CONTEXTLESS_SIGS | |||
#define EDDSA_USE_SIGMA_ISOGENY 0 | |||
#define COFACTOR 4 | |||
#define EDDSA_PREHASH_BYTES 64 | |||
#if NO_CONTEXT | |||
const uint8_t NO_CONTEXT_POINTS_HERE = 0; | |||
@@ -41,7 +42,7 @@ const uint8_t * const DECAF_ED448_NO_CONTEXT = &NO_CONTEXT_POINTS_HERE; | |||
* Because EdDSA25519 is not on E_d but on the isogenous E_sigma_d, | |||
* its base point is twice ours. | |||
*/ | |||
#define EDDSA_BASE_POINT_RATIO (1+EDDSA_USE_SIGMA_ISOGENY) | |||
#define EDDSA_BASE_POINT_RATIO (1+EDDSA_USE_SIGMA_ISOGENY) /* TODO: remove */ | |||
static void clamp ( | |||
uint8_t secret_scalar_ser[DECAF_EDDSA_448_PRIVATE_BYTES] | |||
@@ -128,14 +129,14 @@ void decaf_ed448_derive_public_key ( | |||
* the decaf base point is on Etwist_d, and when converted it effectively | |||
* picks up a factor of 2 from the isogenies. So we might start at 2 instead of 1. | |||
*/ | |||
for (unsigned int c = EDDSA_BASE_POINT_RATIO; c < COFACTOR; c <<= 1) { | |||
for (unsigned int c=1; c<DECAF_448_EDDSA_ENCODE_RATIO; c <<= 1) { | |||
API_NS(scalar_halve)(secret_scalar,secret_scalar); | |||
} | |||
API_NS(point_t) p; | |||
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),secret_scalar); | |||
API_NS(point_mul_by_cofactor_and_encode_like_eddsa)(pubkey, p); | |||
API_NS(point_mul_by_ratio_and_encode_like_eddsa)(pubkey, p); | |||
/* Cleanup */ | |||
API_NS(scalar_destroy)(secret_scalar); | |||
@@ -191,13 +192,13 @@ void decaf_ed448_sign ( | |||
/* Scalarmul to create the nonce-point */ | |||
API_NS(scalar_t) nonce_scalar_2; | |||
API_NS(scalar_halve)(nonce_scalar_2,nonce_scalar); | |||
for (unsigned int c = 2*EDDSA_BASE_POINT_RATIO; c < COFACTOR; c <<= 1) { | |||
for (unsigned int c = 2; c < DECAF_448_EDDSA_ENCODE_RATIO; c <<= 1) { | |||
API_NS(scalar_halve)(nonce_scalar_2,nonce_scalar_2); | |||
} | |||
API_NS(point_t) p; | |||
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),nonce_scalar_2); | |||
API_NS(point_mul_by_cofactor_and_encode_like_eddsa)(nonce_point, p); | |||
API_NS(point_mul_by_ratio_and_encode_like_eddsa)(nonce_point, p); | |||
API_NS(point_destroy)(p); | |||
API_NS(scalar_destroy)(nonce_scalar_2); | |||
} | |||
@@ -237,7 +238,7 @@ void decaf_ed448_sign_prehash ( | |||
const uint8_t *context, | |||
uint8_t context_len | |||
) { | |||
uint8_t hash_output[64]; /* MAGIC but true for all existing schemes */ | |||
uint8_t hash_output[EDDSA_PREHASH_BYTES]; | |||
{ | |||
decaf_ed448_prehash_ctx_t hash_too; | |||
memcpy(hash_too,hash,sizeof(hash_too)); | |||
@@ -259,10 +260,10 @@ decaf_error_t decaf_ed448_verify ( | |||
uint8_t context_len | |||
) { | |||
API_NS(point_t) pk_point, r_point; | |||
decaf_error_t error = API_NS(point_decode_like_eddsa_and_ignore_cofactor)(pk_point,pubkey); | |||
decaf_error_t error = API_NS(point_decode_like_eddsa_and_mul_by_ratio)(pk_point,pubkey); | |||
if (DECAF_SUCCESS != error) { return error; } | |||
error = API_NS(point_decode_like_eddsa_and_ignore_cofactor)(r_point,signature); | |||
error = API_NS(point_decode_like_eddsa_and_mul_by_ratio)(r_point,signature); | |||
if (DECAF_SUCCESS != error) { return error; } | |||
API_NS(scalar_t) challenge_scalar; | |||
@@ -287,9 +288,10 @@ decaf_error_t decaf_ed448_verify ( | |||
&signature[DECAF_EDDSA_448_PUBLIC_BYTES], | |||
DECAF_EDDSA_448_PRIVATE_BYTES | |||
); | |||
#if EDDSA_BASE_POINT_RATIO == 2 | |||
API_NS(scalar_add)(response_scalar,response_scalar,response_scalar); | |||
#endif | |||
for (unsigned c=1; c<DECAF_448_EDDSA_DECODE_RATIO; c<<=1) { | |||
API_NS(scalar_add)(response_scalar,response_scalar,response_scalar); | |||
} | |||
/* pk_point = -c(x(P)) + (cx + k)G = kG */ | |||
@@ -312,7 +314,7 @@ decaf_error_t decaf_ed448_verify_prehash ( | |||
) { | |||
decaf_error_t ret; | |||
uint8_t hash_output[64]; /* MAGIC but true for all existing schemes */ | |||
uint8_t hash_output[EDDSA_PREHASH_BYTES]; | |||
{ | |||
decaf_ed448_prehash_ctx_t hash_too; | |||
memcpy(hash_too,hash,sizeof(hash_too)); | |||
@@ -21,14 +21,18 @@ | |||
#define IMAGINE_TWIST 0 | |||
#define COFACTOR 4 | |||
static const int EDWARDS_D = -39081; | |||
/* End of template stuff */ | |||
extern void API_NS(deisogenize) ( | |||
#define RISTRETTO_FACTOR DECAF_448_RISTRETTO_FACTOR | |||
extern const gf RISTRETTO_FACTOR; | |||
/* End of template stuff */ | |||
extern mask_t API_NS(deisogenize) ( | |||
gf_s *__restrict__ s, | |||
gf_s *__restrict__ minus_t_over_s, | |||
gf_s *__restrict__ inv_el_sum, | |||
gf_s *__restrict__ inv_el_m1, | |||
const point_t p, | |||
mask_t toggle_hibit_s, | |||
mask_t toggle_hibit_t_over_s, | |||
mask_t toggle_altx, | |||
mask_t toggle_rotation | |||
); | |||
@@ -37,7 +41,8 @@ void API_NS(point_from_hash_nonuniform) ( | |||
const unsigned char ser[SER_BYTES] | |||
) { | |||
gf r0,r,a,b,c,N,e; | |||
ignore_result(gf_deserialize(r0,ser,0)); | |||
const uint8_t mask = (uint8_t)(0xFE<<(7)); | |||
ignore_result(gf_deserialize(r0,ser,0,mask)); | |||
gf_strong_reduce(r0); | |||
gf_sqr(a,r0); | |||
gf_mul_qnr(r,a); | |||
@@ -61,7 +66,7 @@ void API_NS(point_from_hash_nonuniform) ( | |||
/* s@a = +-|N.e| */ | |||
gf_mul(a,N,e); | |||
gf_cond_neg(a,gf_hibit(a)^square); /* NB this is - what is listed in the paper */ | |||
gf_cond_neg(a,gf_lobit(a) ^ ~square); | |||
/* t@b = -+ cN(r-1)((a-2d)e)^2 - 1 */ | |||
gf_mulw(c,e,1-2*EDWARDS_D); /* (a-2d)e */ | |||
@@ -107,23 +112,6 @@ void API_NS(point_from_hash_uniform) ( | |||
* log p == 1 mod 8 brainpool curves maybe? | |||
*/ | |||
#define MAX(A,B) (((A)>(B)) ? (A) : (B)) | |||
#define PKP_MASK ((1<<(MAX(8*SER_BYTES + 0 - 448,0)))-1) | |||
#if PKP_MASK != 0 | |||
static DECAF_INLINE mask_t plus_k_p ( | |||
uint8_t x[SER_BYTES], | |||
uint32_t factor_ | |||
) { | |||
uint32_t carry = 0; | |||
uint64_t factor = factor_; | |||
const uint8_t p[SER_BYTES] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; | |||
for (unsigned int i=0; i<SER_BYTES; i++) { | |||
uint64_t tmp = carry + p[i] * factor + x[i]; | |||
/* tmp <= 2^32-1 + (2^32-1)*(2^8-1) + (2^8-1) = 2^40-1 */ | |||
x[i] = tmp; carry = tmp>>8; | |||
} | |||
return word_is_zero(carry); | |||
} | |||
#endif | |||
decaf_error_t | |||
API_NS(invert_elligator_nonuniform) ( | |||
@@ -133,60 +121,73 @@ API_NS(invert_elligator_nonuniform) ( | |||
) { | |||
mask_t hint = hint_; | |||
mask_t sgn_s = -(hint & 1), | |||
sgn_t_over_s = -(hint>>1 & 1), | |||
sgn_altx = -(hint>>1 & 1), | |||
sgn_r0 = -(hint>>2 & 1), | |||
/* FUTURE MAGIC: eventually if there's a curve which needs sgn_ed_T but not sgn_r0, | |||
* change this mask extraction. | |||
*/ | |||
sgn_ed_T = -(hint>>3 & 1); | |||
gf a, b, c, d; | |||
API_NS(deisogenize)(a,c,p,sgn_s,sgn_t_over_s,sgn_ed_T); | |||
gf a,b,c; | |||
API_NS(deisogenize)(a,b,c,p,sgn_s,sgn_altx,sgn_ed_T); | |||
#if 448 == 8*SER_BYTES + 1 /* p521. */ | |||
sgn_r0 = 0; | |||
mask_t is_identity = gf_eq(p->t,ZERO); | |||
#if COFACTOR==4 | |||
gf_cond_sel(b,b,ONE,is_identity & sgn_altx); | |||
gf_cond_sel(c,c,ONE,is_identity & sgn_s &~ sgn_altx); | |||
#elif IMAGINE_TWIST | |||
/* Terrible, terrible special casing due to lots of 0/0 is deisogenize | |||
* Basically we need to generate -D and +- i*RISTRETTO_FACTOR | |||
*/ | |||
gf_mul_i(a,RISTRETTO_FACTOR); | |||
gf_cond_sel(b,b,ONE,is_identity); | |||
gf_cond_neg(a,sgn_altx); | |||
gf_cond_sel(c,c,a,is_identity & sgn_ed_T); | |||
gf_cond_sel(c,c,ZERO,is_identity & ~sgn_ed_T); | |||
gf_mulw(a,ONE,-EDWARDS_D); | |||
gf_cond_sel(c,c,a,is_identity & ~sgn_ed_T &~ sgn_altx); | |||
#else | |||
#error "Different special-casing goes here!" | |||
#endif | |||
/* ok, a = s; c = -t/s */ | |||
#if IMAGINE_TWIST | |||
gf_mulw(a,b,-EDWARDS_D); | |||
#else | |||
gf_mulw(a,b,EDWARDS_D-1); | |||
#endif | |||
gf_add(b,a,b); | |||
gf_sub(a,a,c); | |||
gf_add(b,b,c); | |||
gf_cond_swap(a,b,sgn_s); | |||
gf_mul_qnr(c,b); | |||
gf_mul(b,c,a); | |||
mask_t succ = gf_isr(c,b); | |||
succ |= gf_eq(b,ZERO); | |||
gf_mul(b,c,a); | |||
gf_sub(b,ONE,b); /* t+1 */ | |||
gf_sqr(c,a); /* s^2 */ | |||
mask_t is_identity = gf_eq(p->t,ZERO); | |||
/* identity adjustments */ | |||
/* in case of identity, currently c=0, t=0, b=1, will encode to 1 */ | |||
/* if hint is 0, -> 0 */ | |||
/* if hint is to neg t/s, then go to infinity, effectively set s to 1 */ | |||
gf_cond_sel(c,c,ONE,is_identity & sgn_t_over_s); | |||
gf_cond_sel(b,b,ZERO,is_identity & ~sgn_t_over_s & ~sgn_s); | |||
gf_mulw(d,c,2*EDWARDS_D-1); /* $d = (2d-a)s^2 */ | |||
gf_add(a,b,d); /* num? */ | |||
gf_sub(d,d,b); /* den? */ | |||
gf_mul(b,a,d); /* n*d */ | |||
gf_cond_sel(a,d,a,sgn_s); | |||
gf_mul_qnr(d,b); | |||
mask_t succ = gf_isr(c,d)|gf_eq(d,ZERO); | |||
gf_mul(b,a,c); | |||
gf_cond_neg(b, sgn_r0^gf_hibit(b)); | |||
succ &= ~(gf_eq(b,ZERO) & sgn_r0); | |||
#if COFACTOR == 8 | |||
succ &= ~(is_identity & sgn_ed_T); /* NB: there are no preimages of rotated identity. */ | |||
#endif | |||
#if 448 == 8*SER_BYTES + 1 /* p521. */ | |||
#error "this won't work because it needs to adjust high bit, not low bit" | |||
sgn_r0 = 0; | |||
#endif | |||
gf_cond_neg(b, sgn_r0^gf_lobit(b)); | |||
/* Eliminate duplicate values for identity ... */ | |||
succ &= ~(gf_eq(b,ZERO) & (sgn_r0 | sgn_s)); | |||
// #if COFACTOR == 8 | |||
// succ &= ~(is_identity & sgn_ed_T); /* NB: there are no preimages of rotated identity. */ | |||
// #endif | |||
#if 448 == 8*SER_BYTES + 1 /* p521 */ | |||
gf_serialize(recovered_hash,b,0); | |||
#else | |||
gf_serialize(recovered_hash,b,1); | |||
#if PKP_MASK != 0 | |||
/* Add a multiple of p to make the result either almost-onto or completely onto. */ | |||
#if COFACTOR == 8 | |||
succ &= plus_k_p(recovered_hash, (hint >> 4) & PKP_MASK); | |||
#else | |||
succ &= plus_k_p(recovered_hash, (hint >> 3) & PKP_MASK); | |||
#endif | |||
#endif | |||
#endif | |||
#if 0 | |||
#if COFACTOR==8 | |||
recovered_hash[SER_BYTES-1] ^= (hint>>4)<<0; | |||
#else | |||
recovered_hash[SER_BYTES-1] ^= (hint>>3)<<0; | |||
#endif | |||
#endif | |||
return decaf_succeed_if(mask_to_bool(succ)); | |||
} | |||
@@ -38,6 +38,7 @@ typedef struct gf_25519_s { | |||
#define gf_s gf_25519_s | |||
#define gf_eq gf_25519_eq | |||
#define gf_hibit gf_25519_hibit | |||
#define gf_lobit gf_25519_lobit | |||
#define gf_copy gf_25519_copy | |||
#define gf_add gf_25519_add | |||
#define gf_sub gf_25519_sub | |||
@@ -81,10 +82,11 @@ void gf_mulw_unsigned (gf_s *__restrict__ out, const gf a, uint32_t b); | |||
void gf_sqr (gf_s *__restrict__ out, const gf a); | |||
mask_t gf_isr(gf a, const gf x); /** a^2 x = 1, QNR, or 0 if x=0. Return true if successful */ | |||
mask_t gf_eq (const gf x, const gf y); | |||
mask_t gf_lobit (const gf x); | |||
mask_t gf_hibit (const gf x); | |||
void gf_serialize (uint8_t *serial, const gf x,int with_highbit); | |||
mask_t gf_deserialize (gf x, const uint8_t serial[SER_BYTES],int with_highbit); | |||
mask_t gf_deserialize (gf x, const uint8_t serial[SER_BYTES],int with_hibit,uint8_t hi_nmask); | |||
#ifdef __cplusplus | |||
@@ -52,14 +52,25 @@ mask_t gf_hibit(const gf x) { | |||
return -(y->limb[0]&1); | |||
} | |||
/** Return high bit of x = low bit of 2x mod p */ | |||
mask_t gf_lobit(const gf x) { | |||
gf y; | |||
gf_copy(y,x); | |||
gf_strong_reduce(y); | |||
return -(y->limb[0]&1); | |||
} | |||
/** Deserialize from wire format; return -1 on success and 0 on failure. */ | |||
mask_t gf_deserialize (gf x, const uint8_t serial[SER_BYTES], int with_hibit) { | |||
mask_t gf_deserialize (gf x, const uint8_t serial[SER_BYTES], int with_hibit, uint8_t hi_nmask) { | |||
unsigned int j=0, fill=0; | |||
dword_t buffer = 0; | |||
dsword_t scarry = 0; | |||
const unsigned nbytes = with_hibit ? X_SER_BYTES : SER_BYTES; | |||
UNROLL for (unsigned int i=0; i<NLIMBS; i++) { | |||
UNROLL while (fill < LIMB_PLACE_VALUE(LIMBPERM(i)) && j < (with_hibit ? X_SER_BYTES : SER_BYTES)) { | |||
buffer |= ((dword_t)serial[j]) << fill; | |||
UNROLL while (fill < LIMB_PLACE_VALUE(LIMBPERM(i)) && j < nbytes) { | |||
uint8_t sj = serial[j]; | |||
if (j==nbytes-1) sj &= ~hi_nmask; | |||
buffer |= ((dword_t)sj) << fill; | |||
fill += 8; | |||
j++; | |||
} | |||
@@ -38,6 +38,7 @@ typedef struct gf_448_s { | |||
#define gf_s gf_448_s | |||
#define gf_eq gf_448_eq | |||
#define gf_hibit gf_448_hibit | |||
#define gf_lobit gf_448_lobit | |||
#define gf_copy gf_448_copy | |||
#define gf_add gf_448_add | |||
#define gf_sub gf_448_sub | |||
@@ -81,10 +82,11 @@ void gf_mulw_unsigned (gf_s *__restrict__ out, const gf a, uint32_t b); | |||
void gf_sqr (gf_s *__restrict__ out, const gf a); | |||
mask_t gf_isr(gf a, const gf x); /** a^2 x = 1, QNR, or 0 if x=0. Return true if successful */ | |||
mask_t gf_eq (const gf x, const gf y); | |||
mask_t gf_lobit (const gf x); | |||
mask_t gf_hibit (const gf x); | |||
void gf_serialize (uint8_t *serial, const gf x,int with_highbit); | |||
mask_t gf_deserialize (gf x, const uint8_t serial[SER_BYTES],int with_highbit); | |||
mask_t gf_deserialize (gf x, const uint8_t serial[SER_BYTES],int with_hibit,uint8_t hi_nmask); | |||
#ifdef __cplusplus | |||
@@ -52,14 +52,25 @@ mask_t gf_hibit(const gf x) { | |||
return -(y->limb[0]&1); | |||
} | |||
/** Return high bit of x = low bit of 2x mod p */ | |||
mask_t gf_lobit(const gf x) { | |||
gf y; | |||
gf_copy(y,x); | |||
gf_strong_reduce(y); | |||
return -(y->limb[0]&1); | |||
} | |||
/** Deserialize from wire format; return -1 on success and 0 on failure. */ | |||
mask_t gf_deserialize (gf x, const uint8_t serial[SER_BYTES], int with_hibit) { | |||
mask_t gf_deserialize (gf x, const uint8_t serial[SER_BYTES], int with_hibit, uint8_t hi_nmask) { | |||
unsigned int j=0, fill=0; | |||
dword_t buffer = 0; | |||
dsword_t scarry = 0; | |||
const unsigned nbytes = with_hibit ? X_SER_BYTES : SER_BYTES; | |||
UNROLL for (unsigned int i=0; i<NLIMBS; i++) { | |||
UNROLL while (fill < LIMB_PLACE_VALUE(LIMBPERM(i)) && j < (with_hibit ? X_SER_BYTES : SER_BYTES)) { | |||
buffer |= ((dword_t)serial[j]) << fill; | |||
UNROLL while (fill < LIMB_PLACE_VALUE(LIMBPERM(i)) && j < nbytes) { | |||
uint8_t sj = serial[j]; | |||
if (j==nbytes-1) sj &= ~hi_nmask; | |||
buffer |= ((dword_t)sj) << fill; | |||
fill += 8; | |||
j++; | |||
} | |||
@@ -21,7 +21,7 @@ | |||
namespace decaf { | |||
template <template<typename Group> class Run> | |||
void run_for_all_curves() { | |||
Run<IsoEd25519>::run(); | |||
Run<Ristretto>::run(); | |||
Run<Ed448Goldilocks>::run(); | |||
} | |||
} | |||
@@ -42,6 +42,12 @@ extern const uint8_t * const DECAF_ED25519_NO_CONTEXT DECAF_API_VIS; | |||
#define decaf_ed25519_prehash_update decaf_sha512_update | |||
#define decaf_ed25519_prehash_destroy decaf_sha512_destroy | |||
/** EdDSA encoding ratio. */ | |||
#define DECAF_255_EDDSA_ENCODE_RATIO 4 | |||
/** EdDSA decoding ratio. */ | |||
#define DECAF_255_EDDSA_DECODE_RATIO (8 / 4) | |||
/** | |||
* @brief EdDSA key generation. This function uses a different (non-Decaf) | |||
* encoding. | |||
@@ -169,25 +175,43 @@ decaf_error_t decaf_ed25519_verify_prehash ( | |||
/** | |||
* @brief EdDSA point encoding. Used internally, exposed externally. | |||
* Multiplies the point by the current cofactor first. | |||
* Multiplies by DECAF_255_EDDSA_ENCODE_RATIO first. | |||
* | |||
* The multiplication is required because the EdDSA encoding represents | |||
* the cofactor information, but the Decaf encoding ignores it (which | |||
* is the whole point). So if you decode from EdDSA and re-encode to | |||
* EdDSA, the cofactor info must get cleared, because the intermediate | |||
* representation doesn't track it. | |||
* | |||
* The way libdecaf handles this is to multiply by | |||
* DECAF_255_EDDSA_DECODE_RATIO when decoding, and by | |||
* DECAF_255_EDDSA_ENCODE_RATIO when encoding. The product of these | |||
* ratios is always exactly the cofactor 8, so the cofactor | |||
* ends up cleared one way or another. But exactly how that shakes | |||
* out depends on the base points specified in RFC 8032. | |||
* | |||
* The upshot is that if you pass the Decaf/Ristretto base point to | |||
* this function, you will get DECAF_255_EDDSA_ENCODE_RATIO times the | |||
* EdDSA base point. | |||
* | |||
* @param [out] enc The encoded point. | |||
* @param [in] p The point. | |||
*/ | |||
void decaf_255_point_mul_by_cofactor_and_encode_like_eddsa ( | |||
void decaf_255_point_mul_by_ratio_and_encode_like_eddsa ( | |||
uint8_t enc[DECAF_EDDSA_25519_PUBLIC_BYTES], | |||
const decaf_255_point_t p | |||
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; | |||
/** | |||
* @brief EdDSA point decoding. Remember that while points on the | |||
* EdDSA curves have cofactor information, Decaf ignores (quotients | |||
* out) all cofactor information. | |||
* @brief EdDSA point decoding. Multiplies by DECAF_255_EDDSA_DECODE_RATIO, | |||
* and ignores cofactor information. | |||
* | |||
* See notes on decaf_255_point_mul_by_ratio_and_encode_like_eddsa | |||
* | |||
* @param [out] enc The encoded point. | |||
* @param [in] p The point. | |||
*/ | |||
decaf_error_t decaf_255_point_decode_like_eddsa_and_ignore_cofactor ( | |||
decaf_error_t decaf_255_point_decode_like_eddsa_and_mul_by_ratio ( | |||
decaf_255_point_t p, | |||
const uint8_t enc[DECAF_EDDSA_25519_PUBLIC_BYTES] | |||
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; | |||
@@ -43,8 +43,8 @@ namespace decaf { | |||
/** A public key for crypto over some Group */ | |||
template <typename Group> struct EdDSA; | |||
/** A public key for crypto over Iso-Ed25519 */ | |||
template<> struct EdDSA<IsoEd25519> { | |||
/** A public key for crypto over Ristretto */ | |||
template<> struct EdDSA<Ristretto> { | |||
/** @cond internal */ | |||
template<class CRTP, Prehashed> class Signing; | |||
@@ -190,7 +190,7 @@ private: | |||
public: | |||
/** Underlying group */ | |||
typedef IsoEd25519 Group; | |||
typedef Ristretto Group; | |||
/** Signature size. */ | |||
static const size_t SIG_BYTES = DECAF_EDDSA_25519_SIGNATURE_BYTES; | |||
@@ -364,7 +364,7 @@ public: | |||
/* PERF FUTURE: Pre-cached decoding? Precomputed table?? */ | |||
/** Underlying group */ | |||
typedef IsoEd25519 Group; | |||
typedef Ristretto Group; | |||
/** Signature size. */ | |||
static const size_t SIG_BYTES = DECAF_EDDSA_25519_SIGNATURE_BYTES; | |||
@@ -417,7 +417,7 @@ public: | |||
} | |||
}; /* class PublicKey */ | |||
}; /* template<> struct EdDSA<IsoEd25519> */ | |||
}; /* template<> struct EdDSA<Ristretto> */ | |||
#undef DECAF_NOEXCEPT | |||
} /* namespace decaf */ | |||
@@ -41,6 +41,12 @@ extern "C" { | |||
#define decaf_ed448_prehash_update decaf_shake256_update | |||
#define decaf_ed448_prehash_destroy decaf_shake256_destroy | |||
/** EdDSA encoding ratio. */ | |||
#define DECAF_448_EDDSA_ENCODE_RATIO 4 | |||
/** EdDSA decoding ratio. */ | |||
#define DECAF_448_EDDSA_DECODE_RATIO (4 / 4) | |||
/** | |||
* @brief EdDSA key generation. This function uses a different (non-Decaf) | |||
* encoding. | |||
@@ -168,25 +174,43 @@ decaf_error_t decaf_ed448_verify_prehash ( | |||
/** | |||
* @brief EdDSA point encoding. Used internally, exposed externally. | |||
* Multiplies the point by the current cofactor first. | |||
* Multiplies by DECAF_448_EDDSA_ENCODE_RATIO first. | |||
* | |||
* The multiplication is required because the EdDSA encoding represents | |||
* the cofactor information, but the Decaf encoding ignores it (which | |||
* is the whole point). So if you decode from EdDSA and re-encode to | |||
* EdDSA, the cofactor info must get cleared, because the intermediate | |||
* representation doesn't track it. | |||
* | |||
* The way libdecaf handles this is to multiply by | |||
* DECAF_448_EDDSA_DECODE_RATIO when decoding, and by | |||
* DECAF_448_EDDSA_ENCODE_RATIO when encoding. The product of these | |||
* ratios is always exactly the cofactor 4, so the cofactor | |||
* ends up cleared one way or another. But exactly how that shakes | |||
* out depends on the base points specified in RFC 8032. | |||
* | |||
* The upshot is that if you pass the Decaf/Ristretto base point to | |||
* this function, you will get DECAF_448_EDDSA_ENCODE_RATIO times the | |||
* EdDSA base point. | |||
* | |||
* @param [out] enc The encoded point. | |||
* @param [in] p The point. | |||
*/ | |||
void decaf_448_point_mul_by_cofactor_and_encode_like_eddsa ( | |||
void decaf_448_point_mul_by_ratio_and_encode_like_eddsa ( | |||
uint8_t enc[DECAF_EDDSA_448_PUBLIC_BYTES], | |||
const decaf_448_point_t p | |||
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; | |||
/** | |||
* @brief EdDSA point decoding. Remember that while points on the | |||
* EdDSA curves have cofactor information, Decaf ignores (quotients | |||
* out) all cofactor information. | |||
* @brief EdDSA point decoding. Multiplies by DECAF_448_EDDSA_DECODE_RATIO, | |||
* and ignores cofactor information. | |||
* | |||
* See notes on decaf_448_point_mul_by_ratio_and_encode_like_eddsa | |||
* | |||
* @param [out] enc The encoded point. | |||
* @param [in] p The point. | |||
*/ | |||
decaf_error_t decaf_448_point_decode_like_eddsa_and_ignore_cofactor ( | |||
decaf_error_t decaf_448_point_decode_like_eddsa_and_mul_by_ratio ( | |||
decaf_448_point_t p, | |||
const uint8_t enc[DECAF_EDDSA_448_PUBLIC_BYTES] | |||
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; | |||
@@ -52,6 +52,12 @@ typedef struct gf_25519_s { | |||
/** Number of bits in the "which" field of an elligator inverse */ | |||
#define DECAF_255_INVERT_ELLIGATOR_WHICH_BITS 5 | |||
/** The cofactor the curve would have, if we hadn't removed it */ | |||
#define DECAF_255_REMOVED_COFACTOR 8 | |||
/** X25519 encoding ratio. */ | |||
#define DECAF_X25519_ENCODE_RATIO 4 | |||
/** Number of bytes in an x25519 public key */ | |||
#define DECAF_X25519_PUBLIC_BYTES 32 | |||
@@ -397,6 +403,31 @@ decaf_error_t decaf_x25519 ( | |||
const uint8_t scalar[DECAF_X25519_PRIVATE_BYTES] | |||
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE; | |||
/** | |||
* @brief Multiply a point by DECAF_X25519_ENCODE_RATIO, | |||
* then encode it like RFC 7748. | |||
* | |||
* This function is mainly used internally, but is exported in case | |||
* it will be useful. | |||
* | |||
* The ratio is necessary because the internal representation doesn't | |||
* track the cofactor information, so on output we must clear the cofactor. | |||
* This would multiply by the cofactor, but in fact internally libdecaf's | |||
* points are always even, so it multiplies by half the cofactor instead. | |||
* | |||
* As it happens, this aligns with the base point definitions; that is, | |||
* if you pass the Decaf/Ristretto base point to this function, the result | |||
* will be DECAF_X25519_ENCODE_RATIO times the X25519 | |||
* base point. | |||
* | |||
* @param [out] out The scaled and encoded point. | |||
* @param [in] p The point to be scaled and encoded. | |||
*/ | |||
void decaf_255_point_mul_by_ratio_and_encode_like_x25519 ( | |||
uint8_t out[DECAF_X25519_PUBLIC_BYTES], | |||
const decaf_255_point_t p | |||
) DECAF_API_VIS DECAF_NONNULL; | |||
/** The base point for X25519 Diffie-Hellman */ | |||
extern const uint8_t decaf_x25519_base_point[DECAF_X25519_PUBLIC_BYTES] DECAF_API_VIS; | |||
@@ -656,6 +687,16 @@ void decaf_255_point_from_hash_uniform ( | |||
* inverse sampling, this function succeeds or fails | |||
* independently for different "which" values. | |||
* | |||
* This function isn't guaranteed to find every possible | |||
* preimage, but it finds all except a small finite number. | |||
* In particular, when the number of bits in the modulus isn't | |||
* a multiple of 8 (i.e. for curve25519), it sets the high bits | |||
* independently, which enables the generated data to be uniform. | |||
* But it doesn't add p, so you'll never get exactly p from this | |||
* function. This might change in the future, especially if | |||
* we ever support eg Brainpool curves, where this could cause | |||
* real nonuniformity. | |||
* | |||
* @param [out] recovered_hash Encoded data. | |||
* @param [in] pt The point to encode. | |||
* @param [in] which A value determining which inverse point | |||
@@ -53,10 +53,13 @@ namespace decaf { | |||
/** | |||
* Curve25519/Decaf instantiation of group. | |||
*/ | |||
struct IsoEd25519 { | |||
struct Ristretto { | |||
/** The name of the curve */ | |||
static inline const char *name() { return "Iso-Ed25519"; } | |||
static inline const char *name() { return "Ristretto"; } | |||
/** The name of the curve */ | |||
static inline int bits() { return 255; } | |||
/** The curve's cofactor (removed, but useful for testing) */ | |||
static const int REMOVED_COFACTOR = 8; | |||
@@ -252,6 +255,21 @@ public: | |||
/** Bytes required for hash */ | |||
static const size_t HASH_BYTES = DECAF_255_HASH_BYTES; | |||
/** Bytes required for EdDSA encoding */ | |||
static const size_t EDDSA_BYTES = DECAF_EDDSA_25519_PUBLIC_BYTES; | |||
/** Bytes required for EdDSA encoding */ | |||
static const size_t LADDER_BYTES = DECAF_X25519_PUBLIC_BYTES; | |||
/** Ratio due to EdDSA encoding */ | |||
static const int EDDSA_ENCODE_RATIO = DECAF_255_EDDSA_ENCODE_RATIO; | |||
/** Ratio due to EdDSA decoding */ | |||
static const int EDDSA_DECODE_RATIO = DECAF_255_EDDSA_DECODE_RATIO; | |||
/** Ratio due to ladder decoding */ | |||
static const int LADDER_ENCODE_RATIO = DECAF_X25519_ENCODE_RATIO; | |||
/** | |||
* Size of a stegged element. | |||
* | |||
@@ -336,25 +354,51 @@ public: | |||
* @return DECAF_FAILURE the string was the wrong length, or wasn't the encoding of a point. | |||
* Contents of the point are undefined. | |||
*/ | |||
inline decaf_error_t DECAF_WARN_UNUSED decode_like_eddsa_and_ignore_cofactor_noexcept ( | |||
inline decaf_error_t DECAF_WARN_UNUSED decode_like_eddsa_and_mul_by_ratio_noexcept ( | |||
const FixedBlock<DECAF_EDDSA_25519_PUBLIC_BYTES> &buffer | |||
) DECAF_NOEXCEPT { | |||
return decaf_255_point_decode_like_eddsa_and_ignore_cofactor(p,buffer.data()); | |||
return decaf_255_point_decode_like_eddsa_and_mul_by_ratio(p,buffer.data()); | |||
} | |||
inline void decode_like_eddsa_and_ignore_cofactor ( | |||
/** | |||
* Decode from EDDSA, multiply by EDDSA_DECODE_RATIO, and ignore any | |||
* remaining cofactor information. | |||
* @throw CryptoException if the input point was invalid. | |||
*/ | |||
inline void decode_like_eddsa_and_mul_by_ratio( | |||
const FixedBlock<DECAF_EDDSA_25519_PUBLIC_BYTES> &buffer | |||
) /*throw(CryptoException)*/ { | |||
if (DECAF_SUCCESS != decode_like_eddsa_and_ignore_cofactor_noexcept(buffer)) throw(CryptoException()); | |||
if (DECAF_SUCCESS != decode_like_eddsa_and_mul_by_ratio_noexcept(buffer)) throw(CryptoException()); | |||
} | |||
/** Multiply out cofactor and encode like EdDSA. */ | |||
inline SecureBuffer mul_by_cofactor_and_encode_like_eddsa() const { | |||
/** Multiply by EDDSA_ENCODE_RATIO and encode like EdDSA. */ | |||
inline SecureBuffer mul_by_ratio_and_encode_like_eddsa() const { | |||
SecureBuffer ret(DECAF_EDDSA_25519_PUBLIC_BYTES); | |||
decaf_255_point_mul_by_cofactor_and_encode_like_eddsa(ret.data(),p); | |||
decaf_255_point_mul_by_ratio_and_encode_like_eddsa(ret.data(),p); | |||
return ret; | |||
} | |||
/** Multiply by EDDSA_ENCODE_RATIO and encode like EdDSA. */ | |||
inline void mul_by_ratio_and_encode_like_eddsa( | |||
FixedBuffer<DECAF_EDDSA_25519_PUBLIC_BYTES> &out | |||
) const { | |||
decaf_255_point_mul_by_ratio_and_encode_like_eddsa(out.data(),p); | |||
} | |||
/** Multiply by LADDER_ENCODE_RATIO and encode like X25519/X448. */ | |||
inline SecureBuffer mul_by_ratio_and_encode_like_ladder() const { | |||
SecureBuffer ret(LADDER_BYTES); | |||
decaf_255_point_mul_by_ratio_and_encode_like_x25519(ret.data(),p); | |||
return ret; | |||
} | |||
/** Multiply by LADDER_ENCODE_RATIO and encode like X25519/X448. */ | |||
inline void mul_by_ratio_and_encode_like_ladder( | |||
FixedBuffer<LADDER_BYTES> &out | |||
) const { | |||
decaf_255_point_mul_by_ratio_and_encode_like_x25519(out.data(),p); | |||
} | |||
/** | |||
* Map uniformly to the curve from a hash buffer. | |||
* The empty or all-zero string maps to the identity, as does the string "\\x01". | |||
@@ -578,7 +622,7 @@ public: | |||
* initializer for points which makes this equal to the identity. | |||
*/ | |||
inline Precomputed ( | |||
const Precomputed_U &yours = *default_value() | |||
const Precomputed_U &yours = *decaf_255_precomputed_base | |||
) DECAF_NOEXCEPT : OwnedOrUnowned<Precomputed,Precomputed_U>(yours) {} | |||
@@ -723,15 +767,15 @@ public: | |||
} | |||
}; | |||
}; /* struct IsoEd25519 */ | |||
}; /* struct Ristretto */ | |||
/** @cond internal */ | |||
inline SecureBuffer IsoEd25519::Scalar::direct_scalarmul ( | |||
const FixedBlock<IsoEd25519::Point::SER_BYTES> &in, | |||
inline SecureBuffer Ristretto::Scalar::direct_scalarmul ( | |||
const FixedBlock<Ristretto::Point::SER_BYTES> &in, | |||
decaf_bool_t allow_identity, | |||
decaf_bool_t short_circuit | |||
) const /*throw(CryptoException)*/ { | |||
SecureBuffer out(IsoEd25519::Point::SER_BYTES); | |||
SecureBuffer out(Ristretto::Point::SER_BYTES); | |||
if (DECAF_SUCCESS != | |||
decaf_255_direct_scalarmul(out.data(), in.data(), s, allow_identity, short_circuit) | |||
) { | |||
@@ -740,9 +784,9 @@ inline SecureBuffer IsoEd25519::Scalar::direct_scalarmul ( | |||
return out; | |||
} | |||
inline decaf_error_t IsoEd25519::Scalar::direct_scalarmul_noexcept ( | |||
FixedBuffer<IsoEd25519::Point::SER_BYTES> &out, | |||
const FixedBlock<IsoEd25519::Point::SER_BYTES> &in, | |||
inline decaf_error_t Ristretto::Scalar::direct_scalarmul_noexcept ( | |||
FixedBuffer<Ristretto::Point::SER_BYTES> &out, | |||
const FixedBlock<Ristretto::Point::SER_BYTES> &in, | |||
decaf_bool_t allow_identity, | |||
decaf_bool_t short_circuit | |||
) const DECAF_NOEXCEPT { | |||
@@ -750,6 +794,9 @@ inline decaf_error_t IsoEd25519::Scalar::direct_scalarmul_noexcept ( | |||
} | |||
/** @endcond */ | |||
typedef Ristretto IsoEd25519; | |||
#undef DECAF_NOEXCEPT | |||
} /* namespace decaf */ | |||
@@ -52,6 +52,12 @@ typedef struct gf_448_s { | |||
/** Number of bits in the "which" field of an elligator inverse */ | |||
#define DECAF_448_INVERT_ELLIGATOR_WHICH_BITS 3 | |||
/** The cofactor the curve would have, if we hadn't removed it */ | |||
#define DECAF_448_REMOVED_COFACTOR 4 | |||
/** X448 encoding ratio. */ | |||
#define DECAF_X448_ENCODE_RATIO 2 | |||
/** Number of bytes in an x448 public key */ | |||
#define DECAF_X448_PUBLIC_BYTES 56 | |||
@@ -397,6 +403,31 @@ decaf_error_t decaf_x448 ( | |||
const uint8_t scalar[DECAF_X448_PRIVATE_BYTES] | |||
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE; | |||
/** | |||
* @brief Multiply a point by DECAF_X448_ENCODE_RATIO, | |||
* then encode it like RFC 7748. | |||
* | |||
* This function is mainly used internally, but is exported in case | |||
* it will be useful. | |||
* | |||
* The ratio is necessary because the internal representation doesn't | |||
* track the cofactor information, so on output we must clear the cofactor. | |||
* This would multiply by the cofactor, but in fact internally libdecaf's | |||
* points are always even, so it multiplies by half the cofactor instead. | |||
* | |||
* As it happens, this aligns with the base point definitions; that is, | |||
* if you pass the Decaf/Ristretto base point to this function, the result | |||
* will be DECAF_X448_ENCODE_RATIO times the X448 | |||
* base point. | |||
* | |||
* @param [out] out The scaled and encoded point. | |||
* @param [in] p The point to be scaled and encoded. | |||
*/ | |||
void decaf_448_point_mul_by_ratio_and_encode_like_x448 ( | |||
uint8_t out[DECAF_X448_PUBLIC_BYTES], | |||
const decaf_448_point_t p | |||
) DECAF_API_VIS DECAF_NONNULL; | |||
/** The base point for X448 Diffie-Hellman */ | |||
extern const uint8_t decaf_x448_base_point[DECAF_X448_PUBLIC_BYTES] DECAF_API_VIS; | |||
@@ -656,6 +687,16 @@ void decaf_448_point_from_hash_uniform ( | |||
* inverse sampling, this function succeeds or fails | |||
* independently for different "which" values. | |||
* | |||
* This function isn't guaranteed to find every possible | |||
* preimage, but it finds all except a small finite number. | |||
* In particular, when the number of bits in the modulus isn't | |||
* a multiple of 8 (i.e. for curve25519), it sets the high bits | |||
* independently, which enables the generated data to be uniform. | |||
* But it doesn't add p, so you'll never get exactly p from this | |||
* function. This might change in the future, especially if | |||
* we ever support eg Brainpool curves, where this could cause | |||
* real nonuniformity. | |||
* | |||
* @param [out] recovered_hash Encoded data. | |||
* @param [in] pt The point to encode. | |||
* @param [in] which A value determining which inverse point | |||
@@ -58,6 +58,9 @@ struct Ed448Goldilocks { | |||
/** The name of the curve */ | |||
static inline const char *name() { return "Ed448-Goldilocks"; } | |||
/** The name of the curve */ | |||
static inline int bits() { return 448; } | |||
/** The curve's cofactor (removed, but useful for testing) */ | |||
static const int REMOVED_COFACTOR = 4; | |||
@@ -252,6 +255,21 @@ public: | |||
/** Bytes required for hash */ | |||
static const size_t HASH_BYTES = DECAF_448_HASH_BYTES; | |||
/** Bytes required for EdDSA encoding */ | |||
static const size_t EDDSA_BYTES = DECAF_EDDSA_448_PUBLIC_BYTES; | |||
/** Bytes required for EdDSA encoding */ | |||
static const size_t LADDER_BYTES = DECAF_X448_PUBLIC_BYTES; | |||
/** Ratio due to EdDSA encoding */ | |||
static const int EDDSA_ENCODE_RATIO = DECAF_448_EDDSA_ENCODE_RATIO; | |||
/** Ratio due to EdDSA decoding */ | |||
static const int EDDSA_DECODE_RATIO = DECAF_448_EDDSA_DECODE_RATIO; | |||
/** Ratio due to ladder decoding */ | |||
static const int LADDER_ENCODE_RATIO = DECAF_X448_ENCODE_RATIO; | |||
/** | |||
* Size of a stegged element. | |||
* | |||
@@ -336,25 +354,51 @@ public: | |||
* @return DECAF_FAILURE the string was the wrong length, or wasn't the encoding of a point. | |||
* Contents of the point are undefined. | |||
*/ | |||
inline decaf_error_t DECAF_WARN_UNUSED decode_like_eddsa_and_ignore_cofactor_noexcept ( | |||
inline decaf_error_t DECAF_WARN_UNUSED decode_like_eddsa_and_mul_by_ratio_noexcept ( | |||
const FixedBlock<DECAF_EDDSA_448_PUBLIC_BYTES> &buffer | |||
) DECAF_NOEXCEPT { | |||
return decaf_448_point_decode_like_eddsa_and_ignore_cofactor(p,buffer.data()); | |||
return decaf_448_point_decode_like_eddsa_and_mul_by_ratio(p,buffer.data()); | |||
} | |||
inline void decode_like_eddsa_and_ignore_cofactor ( | |||
/** | |||
* Decode from EDDSA, multiply by EDDSA_DECODE_RATIO, and ignore any | |||
* remaining cofactor information. | |||
* @throw CryptoException if the input point was invalid. | |||
*/ | |||
inline void decode_like_eddsa_and_mul_by_ratio( | |||
const FixedBlock<DECAF_EDDSA_448_PUBLIC_BYTES> &buffer | |||
) /*throw(CryptoException)*/ { | |||
if (DECAF_SUCCESS != decode_like_eddsa_and_ignore_cofactor_noexcept(buffer)) throw(CryptoException()); | |||
if (DECAF_SUCCESS != decode_like_eddsa_and_mul_by_ratio_noexcept(buffer)) throw(CryptoException()); | |||
} | |||
/** Multiply out cofactor and encode like EdDSA. */ | |||
inline SecureBuffer mul_by_cofactor_and_encode_like_eddsa() const { | |||
/** Multiply by EDDSA_ENCODE_RATIO and encode like EdDSA. */ | |||
inline SecureBuffer mul_by_ratio_and_encode_like_eddsa() const { | |||
SecureBuffer ret(DECAF_EDDSA_448_PUBLIC_BYTES); | |||
decaf_448_point_mul_by_cofactor_and_encode_like_eddsa(ret.data(),p); | |||
decaf_448_point_mul_by_ratio_and_encode_like_eddsa(ret.data(),p); | |||
return ret; | |||
} | |||
/** Multiply by EDDSA_ENCODE_RATIO and encode like EdDSA. */ | |||
inline void mul_by_ratio_and_encode_like_eddsa( | |||
FixedBuffer<DECAF_EDDSA_448_PUBLIC_BYTES> &out | |||
) const { | |||
decaf_448_point_mul_by_ratio_and_encode_like_eddsa(out.data(),p); | |||
} | |||
/** Multiply by LADDER_ENCODE_RATIO and encode like X25519/X448. */ | |||
inline SecureBuffer mul_by_ratio_and_encode_like_ladder() const { | |||
SecureBuffer ret(LADDER_BYTES); | |||
decaf_448_point_mul_by_ratio_and_encode_like_x448(ret.data(),p); | |||
return ret; | |||
} | |||
/** Multiply by LADDER_ENCODE_RATIO and encode like X25519/X448. */ | |||
inline void mul_by_ratio_and_encode_like_ladder( | |||
FixedBuffer<LADDER_BYTES> &out | |||
) const { | |||
decaf_448_point_mul_by_ratio_and_encode_like_x448(out.data(),p); | |||
} | |||
/** | |||
* Map uniformly to the curve from a hash buffer. | |||
* The empty or all-zero string maps to the identity, as does the string "\\x01". | |||
@@ -578,7 +622,7 @@ public: | |||
* initializer for points which makes this equal to the identity. | |||
*/ | |||
inline Precomputed ( | |||
const Precomputed_U &yours = *default_value() | |||
const Precomputed_U &yours = *decaf_448_precomputed_base | |||
) DECAF_NOEXCEPT : OwnedOrUnowned<Precomputed,Precomputed_U>(yours) {} | |||
@@ -750,6 +794,8 @@ inline decaf_error_t Ed448Goldilocks::Scalar::direct_scalarmul_noexcept ( | |||
} | |||
/** @endcond */ | |||
#undef DECAF_NOEXCEPT | |||
} /* namespace decaf */ | |||
@@ -1,4 +1,5 @@ | |||
from collections import namedtuple | |||
from binascii import unhexlify | |||
comb_config = namedtuple("comb_config",["n","t","s"]) | |||
wnaf_config = namedtuple("wnaf_config",["fixed","var"]) | |||
@@ -22,14 +23,18 @@ field_data = { | |||
curve_data = { | |||
"curve25519" : { | |||
"altname" : "IsoEd25519", | |||
"iso_to" : "Curve25519", | |||
"name" : "Iso-Ed25519", | |||
"name" : "Ristretto", | |||
"cofactor" : 8, | |||
"field" : "p25519", | |||
"scalar_bits" : 253, | |||
"d": -121665, | |||
"trace": -0xa6f7cef517bce6b2c09318d2e7ae9f7a, | |||
"mont_base": 9, | |||
"rist_base": "e2f2ae0a6abc4e71a884a961c500515f58e30b6aa582dd8db6a65945e08d2d76", | |||
"eddsa_encode_ratio": 4, | |||
"x_encode_ratio": 4, | |||
"combs":comb_config(3,5,17), | |||
"wnaf":wnaf_config(5,3), | |||
@@ -41,12 +46,16 @@ curve_data = { | |||
"eddsa_sigma_iso": 1 | |||
}, | |||
"ed448goldilocks" : { | |||
"eddsa_encode_ratio": 4, | |||
"x_encode_ratio": 2, | |||
"altname": None, | |||
"name" : "Ed448-Goldilocks", | |||
"cofactor" : 4, | |||
"field" : "p448", | |||
"scalar_bits" : 446, | |||
"d": -39081, | |||
"trace": 0x10cd77058eec492d944a725bf7a4cf635c8e9c2ab721cf5b5529eec34, | |||
"rist_base": "6666666666666666666666666666666666666666666666666666666633333333333333333333333333333333333333333333333333333333", | |||
"mont_base": 5, | |||
"combs":comb_config(5,5,18), | |||
@@ -71,7 +80,7 @@ def ser(x,bits,paren=None): | |||
first = False | |||
return out | |||
def msqrt(x,p,hi_bit_clear = True): | |||
def msqrt(x,p,hi_bit_clear = True, lo_bit_clear = False): | |||
if p % 4 == 3: ret = pow(x,(p+1)//4,p) | |||
elif p % 8 == 5: | |||
for u in range(1,1000): | |||
@@ -83,6 +92,8 @@ def msqrt(x,p,hi_bit_clear = True): | |||
if (ret**2-x) % p != 0: raise Exception("No sqrt") | |||
if hi_bit_clear and ret > p//2: ret = p-ret | |||
# lo_bit_clear overrides hi_bit_clear because it's not default | |||
if lo_bit_clear and (ret & 1): ret = p-ret | |||
return ret | |||
def ceil_log2(x): | |||
@@ -120,13 +131,18 @@ for curve,data in curve_data.items(): | |||
if "eddsa_sigma_iso" not in data: | |||
data["eddsa_sigma_iso"] = 0 | |||
if "rist_base_decoded" not in data: | |||
data["rist_base_decoded"] = sum( | |||
ord(b)<<(8*i) for i,b in enumerate(unhexlify(data["rist_base"])) | |||
) | |||
if "imagine_twist" not in data: | |||
# This is a HACK. The real problem is that iso-Ed25519 | |||
# has points at infinity unless you IMAGINE_TWIST. | |||
# | |||
# Also there are lots of bugs when cofactor=8 && !IMAGINE_TWIST. | |||
# (FIXME, eventually) | |||
# Also there are lots of bugs when cofactor=8 != IMAGINE_TWIST. | |||
# (FUTURE: fix all this to support other curves, eventually) | |||
if data["modulus"]%4 == 3: data["imagine_twist"] = 0 | |||
else: data["imagine_twist"] = 1 | |||
# data["imagine_twist"] = 0 | |||
@@ -103,5 +103,10 @@ static DECAF_INLINE void gf_div_qnr(gf_s *__restrict__ out, const gf x) { | |||
#endif | |||
} | |||
#if P_MOD_8 == 5 | |||
#define gf_mul_i gf_mul_qnr | |||
#define gf_div_i gf_div_qnr | |||
#endif | |||
#endif // __GF_H__ |
@@ -37,10 +37,23 @@ static const scalar_t point_scalarmul_adjustment = {{{ | |||
const uint8_t decaf_x$(gf_shortname)_base_point[DECAF_X$(gf_shortname)_PUBLIC_BYTES] = { $(ser(mont_base,8)) }; | |||
#if COFACTOR==8 || EDDSA_USE_SIGMA_ISOGENY | |||
static const gf SQRT_ONE_MINUS_D = {FIELD_LITERAL( | |||
$(ser(msqrt(1-d,modulus),gf_lit_limb_bits) if cofactor == 8 else "/* NONE */") | |||
)}; | |||
#define RISTRETTO_FACTOR $(C_NS)_RISTRETTO_FACTOR | |||
const gf RISTRETTO_FACTOR = {{{ | |||
$(ser(msqrt(d-1 if imagine_twist else -d,modulus,hi_bit_clear=True),gf_lit_limb_bits)) | |||
}}}; | |||
#if IMAGINE_TWIST | |||
#define TWISTED_D (-(EDWARDS_D)) | |||
#else | |||
#define TWISTED_D ((EDWARDS_D)-1) | |||
#endif | |||
#if TWISTED_D < 0 | |||
#define EFF_D (-(TWISTED_D)) | |||
#define NEG_D 1 | |||
#else | |||
#define EFF_D TWISTED_D | |||
#define NEG_D 0 | |||
#endif | |||
/* End of template stuff */ | |||
@@ -98,128 +111,112 @@ gf_invert(gf y, const gf x, int assert_nonzero) { | |||
gf_copy(y, t2); | |||
} | |||
/** Return high bit of x = low bit of 2x mod p */ | |||
static mask_t gf_lobit(const gf x) { | |||
gf y; | |||
gf_copy(y,x); | |||
gf_strong_reduce(y); | |||
return -(y->limb[0]&1); | |||
} | |||
/** identity = (0,1) */ | |||
const point_t API_NS(point_identity) = {{{{{0}}},{{{1}}},{{{1}}},{{{0}}}}}; | |||
/* Predeclare because not static: called by elligator */ | |||
void API_NS(deisogenize) ( | |||
gf_s *__restrict__ s, | |||
gf_s *__restrict__ minus_t_over_s, | |||
gf_s *__restrict__ inv_el_sum, | |||
gf_s *__restrict__ inv_el_m1, | |||
const point_t p, | |||
mask_t toggle_hibit_s, | |||
mask_t toggle_hibit_t_over_s, | |||
mask_t toggle_s, | |||
mask_t toggle_altx, | |||
mask_t toggle_rotation | |||
); | |||
void API_NS(deisogenize) ( | |||
gf_s *__restrict__ s, | |||
gf_s *__restrict__ minus_t_over_s, | |||
gf_s *__restrict__ inv_el_sum, | |||
gf_s *__restrict__ inv_el_m1, | |||
const point_t p, | |||
mask_t toggle_hibit_s, | |||
mask_t toggle_hibit_t_over_s, | |||
mask_t toggle_s, | |||
mask_t toggle_altx, | |||
mask_t toggle_rotation | |||
) { | |||
#if COFACTOR == 4 && !IMAGINE_TWIST | |||
(void) toggle_rotation; | |||
gf b, d; | |||
gf_s *c = s, *a = minus_t_over_s; | |||
gf_mulw(a, p->y, 1-EDWARDS_D); | |||
gf_mul(c, a, p->t); /* -dYT, with EDWARDS_D = d-1 */ | |||
gf_mul(a, p->x, p->z); | |||
gf_sub(d, c, a); /* aXZ-dYT with a=-1 */ | |||
gf_add(a, p->z, p->y); | |||
gf_sub(b, p->z, p->y); | |||
gf_mul(c, b, a); | |||
gf_mulw(b, c, -EDWARDS_D); /* (a-d)(Z+Y)(Z-Y) */ | |||
mask_t ok = gf_isr (a,b); /* r in the paper */ | |||
(void)ok; assert(ok | gf_eq(b,ZERO)); | |||
gf_mulw (b, a, -EDWARDS_D); /* u in the paper */ | |||
gf_mul(c,a,d); /* r(aZX-dYT) */ | |||
gf_mul(a,b,p->z); /* uZ */ | |||
gf_add(a,a,a); /* 2uZ */ | |||
mask_t tg = toggle_hibit_t_over_s ^ ~gf_hibit(minus_t_over_s); | |||
gf_cond_neg(minus_t_over_s, tg); /* t/s <-? -t/s */ | |||
gf_cond_neg(c, tg); /* u <- -u if negative. */ | |||
gf_add(d,c,p->y); | |||
gf_mul(s,b,d); | |||
gf_cond_neg(s, toggle_hibit_s ^ gf_hibit(s)); | |||
#else | |||
(void)toggle_rotation; /* Only applies to cofactor 8 */ | |||
gf t1; | |||
gf_s *t2 = s, *t3=inv_el_sum, *t4=inv_el_m1; | |||
gf_add(t1,p->x,p->t); | |||
gf_sub(t2,p->x,p->t); | |||
gf_mul(t3,t1,t2); /* t3 = num */ | |||
gf_sqr(t2,p->x); | |||
gf_mul(t1,t2,t3); | |||
gf_mulw(t2,t1,-1-TWISTED_D); /* -x^2 * (a-d) * num */ | |||
gf_isr(t1,t2); /* t1 = isr */ | |||
gf_mul(t2,t1,t3); /* t2 = ratio */ | |||
gf_mul(t4,t2,RISTRETTO_FACTOR); | |||
mask_t negx = gf_lobit(t4) ^ toggle_altx; | |||
gf_cond_neg(t2, negx); | |||
gf_mul(t3,t2,p->z); | |||
gf_sub(t3,t3,p->t); | |||
gf_mul(t2,t3,p->x); | |||
gf_mulw(t4,t2,-1-TWISTED_D); | |||
gf_mul(s,t4,t1); | |||
mask_t lobs = gf_lobit(s); | |||
gf_cond_neg(s,lobs); | |||
gf_copy(inv_el_m1,p->x); | |||
gf_cond_neg(inv_el_m1,~lobs^negx^toggle_s); | |||
gf_add(inv_el_m1,inv_el_m1,p->t); | |||
#elif COFACTOR == 8 && IMAGINE_TWIST | |||
/* More complicated because of rotation */ | |||
/* MAGIC This code is wrong for certain non-Curve25519 curves; | |||
* check if it's because of Cofactor==8 or IMAGINE_TWIST */ | |||
gf c, d; | |||
gf_s *b = s, *a = minus_t_over_s; | |||
#if IMAGINE_TWIST | |||
gf x, t; | |||
gf_div_qnr(x,p->x); | |||
gf_div_qnr(t,p->t); | |||
gf_add ( a, p->z, x ); | |||
gf_sub ( b, p->z, x ); | |||
gf_mul ( c, a, b ); /* "zx" = Z^2 - aX^2 = Z^2 - X^2 */ | |||
#else | |||
const gf_s *x = p->x, *t = p->t; | |||
gf_sqr ( a, p->z ); | |||
gf_sqr ( b, p->x ); | |||
gf_add ( c, a, b ); /* "zx" = Z^2 - aX^2 = Z^2 + X^2 */ | |||
#endif | |||
/* Here: c = "zx" in the SAGE code = Z^2 - aX^2 */ | |||
gf_mul ( a, p->z, t ); /* "tz" = T*Z */ | |||
gf_sqr ( b, a ); | |||
gf_mul ( d, b, c ); /* (TZ)^2 * (Z^2-aX^2) */ | |||
mask_t ok = gf_isr(b, d); | |||
(void)ok; assert(ok | gf_eq(d,ZERO)); | |||
gf_mul ( d, b, a ); /* "osx" = 1 / sqrt(z^2-ax^2) */ | |||
gf_mul ( a, b, c ); | |||
gf_mul ( b, a, d ); /* 1/tz */ | |||
mask_t rotate; | |||
#if (COFACTOR == 8) | |||
gf e; | |||
gf_sqr(e, p->z); | |||
gf_mul(a, e, b); /* z^2 / tz = z/t = 1/xy */ | |||
rotate = gf_hibit(a) ^ toggle_rotation; | |||
/* Curve25519: cond select between zx * 1/tz or sqrt(1-d); y=-x */ | |||
gf_mul ( a, b, c ); | |||
gf_cond_sel ( a, a, SQRT_ONE_MINUS_D, rotate ); | |||
gf_cond_sel ( e, p->y, x, rotate ); | |||
#else | |||
const gf_s *e = x; | |||
(void)toggle_rotation; | |||
rotate = 0; | |||
#endif | |||
gf_mul ( c, a, d ); // new "osx" | |||
gf_mul ( a, c, p->z ); | |||
gf_add ( minus_t_over_s, a, a ); // 2 * "osx" * Z | |||
gf_mul ( d, b, p->z ); | |||
mask_t tg = toggle_hibit_t_over_s ^~ gf_hibit(minus_t_over_s); | |||
gf_cond_neg ( minus_t_over_s, tg ); | |||
gf_cond_neg ( c, rotate ^ tg ); | |||
gf_add ( d, d, c ); | |||
gf_mul ( s, d, e ); /* here "x" = y unless rotate */ | |||
gf_cond_neg ( s, toggle_hibit_s ^ gf_hibit(s) ); | |||
gf t1,t2,t3,t4,t5; | |||
gf_add(t1,p->z,p->y); | |||
gf_sub(t2,p->z,p->y); | |||
gf_mul(t3,t1,t2); /* t3 = num */ | |||
gf_mul(t2,p->x,p->y); /* t2 = den */ | |||
gf_sqr(t1,t2); | |||
gf_mul(t4,t1,t3); | |||
gf_mulw(t1,t4,-1-TWISTED_D); | |||
gf_isr(t4,t1); /* isqrt(num*(a-d)*den^2) */ | |||
gf_mul(t1,t2,t4); | |||
gf_mul(t2,t1,RISTRETTO_FACTOR); /* t2 = "iden" in ristretto.sage */ | |||
gf_mul(t1,t3,t4); /* t1 = "inum" in ristretto.sage */ | |||
/* Calculate altxy = iden*inum*i*t^2*(d-a) */ | |||
gf_mul(t3,t1,t2); | |||
gf_mul_i(t4,t3); | |||
gf_mul(t3,t4,p->t); | |||
gf_mul(t4,t3,p->t); | |||
gf_mulw(t3,t4,TWISTED_D+1); /* iden*inum*i*t^2*(d-1) */ | |||
mask_t rotate = toggle_rotation ^ gf_lobit(t3); | |||
/* Rotate if altxy is negative */ | |||
gf_cond_swap(t1,t2,rotate); | |||
gf_mul_i(t4,p->x); | |||
gf_cond_sel(t4,p->y,t4,rotate); /* t4 = "fac" = ix if rotate, else y */ | |||
gf_mul_i(t5,RISTRETTO_FACTOR); /* t5 = imi */ | |||
gf_mul(t3,t5,t2); /* iden * imi */ | |||
gf_mul(t2,t5,t1); | |||
gf_mul(t5,t2,p->t); /* "altx" = iden*imi*t */ | |||
mask_t negx = gf_lobit(t5) ^ toggle_altx; | |||
gf_cond_neg(t1,negx^rotate); | |||
gf_mul(t2,t1,p->z); | |||
gf_add(t2,t2,ONE); | |||
gf_mul(inv_el_sum,t2,t4); | |||
gf_mul(s,inv_el_sum,t3); | |||
mask_t negs = gf_lobit(s); | |||
gf_cond_neg(s,negs); | |||
mask_t negz = ~negs ^ toggle_s ^ negx; | |||
gf_copy(inv_el_m1,p->z); | |||
gf_cond_neg(inv_el_m1,negz); | |||
gf_sub(inv_el_m1,inv_el_m1,t4); | |||
#else | |||
#error "Cofactor must be 4 (with no IMAGINE_TWIST) or 8 (with IMAGINE_TWIST)" | |||
#endif | |||
} | |||
void API_NS(point_encode)( unsigned char ser[SER_BYTES], const point_t p ) { | |||
gf s, mtos; | |||
API_NS(deisogenize)(s,mtos,p,0,0,0); | |||
gf_serialize(ser,s,0); | |||
gf s,ie1,ie2; | |||
API_NS(deisogenize)(s,ie1,ie2,p,0,0,0); | |||
gf_serialize(ser,s,1); | |||
} | |||
decaf_error_t API_NS(point_decode) ( | |||
@@ -227,89 +224,54 @@ decaf_error_t API_NS(point_decode) ( | |||
const unsigned char ser[SER_BYTES], | |||
decaf_bool_t allow_identity | |||
) { | |||
gf s, a, b, c, d, e, f; | |||
mask_t succ = gf_deserialize(s, ser, 0); | |||
mask_t zero = gf_eq(s, ZERO); | |||
succ &= bool_to_mask(allow_identity) | ~zero; | |||
gf_sqr ( a, s ); /* s^2 */ | |||
gf s, s2, num, tmp; | |||
gf_s *tmp2=s2, *ynum=p->z, *isr=p->x, *den=p->t; | |||
mask_t succ = gf_deserialize(s, ser, 1, 0); | |||
succ &= bool_to_mask(allow_identity) | ~gf_eq(s, ZERO); | |||
succ &= ~gf_lobit(s); | |||
gf_sqr(s2,s); /* s^2 = -as^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub ( f, ONE, a ); /* f = 1-as^2 = 1-s^2*/ | |||
#else | |||
gf_add ( f, ONE, a ); /* f = 1-as^2 = 1+s^2 */ | |||
gf_sub(s2,ZERO,s2); /* -as^2 */ | |||
#endif | |||
succ &= ~ gf_eq( f, ZERO ); | |||
gf_sqr ( b, f ); /* (1-as^2)^2 = 1 - 2as^2 + a^2 s^4 */ | |||
gf_mulw ( c, a, 4*IMAGINE_TWIST-4*EDWARDS_D ); | |||
gf_add ( c, c, b ); /* t^2 = 1 + (2a-4d) s^2 + s^4 */ | |||
gf_mul ( d, f, s ); /* s * (1-as^2) for denoms */ | |||
gf_sqr ( e, d ); /* s^2 * (1-as^2)^2 */ | |||
gf_mul ( b, c, e ); /* t^2 * s^2 * (1-as^2)^2 */ | |||
succ &= gf_isr(e,b) | gf_eq(b,ZERO); /* e = 1/(t s (1-as^2)) */ | |||
gf_mul ( b, e, d ); /* 1 / t */ | |||
gf_mul ( d, e, c ); /* t / (s(1-as^2)) */ | |||
gf_mul ( e, d, f ); /* t / s */ | |||
mask_t negtos = gf_hibit(e); | |||
gf_cond_neg(b, negtos); | |||
gf_cond_neg(d, negtos); | |||
#if IMAGINE_TWIST | |||
gf_add ( p->z, ONE, a); /* Z = 1+as^2 = 1-s^2 */ | |||
#else | |||
gf_sub ( p->z, ONE, a); /* Z = 1+as^2 = 1-s^2 */ | |||
gf_sub(den,ONE,s2); /* 1+as^2 */ | |||
gf_add(ynum,ONE,s2); /* 1-as^2 */ | |||
gf_mulw(num,s2,-4*TWISTED_D); | |||
gf_sqr(tmp,den); /* tmp = den^2 */ | |||
gf_add(num,tmp,num); /* num = den^2 - 4*d*s^2 */ | |||
gf_mul(tmp2,num,tmp); /* tmp2 = num*den^2 */ | |||
succ &= gf_isr(isr,tmp2); /* isr = 1/sqrt(num*den^2) */ | |||
gf_mul(tmp,isr,den); /* isr*den */ | |||
gf_mul(p->y,tmp,ynum); /* isr*den*(1-as^2) */ | |||
gf_mul(tmp2,tmp,s); /* s*isr*den */ | |||
gf_add(tmp2,tmp2,tmp2); /* 2*s*isr*den */ | |||
gf_mul(tmp,tmp2,isr); /* 2*s*isr^2*den */ | |||
gf_mul(p->x,tmp,num); /* 2*s*isr^2*den*num */ | |||
gf_mul(tmp,tmp2,RISTRETTO_FACTOR); /* 2*s*isr*den*magic */ | |||
gf_cond_neg(p->x,gf_lobit(tmp)); /* flip x */ | |||
#if COFACTOR==8 | |||
/* Additionally check y != 0 and x*y*isomagic nonegative */ | |||
succ &= ~gf_eq(p->y,ZERO); | |||
gf_mul(tmp,p->x,p->y); | |||
gf_mul(tmp2,tmp,RISTRETTO_FACTOR); | |||
succ &= ~gf_lobit(tmp2); | |||
#endif | |||
#if COFACTOR == 8 | |||
gf_mul ( a, p->z, d); /* t(1+s^2) / s(1-s^2) = 2/xy */ | |||
succ &= ~gf_lobit(a); /* = ~gf_hibit(a/2), since gf_hibit(x) = gf_lobit(2x) */ | |||
#endif | |||
gf_mul ( a, f, b ); /* y = (1-s^2) / t */ | |||
gf_mul ( p->y, p->z, a ); /* Y = yZ */ | |||
#if IMAGINE_TWIST | |||
gf_add ( b, s, s ); | |||
gf_mul(p->x, b, SQRT_MINUS_ONE); /* Curve25519 */ | |||
#else | |||
gf_add ( p->x, s, s ); | |||
#endif | |||
gf_mul ( p->t, p->x, a ); /* T = 2s (1-as^2)/t */ | |||
#if UNSAFE_CURVE_HAS_POINTS_AT_INFINITY | |||
/* This can't happen for any of the supported configurations. | |||
* | |||
* If it can happen (because s=1), it's because the curve has points | |||
* at infinity, which means that there may be critical security bugs | |||
* elsewhere in the library. In that case, it's better that you hit | |||
* the assertion in point_valid, which will happen in the test suite | |||
* since it tests s=1. | |||
* | |||
* This debugging option is to allow testing of IMAGINE_TWIST = 0 on | |||
* Ed25519, without hitting that assertion. Don't use it in | |||
* production. | |||
*/ | |||
succ &= ~gf_eq(p->z,ZERO); | |||
gf_copy(tmp,p->x); | |||
gf_mul_i(p->x,tmp); | |||
#endif | |||
/* Fill in z and t */ | |||
gf_copy(p->z,ONE); | |||
gf_mul(p->t,p->x,p->y); | |||
p->y->limb[0] -= zero; | |||
assert(API_NS(point_valid)(p) | ~succ); | |||
return decaf_succeed_if(mask_to_bool(succ)); | |||
} | |||
#if IMAGINE_TWIST | |||
#define TWISTED_D (-(EDWARDS_D)) | |||
#else | |||
#define TWISTED_D ((EDWARDS_D)-1) | |||
#endif | |||
#if TWISTED_D < 0 | |||
#define EFF_D (-(TWISTED_D)) | |||
#define NEG_D 1 | |||
#else | |||
#define EFF_D TWISTED_D | |||
#define NEG_D 0 | |||
#endif | |||
void API_NS(point_sub) ( | |||
point_t p, | |||
const point_t q, | |||
@@ -854,7 +816,7 @@ void API_NS(point_debugging_pscale) ( | |||
) { | |||
gf gfac,tmp; | |||
/* NB this means you'll never pscale by negative numbers for p521 */ | |||
ignore_result(gf_deserialize(gfac,factor,0)); | |||
ignore_result(gf_deserialize(gfac,factor,0,0)); | |||
gf_cond_sel(gfac,gfac,ONE,gf_eq(gfac,ZERO)); | |||
gf_mul(tmp,p->x,gfac); | |||
gf_copy(q->x,tmp); | |||
@@ -1067,7 +1029,7 @@ decaf_error_t API_NS(direct_scalarmul) ( | |||
return succ; | |||
} | |||
void API_NS(point_mul_by_cofactor_and_encode_like_eddsa) ( | |||
void API_NS(point_mul_by_ratio_and_encode_like_eddsa) ( | |||
uint8_t enc[DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES], | |||
const point_t p | |||
) { | |||
@@ -1105,15 +1067,20 @@ void API_NS(point_mul_by_cofactor_and_encode_like_eddsa) ( | |||
gf_mul ( y, u, t ); // (x^2+y^2)(2z^2-y^2+x^2) | |||
gf_mul ( u, z, t ); | |||
gf_copy( z, u ); | |||
gf_mul ( u, x, SQRT_ONE_MINUS_D ); | |||
gf_mul ( u, x, RISTRETTO_FACTOR ); | |||
#if IMAGINE_TWIST | |||
gf_mul_i( x, u ); | |||
#else | |||
#error "... probably wrong" | |||
gf_copy( x, u ); | |||
#endif | |||
decaf_bzero(u,sizeof(u)); | |||
} | |||
#elif IMAGINE_TWIST | |||
{ | |||
API_NS(point_double)(q,q); | |||
API_NS(point_double)(q,q); | |||
gf_mul_qnr(x, q->x); | |||
gf_mul_i(x, q->x); | |||
gf_copy(y, q->y); | |||
gf_copy(z, q->z); | |||
} | |||
@@ -1126,7 +1093,7 @@ void API_NS(point_mul_by_cofactor_and_encode_like_eddsa) ( | |||
gf_add( u, x, t ); | |||
gf_add( z, q->y, q->x ); | |||
gf_sqr ( y, z); | |||
gf_sub ( y, u, y ); | |||
gf_sub ( y, y, u ); | |||
gf_sub ( z, t, x ); | |||
gf_sqr ( x, q->z ); | |||
gf_add ( t, x, x); | |||
@@ -1155,7 +1122,7 @@ void API_NS(point_mul_by_cofactor_and_encode_like_eddsa) ( | |||
} | |||
decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
decaf_error_t API_NS(point_decode_like_eddsa_and_mul_by_ratio) ( | |||
point_t p, | |||
const uint8_t enc[DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES] | |||
) { | |||
@@ -1165,7 +1132,7 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
mask_t low = ~word_is_zero(enc2[DECAF_EDDSA_$(gf_shortname)_PRIVATE_BYTES-1] & 0x80); | |||
enc2[DECAF_EDDSA_$(gf_shortname)_PRIVATE_BYTES-1] &= ~0x80; | |||
mask_t succ = gf_deserialize(p->y, enc2, 1); | |||
mask_t succ = gf_deserialize(p->y, enc2, 1, 0); | |||
#if $(gf_bits % 8) == 0 | |||
succ &= word_is_zero(enc2[DECAF_EDDSA_$(gf_shortname)_PRIVATE_BYTES-1]); | |||
#endif | |||
@@ -1185,7 +1152,7 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
succ &= gf_isr(p->t,p->x); /* 1/sqrt(num * denom) */ | |||
gf_mul(p->x,p->t,p->z); /* sqrt(num / denom) */ | |||
gf_cond_neg(p->x,~gf_lobit(p->x)^low); | |||
gf_cond_neg(p->x,gf_lobit(p->x)^low); | |||
gf_copy(p->z,ONE); | |||
#if EDDSA_USE_SIGMA_ISOGENY | |||
@@ -1210,8 +1177,9 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
gf_sub ( p->t, a, c ); // y^2 - x^2 | |||
gf_sqr ( p->x, p->z ); | |||
gf_add ( p->z, p->x, p->x ); | |||
gf_sub ( a, p->z, p->t ); // 2z^2 - y^2 + x^2 | |||
gf_mul ( c, a, SQRT_ONE_MINUS_D ); | |||
gf_sub ( c, p->z, p->t ); // 2z^2 - y^2 + x^2 | |||
gf_div_i ( a, c ); | |||
gf_mul ( c, a, RISTRETTO_FACTOR ); | |||
gf_mul ( p->x, b, p->t); // (2xy)(y^2-x^2) | |||
gf_mul ( p->z, p->t, c ); // (y^2-x^2)sd(2z^2 - y^2 + x^2) | |||
gf_mul ( p->y, d, c ); // (y^2+x^2)sd(2z^2 - y^2 + x^2) | |||
@@ -1254,6 +1222,7 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
decaf_bzero(enc2,sizeof(enc2)); | |||
assert(API_NS(point_valid)(p) || ~succ); | |||
return decaf_succeed_if(mask_to_bool(succ)); | |||
} | |||
@@ -1263,7 +1232,7 @@ decaf_error_t decaf_x$(gf_shortname) ( | |||
const uint8_t scalar[X_PRIVATE_BYTES] | |||
) { | |||
gf x1, x2, z2, x3, z3, t1, t2; | |||
ignore_result(gf_deserialize(x1,base,1)); | |||
ignore_result(gf_deserialize(x1,base,1,0)); | |||
gf_copy(x2,ONE); | |||
gf_copy(z2,ZERO); | |||
gf_copy(x3,x1); | |||
@@ -1334,15 +1303,8 @@ void decaf_ed$(gf_shortname)_convert_public_key_to_x$(gf_shortname) ( | |||
const uint8_t ed[DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES] | |||
) { | |||
gf y; | |||
{ | |||
uint8_t enc2[DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES]; | |||
memcpy(enc2,ed,sizeof(enc2)); | |||
/* retrieve y from the ed compressed point */ | |||
enc2[DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES-1] &= ~0x80; | |||
ignore_result(gf_deserialize(y, enc2, 0)); | |||
decaf_bzero(enc2,sizeof(enc2)); | |||
} | |||
const uint8_t mask = (uint8_t)(0xFE<<($((gf_bits-1)%8))); | |||
ignore_result(gf_deserialize(y, ed, 1, mask)); | |||
{ | |||
gf n,d; | |||
@@ -1379,6 +1341,26 @@ void decaf_x$(gf_shortname)_generate_key ( | |||
decaf_x$(gf_shortname)_derive_public_key(out,scalar); | |||
} | |||
void API_NS(point_mul_by_ratio_and_encode_like_x$(gf_shortname)) ( | |||
uint8_t out[X_PUBLIC_BYTES], | |||
const point_t p | |||
) { | |||
point_t q; | |||
#if COFACTOR == 8 | |||
point_double_internal(q,p,1); | |||
#else | |||
API_NS(point_copy)(q,p); | |||
#endif | |||
gf_invert(q->t,q->x,0); /* 1/x */ | |||
gf_mul(q->z,q->t,q->y); /* y/x */ | |||
gf_sqr(q->y,q->z); /* (y/x)^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub(q->y,ZERO,q->y); | |||
#endif | |||
gf_serialize(out,q->y,1); | |||
API_NS(point_destroy(q)); | |||
} | |||
void decaf_x$(gf_shortname)_derive_public_key ( | |||
uint8_t out[X_PUBLIC_BYTES], | |||
const uint8_t scalar[X_PRIVATE_BYTES] | |||
@@ -1394,39 +1376,13 @@ void decaf_x$(gf_shortname)_derive_public_key ( | |||
scalar_t the_scalar; | |||
API_NS(scalar_decode_long)(the_scalar,scalar2,sizeof(scalar2)); | |||
/* We're gonna isogenize by 2, so divide by 2. | |||
* | |||
* Why by 2, even though it's a 4-isogeny? | |||
* | |||
* The isogeny map looks like | |||
* Montgomery <-2-> Jacobi <-2-> Edwards | |||
* | |||
* Since the Jacobi base point is the PREimage of the iso to | |||
* the Montgomery curve, and we're going | |||
* Jacobi -> Edwards -> Jacobi -> Montgomery, | |||
* we pick up only a factor of 2 over Jacobi -> Montgomery. | |||
*/ | |||
API_NS(scalar_halve)(the_scalar,the_scalar); | |||
/* Compensate for the encoding ratio */ | |||
for (unsigned i=1; i<DECAF_X$(gf_shortname)_ENCODE_RATIO; i<<=1) { | |||
API_NS(scalar_halve)(the_scalar,the_scalar); | |||
} | |||
point_t p; | |||
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),the_scalar); | |||
/* Isogenize to Montgomery curve. | |||
* | |||
* Why isn't this just a separate function, eg decaf_encode_like_x$(gf_shortname)? | |||
* Basically because in general it does the wrong thing if there is a cofactor | |||
* component in the input. In this function though, there isn't a cofactor | |||
* component in the input. | |||
*/ | |||
gf_invert(p->t,p->x,0); /* 1/x */ | |||
gf_mul(p->z,p->t,p->y); /* y/x */ | |||
gf_sqr(p->y,p->z); /* (y/x)^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub(p->y,ZERO,p->y); | |||
#endif | |||
gf_serialize(out,p->y,1); | |||
decaf_bzero(scalar2,sizeof(scalar2)); | |||
API_NS(scalar_destroy)(the_scalar); | |||
API_NS(point_mul_by_ratio_and_encode_like_x$(gf_shortname))(out,p); | |||
API_NS(point_destroy)(p); | |||
} | |||
@@ -10,7 +10,7 @@ | |||
#define API_NS(_id) $(c_ns)_##_id | |||
static const unsigned char base_point_ser_for_pregen[SER_BYTES] = { | |||
$(ser(msqrt(mont_base,modulus),8)) | |||
$(ser(rist_base_decoded,8)) | |||
}; | |||
/* To satisfy linker. */ | |||
@@ -52,16 +52,25 @@ int main(int argc, char **argv) { | |||
API_NS(point_t) real_point_base; | |||
int ret = API_NS(point_decode)(real_point_base,base_point_ser_for_pregen,0); | |||
if (ret != DECAF_SUCCESS) return 1; | |||
if (ret != DECAF_SUCCESS) { | |||
fprintf(stderr, "Can't decode base point!\n"); | |||
return 1; | |||
} | |||
API_NS(precomputed_s) *pre; | |||
ret = posix_memalign((void**)&pre, API_NS(alignof_precomputed_s), API_NS(sizeof_precomputed_s)); | |||
if (ret || !pre) return 1; | |||
if (ret || !pre) { | |||
fprintf(stderr, "Can't allocate space for precomputed table\n"); | |||
return 1; | |||
} | |||
API_NS(precompute)(pre, real_point_base); | |||
struct niels_s *pre_wnaf; | |||
ret = posix_memalign((void**)&pre_wnaf, API_NS(alignof_precomputed_s), API_NS(sizeof_precomputed_wnafs)); | |||
if (ret || !pre_wnaf) return 1; | |||
if (ret || !pre_wnaf) { | |||
fprintf(stderr, "Can't allocate space for precomputed WNAF table\n"); | |||
return 1; | |||
} | |||
API_NS(precompute_wnafs)(pre_wnaf, real_point_base); | |||
const gf_s *output; | |||
@@ -22,18 +22,13 @@ | |||
#define NO_CONTEXT DECAF_EDDSA_$(gf_shortname)_SUPPORTS_CONTEXTLESS_SIGS | |||
#define EDDSA_USE_SIGMA_ISOGENY $(eddsa_sigma_iso) | |||
#define COFACTOR $(cofactor) | |||
#define EDDSA_PREHASH_BYTES 64 | |||
#if NO_CONTEXT | |||
const uint8_t NO_CONTEXT_POINTS_HERE = 0; | |||
const uint8_t * const DECAF_ED$(gf_shortname)_NO_CONTEXT = &NO_CONTEXT_POINTS_HERE; | |||
#endif | |||
/* EDDSA_BASE_POINT_RATIO = 1 or 2 | |||
* Because EdDSA25519 is not on E_d but on the isogenous E_sigma_d, | |||
* its base point is twice ours. | |||
*/ | |||
#define EDDSA_BASE_POINT_RATIO (1+EDDSA_USE_SIGMA_ISOGENY) | |||
static void clamp ( | |||
uint8_t secret_scalar_ser[DECAF_EDDSA_$(gf_shortname)_PRIVATE_BYTES] | |||
) { | |||
@@ -119,14 +114,14 @@ void decaf_ed$(gf_shortname)_derive_public_key ( | |||
* the decaf base point is on Etwist_d, and when converted it effectively | |||
* picks up a factor of 2 from the isogenies. So we might start at 2 instead of 1. | |||
*/ | |||
for (unsigned int c = EDDSA_BASE_POINT_RATIO; c < COFACTOR; c <<= 1) { | |||
for (unsigned int c=1; c<$(C_NS)_EDDSA_ENCODE_RATIO; c <<= 1) { | |||
API_NS(scalar_halve)(secret_scalar,secret_scalar); | |||
} | |||
API_NS(point_t) p; | |||
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),secret_scalar); | |||
API_NS(point_mul_by_cofactor_and_encode_like_eddsa)(pubkey, p); | |||
API_NS(point_mul_by_ratio_and_encode_like_eddsa)(pubkey, p); | |||
/* Cleanup */ | |||
API_NS(scalar_destroy)(secret_scalar); | |||
@@ -182,13 +177,13 @@ void decaf_ed$(gf_shortname)_sign ( | |||
/* Scalarmul to create the nonce-point */ | |||
API_NS(scalar_t) nonce_scalar_2; | |||
API_NS(scalar_halve)(nonce_scalar_2,nonce_scalar); | |||
for (unsigned int c = 2*EDDSA_BASE_POINT_RATIO; c < COFACTOR; c <<= 1) { | |||
for (unsigned int c = 2; c < $(C_NS)_EDDSA_ENCODE_RATIO; c <<= 1) { | |||
API_NS(scalar_halve)(nonce_scalar_2,nonce_scalar_2); | |||
} | |||
API_NS(point_t) p; | |||
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),nonce_scalar_2); | |||
API_NS(point_mul_by_cofactor_and_encode_like_eddsa)(nonce_point, p); | |||
API_NS(point_mul_by_ratio_and_encode_like_eddsa)(nonce_point, p); | |||
API_NS(point_destroy)(p); | |||
API_NS(scalar_destroy)(nonce_scalar_2); | |||
} | |||
@@ -228,7 +223,7 @@ void decaf_ed$(gf_shortname)_sign_prehash ( | |||
const uint8_t *context, | |||
uint8_t context_len | |||
) { | |||
uint8_t hash_output[64]; /* MAGIC but true for all existing schemes */ | |||
uint8_t hash_output[EDDSA_PREHASH_BYTES]; | |||
{ | |||
decaf_ed$(gf_shortname)_prehash_ctx_t hash_too; | |||
memcpy(hash_too,hash,sizeof(hash_too)); | |||
@@ -250,10 +245,10 @@ decaf_error_t decaf_ed$(gf_shortname)_verify ( | |||
uint8_t context_len | |||
) { | |||
API_NS(point_t) pk_point, r_point; | |||
decaf_error_t error = API_NS(point_decode_like_eddsa_and_ignore_cofactor)(pk_point,pubkey); | |||
decaf_error_t error = API_NS(point_decode_like_eddsa_and_mul_by_ratio)(pk_point,pubkey); | |||
if (DECAF_SUCCESS != error) { return error; } | |||
error = API_NS(point_decode_like_eddsa_and_ignore_cofactor)(r_point,signature); | |||
error = API_NS(point_decode_like_eddsa_and_mul_by_ratio)(r_point,signature); | |||
if (DECAF_SUCCESS != error) { return error; } | |||
API_NS(scalar_t) challenge_scalar; | |||
@@ -278,9 +273,10 @@ decaf_error_t decaf_ed$(gf_shortname)_verify ( | |||
&signature[DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES], | |||
DECAF_EDDSA_$(gf_shortname)_PRIVATE_BYTES | |||
); | |||
#if EDDSA_BASE_POINT_RATIO == 2 | |||
API_NS(scalar_add)(response_scalar,response_scalar,response_scalar); | |||
#endif | |||
for (unsigned c=1; c<$(C_NS)_EDDSA_DECODE_RATIO; c<<=1) { | |||
API_NS(scalar_add)(response_scalar,response_scalar,response_scalar); | |||
} | |||
/* pk_point = -c(x(P)) + (cx + k)G = kG */ | |||
@@ -303,7 +299,7 @@ decaf_error_t decaf_ed$(gf_shortname)_verify_prehash ( | |||
) { | |||
decaf_error_t ret; | |||
uint8_t hash_output[64]; /* MAGIC but true for all existing schemes */ | |||
uint8_t hash_output[EDDSA_PREHASH_BYTES]; | |||
{ | |||
decaf_ed$(gf_shortname)_prehash_ctx_t hash_too; | |||
memcpy(hash_too,hash,sizeof(hash_too)); | |||
@@ -26,6 +26,12 @@ $("extern const uint8_t * const DECAF_ED" + gf_shortname + "_NO_CONTEXT DECAF_AP | |||
#define decaf_ed$(gf_shortname)_prehash_update decaf_$(eddsa_hash)_update | |||
#define decaf_ed$(gf_shortname)_prehash_destroy decaf_$(eddsa_hash)_destroy | |||
/** EdDSA encoding ratio. */ | |||
#define $(C_NS)_EDDSA_ENCODE_RATIO $(eddsa_encode_ratio) | |||
/** EdDSA decoding ratio. */ | |||
#define $(C_NS)_EDDSA_DECODE_RATIO ($(cofactor) / $(eddsa_encode_ratio)) | |||
/** | |||
* @brief EdDSA key generation. This function uses a different (non-Decaf) | |||
* encoding. | |||
@@ -153,25 +159,43 @@ decaf_error_t decaf_ed$(gf_shortname)_verify_prehash ( | |||
/** | |||
* @brief EdDSA point encoding. Used internally, exposed externally. | |||
* Multiplies the point by the current cofactor first. | |||
* Multiplies by $(C_NS)_EDDSA_ENCODE_RATIO first. | |||
* | |||
* The multiplication is required because the EdDSA encoding represents | |||
* the cofactor information, but the Decaf encoding ignores it (which | |||
* is the whole point). So if you decode from EdDSA and re-encode to | |||
* EdDSA, the cofactor info must get cleared, because the intermediate | |||
* representation doesn't track it. | |||
* | |||
* The way libdecaf handles this is to multiply by | |||
* $(C_NS)_EDDSA_DECODE_RATIO when decoding, and by | |||
* $(C_NS)_EDDSA_ENCODE_RATIO when encoding. The product of these | |||
* ratios is always exactly the cofactor $(cofactor), so the cofactor | |||
* ends up cleared one way or another. But exactly how that shakes | |||
* out depends on the base points specified in RFC 8032. | |||
* | |||
* The upshot is that if you pass the Decaf/Ristretto base point to | |||
* this function, you will get $(C_NS)_EDDSA_ENCODE_RATIO times the | |||
* EdDSA base point. | |||
* | |||
* @param [out] enc The encoded point. | |||
* @param [in] p The point. | |||
*/ | |||
void $(c_ns)_point_mul_by_cofactor_and_encode_like_eddsa ( | |||
void $(c_ns)_point_mul_by_ratio_and_encode_like_eddsa ( | |||
uint8_t enc[DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES], | |||
const $(c_ns)_point_t p | |||
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; | |||
/** | |||
* @brief EdDSA point decoding. Remember that while points on the | |||
* EdDSA curves have cofactor information, Decaf ignores (quotients | |||
* out) all cofactor information. | |||
* @brief EdDSA point decoding. Multiplies by $(C_NS)_EDDSA_DECODE_RATIO, | |||
* and ignores cofactor information. | |||
* | |||
* See notes on $(c_ns)_point_mul_by_ratio_and_encode_like_eddsa | |||
* | |||
* @param [out] enc The encoded point. | |||
* @param [in] p The point. | |||
*/ | |||
decaf_error_t $(c_ns)_point_decode_like_eddsa_and_ignore_cofactor ( | |||
decaf_error_t $(c_ns)_point_decode_like_eddsa_and_mul_by_ratio ( | |||
$(c_ns)_point_t p, | |||
const uint8_t enc[DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES] | |||
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; | |||
@@ -10,14 +10,18 @@ | |||
#define IMAGINE_TWIST $(imagine_twist) | |||
#define COFACTOR $(cofactor) | |||
static const int EDWARDS_D = $(d); | |||
/* End of template stuff */ | |||
extern void API_NS(deisogenize) ( | |||
#define RISTRETTO_FACTOR $(C_NS)_RISTRETTO_FACTOR | |||
extern const gf RISTRETTO_FACTOR; | |||
/* End of template stuff */ | |||
extern mask_t API_NS(deisogenize) ( | |||
gf_s *__restrict__ s, | |||
gf_s *__restrict__ minus_t_over_s, | |||
gf_s *__restrict__ inv_el_sum, | |||
gf_s *__restrict__ inv_el_m1, | |||
const point_t p, | |||
mask_t toggle_hibit_s, | |||
mask_t toggle_hibit_t_over_s, | |||
mask_t toggle_altx, | |||
mask_t toggle_rotation | |||
); | |||
@@ -26,7 +30,8 @@ void API_NS(point_from_hash_nonuniform) ( | |||
const unsigned char ser[SER_BYTES] | |||
) { | |||
gf r0,r,a,b,c,N,e; | |||
ignore_result(gf_deserialize(r0,ser,0)); | |||
const uint8_t mask = (uint8_t)(0xFE<<($((gf_bits-1)%8))); | |||
ignore_result(gf_deserialize(r0,ser,0,mask)); | |||
gf_strong_reduce(r0); | |||
gf_sqr(a,r0); | |||
gf_mul_qnr(r,a); | |||
@@ -50,7 +55,7 @@ void API_NS(point_from_hash_nonuniform) ( | |||
/* s@a = +-|N.e| */ | |||
gf_mul(a,N,e); | |||
gf_cond_neg(a,gf_hibit(a)^square); /* NB this is - what is listed in the paper */ | |||
gf_cond_neg(a,gf_lobit(a) ^ ~square); | |||
/* t@b = -+ cN(r-1)((a-2d)e)^2 - 1 */ | |||
gf_mulw(c,e,1-2*EDWARDS_D); /* (a-2d)e */ | |||
@@ -96,23 +101,6 @@ void API_NS(point_from_hash_uniform) ( | |||
* log p == 1 mod 8 brainpool curves maybe? | |||
*/ | |||
#define MAX(A,B) (((A)>(B)) ? (A) : (B)) | |||
#define PKP_MASK ((1<<(MAX(8*SER_BYTES + $(elligator_onto) - $(gf_bits),0)))-1) | |||
#if PKP_MASK != 0 | |||
static DECAF_INLINE mask_t plus_k_p ( | |||
uint8_t x[SER_BYTES], | |||
uint32_t factor_ | |||
) { | |||
uint32_t carry = 0; | |||
uint64_t factor = factor_; | |||
const uint8_t p[SER_BYTES] = { $(ser(modulus,8)) }; | |||
for (unsigned int i=0; i<SER_BYTES; i++) { | |||
uint64_t tmp = carry + p[i] * factor + x[i]; | |||
/* tmp <= 2^32-1 + (2^32-1)*(2^8-1) + (2^8-1) = 2^40-1 */ | |||
x[i] = tmp; carry = tmp>>8; | |||
} | |||
return word_is_zero(carry); | |||
} | |||
#endif | |||
decaf_error_t | |||
API_NS(invert_elligator_nonuniform) ( | |||
@@ -122,60 +110,73 @@ API_NS(invert_elligator_nonuniform) ( | |||
) { | |||
mask_t hint = hint_; | |||
mask_t sgn_s = -(hint & 1), | |||
sgn_t_over_s = -(hint>>1 & 1), | |||
sgn_altx = -(hint>>1 & 1), | |||
sgn_r0 = -(hint>>2 & 1), | |||
/* FUTURE MAGIC: eventually if there's a curve which needs sgn_ed_T but not sgn_r0, | |||
* change this mask extraction. | |||
*/ | |||
sgn_ed_T = -(hint>>3 & 1); | |||
gf a, b, c, d; | |||
API_NS(deisogenize)(a,c,p,sgn_s,sgn_t_over_s,sgn_ed_T); | |||
gf a,b,c; | |||
API_NS(deisogenize)(a,b,c,p,sgn_s,sgn_altx,sgn_ed_T); | |||
#if $(gf_bits) == 8*SER_BYTES + 1 /* p521. */ | |||
sgn_r0 = 0; | |||
mask_t is_identity = gf_eq(p->t,ZERO); | |||
#if COFACTOR==4 | |||
gf_cond_sel(b,b,ONE,is_identity & sgn_altx); | |||
gf_cond_sel(c,c,ONE,is_identity & sgn_s &~ sgn_altx); | |||
#elif IMAGINE_TWIST | |||
/* Terrible, terrible special casing due to lots of 0/0 is deisogenize | |||
* Basically we need to generate -D and +- i*RISTRETTO_FACTOR | |||
*/ | |||
gf_mul_i(a,RISTRETTO_FACTOR); | |||
gf_cond_sel(b,b,ONE,is_identity); | |||
gf_cond_neg(a,sgn_altx); | |||
gf_cond_sel(c,c,a,is_identity & sgn_ed_T); | |||
gf_cond_sel(c,c,ZERO,is_identity & ~sgn_ed_T); | |||
gf_mulw(a,ONE,-EDWARDS_D); | |||
gf_cond_sel(c,c,a,is_identity & ~sgn_ed_T &~ sgn_altx); | |||
#else | |||
#error "Different special-casing goes here!" | |||
#endif | |||
/* ok, a = s; c = -t/s */ | |||
#if IMAGINE_TWIST | |||
gf_mulw(a,b,-EDWARDS_D); | |||
#else | |||
gf_mulw(a,b,EDWARDS_D-1); | |||
#endif | |||
gf_add(b,a,b); | |||
gf_sub(a,a,c); | |||
gf_add(b,b,c); | |||
gf_cond_swap(a,b,sgn_s); | |||
gf_mul_qnr(c,b); | |||
gf_mul(b,c,a); | |||
mask_t succ = gf_isr(c,b); | |||
succ |= gf_eq(b,ZERO); | |||
gf_mul(b,c,a); | |||
gf_sub(b,ONE,b); /* t+1 */ | |||
gf_sqr(c,a); /* s^2 */ | |||
mask_t is_identity = gf_eq(p->t,ZERO); | |||
/* identity adjustments */ | |||
/* in case of identity, currently c=0, t=0, b=1, will encode to 1 */ | |||
/* if hint is 0, -> 0 */ | |||
/* if hint is to neg t/s, then go to infinity, effectively set s to 1 */ | |||
gf_cond_sel(c,c,ONE,is_identity & sgn_t_over_s); | |||
gf_cond_sel(b,b,ZERO,is_identity & ~sgn_t_over_s & ~sgn_s); | |||
gf_mulw(d,c,2*EDWARDS_D-1); /* $d = (2d-a)s^2 */ | |||
gf_add(a,b,d); /* num? */ | |||
gf_sub(d,d,b); /* den? */ | |||
gf_mul(b,a,d); /* n*d */ | |||
gf_cond_sel(a,d,a,sgn_s); | |||
gf_mul_qnr(d,b); | |||
mask_t succ = gf_isr(c,d)|gf_eq(d,ZERO); | |||
gf_mul(b,a,c); | |||
gf_cond_neg(b, sgn_r0^gf_hibit(b)); | |||
succ &= ~(gf_eq(b,ZERO) & sgn_r0); | |||
#if COFACTOR == 8 | |||
succ &= ~(is_identity & sgn_ed_T); /* NB: there are no preimages of rotated identity. */ | |||
#endif | |||
#if $(gf_bits) == 8*SER_BYTES + 1 /* p521. */ | |||
#error "this won't work because it needs to adjust high bit, not low bit" | |||
sgn_r0 = 0; | |||
#endif | |||
gf_cond_neg(b, sgn_r0^gf_lobit(b)); | |||
/* Eliminate duplicate values for identity ... */ | |||
succ &= ~(gf_eq(b,ZERO) & (sgn_r0 | sgn_s)); | |||
// #if COFACTOR == 8 | |||
// succ &= ~(is_identity & sgn_ed_T); /* NB: there are no preimages of rotated identity. */ | |||
// #endif | |||
#if $(gf_bits) == 8*SER_BYTES + 1 /* p521 */ | |||
gf_serialize(recovered_hash,b,0); | |||
#else | |||
gf_serialize(recovered_hash,b,1); | |||
#if PKP_MASK != 0 | |||
/* Add a multiple of p to make the result either almost-onto or completely onto. */ | |||
#if COFACTOR == 8 | |||
succ &= plus_k_p(recovered_hash, (hint >> 4) & PKP_MASK); | |||
#else | |||
succ &= plus_k_p(recovered_hash, (hint >> 3) & PKP_MASK); | |||
#endif | |||
#endif | |||
#endif | |||
#if $(gf_bits%8) | |||
#if COFACTOR==8 | |||
recovered_hash[SER_BYTES-1] ^= (hint>>4)<<$(gf_bits%8); | |||
#else | |||
recovered_hash[SER_BYTES-1] ^= (hint>>3)<<$(gf_bits%8); | |||
#endif | |||
#endif | |||
return decaf_succeed_if(mask_to_bool(succ)); | |||
} | |||
@@ -37,6 +37,12 @@ typedef struct gf_$(gf_shortname)_s { | |||
/** Number of bits in the "which" field of an elligator inverse */ | |||
#define $(C_NS)_INVERT_ELLIGATOR_WHICH_BITS $(ceil_log2(cofactor) + 7 + elligator_onto - ((gf_bits-2) % 8)) | |||
/** The cofactor the curve would have, if we hadn't removed it */ | |||
#define $(C_NS)_REMOVED_COFACTOR $(cofactor) | |||
/** X$(gf_shortname) encoding ratio. */ | |||
#define DECAF_X$(gf_shortname)_ENCODE_RATIO $(x_encode_ratio) | |||
/** Number of bytes in an x$(gf_shortname) public key */ | |||
#define DECAF_X$(gf_shortname)_PUBLIC_BYTES $((gf_bits-1)//8 + 1) | |||
@@ -382,6 +388,31 @@ decaf_error_t decaf_x$(gf_shortname) ( | |||
const uint8_t scalar[DECAF_X$(gf_shortname)_PRIVATE_BYTES] | |||
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE; | |||
/** | |||
* @brief Multiply a point by DECAF_X$(gf_shortname)_ENCODE_RATIO, | |||
* then encode it like RFC 7748. | |||
* | |||
* This function is mainly used internally, but is exported in case | |||
* it will be useful. | |||
* | |||
* The ratio is necessary because the internal representation doesn't | |||
* track the cofactor information, so on output we must clear the cofactor. | |||
* This would multiply by the cofactor, but in fact internally libdecaf's | |||
* points are always even, so it multiplies by half the cofactor instead. | |||
* | |||
* As it happens, this aligns with the base point definitions; that is, | |||
* if you pass the Decaf/Ristretto base point to this function, the result | |||
* will be DECAF_X$(gf_shortname)_ENCODE_RATIO times the X$(gf_shortname) | |||
* base point. | |||
* | |||
* @param [out] out The scaled and encoded point. | |||
* @param [in] p The point to be scaled and encoded. | |||
*/ | |||
void $(c_ns)_point_mul_by_ratio_and_encode_like_x$(gf_shortname) ( | |||
uint8_t out[DECAF_X$(gf_shortname)_PUBLIC_BYTES], | |||
const $(c_ns)_point_t p | |||
) DECAF_API_VIS DECAF_NONNULL; | |||
/** The base point for X$(gf_shortname) Diffie-Hellman */ | |||
extern const uint8_t decaf_x$(gf_shortname)_base_point[DECAF_X$(gf_shortname)_PUBLIC_BYTES] DECAF_API_VIS; | |||
@@ -641,6 +672,16 @@ void $(c_ns)_point_from_hash_uniform ( | |||
* inverse sampling, this function succeeds or fails | |||
* independently for different "which" values. | |||
* | |||
* This function isn't guaranteed to find every possible | |||
* preimage, but it finds all except a small finite number. | |||
* In particular, when the number of bits in the modulus isn't | |||
* a multiple of 8 (i.e. for curve25519), it sets the high bits | |||
* independently, which enables the generated data to be uniform. | |||
* But it doesn't add p, so you'll never get exactly p from this | |||
* function. This might change in the future, especially if | |||
* we ever support eg Brainpool curves, where this could cause | |||
* real nonuniformity. | |||
* | |||
* @param [out] recovered_hash Encoded data. | |||
* @param [in] pt The point to encode. | |||
* @param [in] which A value determining which inverse point | |||
@@ -45,6 +45,9 @@ struct $(cxx_ns) { | |||
/** The name of the curve */ | |||
static inline const char *name() { return "$(name)"; } | |||
/** The name of the curve */ | |||
static inline int bits() { return $(gf_bits); } | |||
/** The curve's cofactor (removed, but useful for testing) */ | |||
static const int REMOVED_COFACTOR = $(cofactor); | |||
@@ -239,6 +242,21 @@ public: | |||
/** Bytes required for hash */ | |||
static const size_t HASH_BYTES = $(C_NS)_HASH_BYTES; | |||
/** Bytes required for EdDSA encoding */ | |||
static const size_t EDDSA_BYTES = DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES; | |||
/** Bytes required for EdDSA encoding */ | |||
static const size_t LADDER_BYTES = DECAF_X$(gf_shortname)_PUBLIC_BYTES; | |||
/** Ratio due to EdDSA encoding */ | |||
static const int EDDSA_ENCODE_RATIO = $(C_NS)_EDDSA_ENCODE_RATIO; | |||
/** Ratio due to EdDSA decoding */ | |||
static const int EDDSA_DECODE_RATIO = $(C_NS)_EDDSA_DECODE_RATIO; | |||
/** Ratio due to ladder decoding */ | |||
static const int LADDER_ENCODE_RATIO = DECAF_X$(gf_shortname)_ENCODE_RATIO; | |||
/** | |||
* Size of a stegged element. | |||
* | |||
@@ -323,25 +341,51 @@ public: | |||
* @return DECAF_FAILURE the string was the wrong length, or wasn't the encoding of a point. | |||
* Contents of the point are undefined. | |||
*/ | |||
inline decaf_error_t DECAF_WARN_UNUSED decode_like_eddsa_and_ignore_cofactor_noexcept ( | |||
inline decaf_error_t DECAF_WARN_UNUSED decode_like_eddsa_and_mul_by_ratio_noexcept ( | |||
const FixedBlock<DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES> &buffer | |||
) DECAF_NOEXCEPT { | |||
return $(c_ns)_point_decode_like_eddsa_and_ignore_cofactor(p,buffer.data()); | |||
return $(c_ns)_point_decode_like_eddsa_and_mul_by_ratio(p,buffer.data()); | |||
} | |||
inline void decode_like_eddsa_and_ignore_cofactor ( | |||
/** | |||
* Decode from EDDSA, multiply by EDDSA_DECODE_RATIO, and ignore any | |||
* remaining cofactor information. | |||
* @throw CryptoException if the input point was invalid. | |||
*/ | |||
inline void decode_like_eddsa_and_mul_by_ratio( | |||
const FixedBlock<DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES> &buffer | |||
) /*throw(CryptoException)*/ { | |||
if (DECAF_SUCCESS != decode_like_eddsa_and_ignore_cofactor_noexcept(buffer)) throw(CryptoException()); | |||
if (DECAF_SUCCESS != decode_like_eddsa_and_mul_by_ratio_noexcept(buffer)) throw(CryptoException()); | |||
} | |||
/** Multiply out cofactor and encode like EdDSA. */ | |||
inline SecureBuffer mul_by_cofactor_and_encode_like_eddsa() const { | |||
/** Multiply by EDDSA_ENCODE_RATIO and encode like EdDSA. */ | |||
inline SecureBuffer mul_by_ratio_and_encode_like_eddsa() const { | |||
SecureBuffer ret(DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES); | |||
$(c_ns)_point_mul_by_cofactor_and_encode_like_eddsa(ret.data(),p); | |||
$(c_ns)_point_mul_by_ratio_and_encode_like_eddsa(ret.data(),p); | |||
return ret; | |||
} | |||
/** Multiply by EDDSA_ENCODE_RATIO and encode like EdDSA. */ | |||
inline void mul_by_ratio_and_encode_like_eddsa( | |||
FixedBuffer<DECAF_EDDSA_$(gf_shortname)_PUBLIC_BYTES> &out | |||
) const { | |||
$(c_ns)_point_mul_by_ratio_and_encode_like_eddsa(out.data(),p); | |||
} | |||
/** Multiply by LADDER_ENCODE_RATIO and encode like X25519/X448. */ | |||
inline SecureBuffer mul_by_ratio_and_encode_like_ladder() const { | |||
SecureBuffer ret(LADDER_BYTES); | |||
$(c_ns)_point_mul_by_ratio_and_encode_like_x$(gf_shortname)(ret.data(),p); | |||
return ret; | |||
} | |||
/** Multiply by LADDER_ENCODE_RATIO and encode like X25519/X448. */ | |||
inline void mul_by_ratio_and_encode_like_ladder( | |||
FixedBuffer<LADDER_BYTES> &out | |||
) const { | |||
$(c_ns)_point_mul_by_ratio_and_encode_like_x$(gf_shortname)(out.data(),p); | |||
} | |||
/** | |||
* Map uniformly to the curve from a hash buffer. | |||
* The empty or all-zero string maps to the identity, as does the string "\\x01". | |||
@@ -565,7 +609,7 @@ public: | |||
* initializer for points which makes this equal to the identity. | |||
*/ | |||
inline Precomputed ( | |||
const Precomputed_U &yours = *default_value() | |||
const Precomputed_U &yours = *$(c_ns)_precomputed_base | |||
) DECAF_NOEXCEPT : OwnedOrUnowned<Precomputed,Precomputed_U>(yours) {} | |||
@@ -737,5 +781,7 @@ inline decaf_error_t $(cxx_ns)::Scalar::direct_scalarmul_noexcept ( | |||
} | |||
/** @endcond */ | |||
$("typedef %s %s;\n" % (cxx_ns,altname) if altname else "") | |||
#undef DECAF_NOEXCEPT | |||
} /* namespace decaf */ |
@@ -23,6 +23,7 @@ typedef struct gf_$(gf_shortname)_s { | |||
#define gf_s gf_$(gf_shortname)_s | |||
#define gf_eq gf_$(gf_shortname)_eq | |||
#define gf_hibit gf_$(gf_shortname)_hibit | |||
#define gf_lobit gf_$(gf_shortname)_lobit | |||
#define gf_copy gf_$(gf_shortname)_copy | |||
#define gf_add gf_$(gf_shortname)_add | |||
#define gf_sub gf_$(gf_shortname)_sub | |||
@@ -66,10 +67,11 @@ void gf_mulw_unsigned (gf_s *__restrict__ out, const gf a, uint32_t b); | |||
void gf_sqr (gf_s *__restrict__ out, const gf a); | |||
mask_t gf_isr(gf a, const gf x); /** a^2 x = 1, QNR, or 0 if x=0. Return true if successful */ | |||
mask_t gf_eq (const gf x, const gf y); | |||
mask_t gf_lobit (const gf x); | |||
mask_t gf_hibit (const gf x); | |||
void gf_serialize (uint8_t *serial, const gf x,int with_highbit); | |||
mask_t gf_deserialize (gf x, const uint8_t serial[SER_BYTES],int with_highbit); | |||
mask_t gf_deserialize (gf x, const uint8_t serial[SER_BYTES],int with_hibit,uint8_t hi_nmask); | |||
#ifdef __cplusplus | |||
@@ -41,14 +41,25 @@ mask_t gf_hibit(const gf x) { | |||
return -(y->limb[0]&1); | |||
} | |||
/** Return high bit of x = low bit of 2x mod p */ | |||
mask_t gf_lobit(const gf x) { | |||
gf y; | |||
gf_copy(y,x); | |||
gf_strong_reduce(y); | |||
return -(y->limb[0]&1); | |||
} | |||
/** Deserialize from wire format; return -1 on success and 0 on failure. */ | |||
mask_t gf_deserialize (gf x, const uint8_t serial[SER_BYTES], int with_hibit) { | |||
mask_t gf_deserialize (gf x, const uint8_t serial[SER_BYTES], int with_hibit, uint8_t hi_nmask) { | |||
unsigned int j=0, fill=0; | |||
dword_t buffer = 0; | |||
dsword_t scarry = 0; | |||
const unsigned nbytes = with_hibit ? X_SER_BYTES : SER_BYTES; | |||
UNROLL for (unsigned int i=0; i<NLIMBS; i++) { | |||
UNROLL while (fill < LIMB_PLACE_VALUE(LIMBPERM(i)) && j < (with_hibit ? X_SER_BYTES : SER_BYTES)) { | |||
buffer |= ((dword_t)serial[j]) << fill; | |||
UNROLL while (fill < LIMB_PLACE_VALUE(LIMBPERM(i)) && j < nbytes) { | |||
uint8_t sj = serial[j]; | |||
if (j==nbytes-1) sj &= ~hi_nmask; | |||
buffer |= ((dword_t)sj) << fill; | |||
fill += 8; | |||
j++; | |||
} | |||
@@ -0,0 +1,214 @@ | |||
/** | |||
* @file ristretto.cxx | |||
* @author Mike Hamburg | |||
* | |||
* @copyright | |||
* Copyright (c) 2015 Cryptography Research, Inc. \n | |||
* Released under the MIT License. See LICENSE.txt for license information. | |||
* | |||
* @brief Ristretto implementation widget | |||
*/ | |||
#include <decaf.hxx> | |||
#include <stdio.h> | |||
using namespace decaf; | |||
inline int hexi(char c) { | |||
if (c >= '0' && c <= '9') return c-'0'; | |||
if (c >= 'a' && c <= 'f') return c-'a'+0xa; | |||
if (c >= 'A' && c <= 'F') return c-'A'+0xa; | |||
return -1; | |||
} | |||
int parsehex(uint8_t *out, size_t sizeof_out, const char *hex) { | |||
size_t l = strlen(hex); | |||
if (l%2 != 0) { | |||
fprintf(stderr,"String should be hex, but has odd length\n: %s\n", hex); | |||
return -1; | |||
} else if (l/2 > sizeof_out) { | |||
fprintf(stderr,"Argument is too long: %s\n", hex); | |||
return -1; | |||
} | |||
memset(out,0,sizeof_out); | |||
int ret1,ret2; | |||
for (size_t i=0; i<l/2; i++) { | |||
if ( (ret1 = hexi(hex[2*i ])) < 0 | |||
|| (ret2 = hexi(hex[2*i+1])) < 0) { | |||
fprintf(stderr,"Invalid hex %s\n",hex); | |||
return -1; | |||
} | |||
out[i] = ret1*16+ret2; | |||
} | |||
return 0; | |||
} | |||
void printhex(const uint8_t *in, size_t sizeof_in) { | |||
for (; sizeof_in > 0; in++,sizeof_in--) { | |||
printf("%02x",*in); | |||
} | |||
} | |||
static int g_argc = 0; | |||
static char **g_argv = NULL; | |||
static int error = 0; | |||
static int done = 0; | |||
void usage() { | |||
const char *me=g_argv[0]; | |||
if (!me) me = "ristretto"; | |||
for (unsigned i=0; g_argv[0][i]; i++) { | |||
if (g_argv[0][i] == '/' && g_argv[0][i+1] != 0 && g_argv[0][i+1] != '/') { | |||
me = &g_argv[0][i]; | |||
} | |||
} | |||
fprintf(stderr,"Usage: %s [points] [operations] ...\n", me); | |||
fprintf(stderr," -b 255|448: Set which group to use (sometimes inferred from lengths)\n"); | |||
fprintf(stderr," -E: Display output as Elligator inverses\n"); | |||
fprintf(stderr," -D: Display output in EdDSA format (times clearing ratio)\n"); | |||
fprintf(stderr," -R: Display raw xyzt\n"); | |||
fprintf(stderr," -C: Display output in X[25519|448] format\n"); | |||
fprintf(stderr," -H: ... divide by encoding ratio first\n"); | |||
fprintf(stderr,"\n"); | |||
fprintf(stderr," Ways to create points:\n"); | |||
fprintf(stderr," [hex]: Point from point data as hex\n"); | |||
fprintf(stderr," -e [hex]: Create point by hashing to curve using elligator\n"); | |||
fprintf(stderr," base: Base point of curve\n"); | |||
fprintf(stderr," identity: Identity point of curve\n"); | |||
fprintf(stderr,"\n"); | |||
fprintf(stderr," Operations:\n"); | |||
fprintf(stderr," -n [point]: negative of point\n"); | |||
fprintf(stderr," -s [scalar] * [point]: Hash to curve using elligator\n"); | |||
fprintf(stderr," [point] + [point]: Add two points\n"); | |||
fprintf(stderr,"\n"); | |||
fprintf(stderr," NB: this is a debugging widget. It doesn't yet have order of operations.\n"); | |||
fprintf(stderr," *** DON'T USE THIS UTILITY FOR ACTUAL CRYPTO! ***\n"); | |||
fprintf(stderr," It's only for debugging!\n"); | |||
fprintf(stderr,"\n"); | |||
exit(-2); | |||
} | |||
template<typename Group> class Run { | |||
public: | |||
static void run() { | |||
uint8_t tmp[Group::Point::SER_BYTES]; | |||
typename Group::Point a,b; | |||
typename Group::Scalar s; | |||
bool plus=false, empty=true, elligator=false, mul=false, scalar=false, div=false, torque=false, | |||
scalarempty=true, neg=false, einv=false, like_eddsa=false, like_x=false, decoeff=false, raw=false; | |||
if (done || error) return; | |||
for (int i=1; i<g_argc && !error; i++) { | |||
bool point = false; | |||
if (!strcmp(g_argv[i],"-b") && ++i<g_argc) { | |||
if (atoi(g_argv[i]) == Group::bits()) continue; | |||
else return; | |||
} else if (!strcmp(g_argv[i],"+")) { | |||
if (elligator || scalar || empty) usage(); | |||
plus = true; | |||
} else if (!strcmp(g_argv[i],"-n")) { | |||
neg = !neg; | |||
} else if (!strcmp(g_argv[i],"-E")) { | |||
einv = true; | |||
} else if (!strcmp(g_argv[i],"-R")) { | |||
raw = true; | |||
} else if (!strcmp(g_argv[i],"-D")) { | |||
like_eddsa = true; | |||
} else if (!strcmp(g_argv[i],"-C")) { | |||
like_x = true; | |||
} else if (!strcmp(g_argv[i],"-H")) { | |||
decoeff = true; | |||
} else if (!strcmp(g_argv[i],"-T")) { | |||
torque = true; | |||
} else if (!strcmp(g_argv[i],"*")) { | |||
if (elligator || scalar || scalarempty || div) usage(); | |||
mul = true; | |||
} else if (!strcmp(g_argv[i],"/")) { | |||
if (elligator || scalar || scalarempty || mul) usage(); | |||
div = true; | |||
} else if (!strcmp(g_argv[i],"-s")) { | |||
if (elligator || scalar || !scalarempty) usage(); | |||
scalar = true; | |||
} else if (!strcmp(g_argv[i],"-e")) { | |||
if (elligator || scalar) usage(); | |||
elligator = true; | |||
} else if (!strcmp(g_argv[i],"base")) { | |||
if (elligator || scalar) usage(); | |||
b = b.base(); | |||
point = true; | |||
} else if (!strcmp(g_argv[i],"identity")) { | |||
if (elligator || scalar) usage(); | |||
b = b.identity(); | |||
point = true; | |||
} else if ((strlen(g_argv[i]) == 2*sizeof(tmp) | |||
|| ((scalar || elligator) && strlen(g_argv[i]) <= 2*sizeof(tmp))) | |||
&& !(error=parsehex(tmp,sizeof(tmp),g_argv[i]))) { | |||
if (scalar) { | |||
s = Block(tmp,sizeof(tmp)); scalar=false; scalarempty=false; | |||
} else if (elligator) { | |||
point = true; | |||
b.set_to_hash(Block(tmp,sizeof(tmp))); elligator=false; | |||
} else if (DECAF_SUCCESS != b.decode(Block(tmp,sizeof(tmp)))) { | |||
fprintf(stderr,"Error: %s isn't in the group\n",g_argv[i]); | |||
error = -1; | |||
} else { | |||
point = true; | |||
} | |||
} else if (error || !empty) usage(); | |||
if (point) { | |||
if (neg) { b = -b; neg = false; } | |||
if (div) { b /= s; div=false; } | |||
if (torque) { b = b.debugging_torque(); torque=false; } | |||
if (mul) { b *= s; mul=false; } | |||
if (empty) { a = b; empty=false; } | |||
else if (plus) { a += b; plus=false; } | |||
else usage(); | |||
} | |||
} | |||
if (!error && !empty) { | |||
if (einv) { | |||
uint8_t buffer[Group::Point::HASH_BYTES]; | |||
for (int h=0; h<1<<Group::Point::INVERT_ELLIGATOR_WHICH_BITS; h++) { | |||
if (DECAF_SUCCESS == a.invert_elligator( | |||
Buffer(buffer,sizeof(buffer)), h | |||
)) { | |||
printhex(buffer,sizeof(buffer)); | |||
printf("\n"); | |||
} | |||
} | |||
} else if (raw) { | |||
printhex((const uint8_t *)&a, sizeof(a)); | |||
printf("\n"); | |||
} else if (like_eddsa) { | |||
if (decoeff) a /= (Group::Point::EDDSA_ENCODE_RATIO); | |||
SecureBuffer b = a.mul_by_ratio_and_encode_like_eddsa(); | |||
printhex(b.data(),b.size()); | |||
printf("\n"); | |||
} else if (like_x) { | |||
if (decoeff) a /= (Group::Point::LADDER_ENCODE_RATIO); | |||
SecureBuffer b = a.mul_by_ratio_and_encode_like_ladder(); | |||
printhex(b.data(),b.size()); | |||
printf("\n"); | |||
} else { | |||
a.serialize_into(tmp); | |||
printhex(tmp,sizeof(tmp)); | |||
printf("\n"); | |||
} | |||
done = true; | |||
} | |||
} | |||
}; | |||
int main(int argc, char **argv) { | |||
g_argc = argc; | |||
g_argv = argv; | |||
run_for_all_curves<Run>(); | |||
if (!done) usage(); | |||
return (error<0) ? -error : error; | |||
} |
@@ -0,0 +1,290 @@ | |||
template <typename Group> struct base_multiples; | |||
/* Examples for multiples of base point */ | |||
template <> struct base_multiples<Ristretto> { | |||
static const int count = 16; | |||
static const uint8_t values[count][Ristretto::Point::SER_BYTES]; | |||
}; | |||
const uint8_t base_multiples<Ristretto>::values | |||
[base_multiples<Ristretto>::count][Ristretto::Point::SER_BYTES] = { | |||
/* Copy-pasted from Dalek, thanks Isis Lovecruft and Henry de Valence */ | |||
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, | |||
{226, 242, 174, 10, 106, 188, 78, 113, 168, 132, 169, 97, 197, 0, 81, 95, 88, 227, 11, 106, 165, 130, 221, 141, 182, 166, 89, 69, 224, 141, 45, 118}, | |||
{106, 73, 50, 16, 247, 73, 156, 209, 127, 236, 181, 16, 174, 12, 234, 35, 161, 16, 232, 213, 185, 1, 248, 172, 173, 211, 9, 92, 115, 163, 185, 25}, | |||
{148, 116, 31, 93, 93, 82, 117, 94, 206, 79, 35, 240, 68, 238, 39, 213, 209, 234, 30, 43, 209, 150, 180, 98, 22, 107, 22, 21, 42, 157, 2, 89}, | |||
{218, 128, 134, 39, 115, 53, 139, 70, 111, 250, 223, 224, 179, 41, 58, 179, 217, 253, 83, 197, 234, 108, 149, 83, 88, 245, 104, 50, 45, 175, 106, 87}, | |||
{232, 130, 177, 49, 1, 107, 82, 193, 211, 51, 112, 128, 24, 124, 247, 104, 66, 62, 252, 203, 181, 23, 187, 73, 90, 184, 18, 196, 22, 15, 244, 78}, | |||
{246, 71, 70, 211, 201, 43, 19, 5, 14, 216, 216, 2, 54, 167, 240, 0, 124, 59, 63, 150, 47, 91, 167, 147, 209, 154, 96, 30, 187, 29, 244, 3}, | |||
{68, 245, 53, 32, 146, 110, 200, 31, 189, 90, 56, 120, 69, 190, 183, 223, 133, 169, 106, 36, 236, 225, 135, 56, 189, 207, 166, 167, 130, 42, 23, 109}, | |||
{144, 50, 147, 216, 242, 40, 126, 190, 16, 226, 55, 77, 193, 165, 62, 11, 200, 135, 229, 146, 105, 159, 2, 208, 119, 213, 38, 60, 221, 85, 96, 28}, | |||
{2, 98, 42, 206, 143, 115, 3, 163, 28, 175, 198, 63, 143, 196, 143, 220, 22, 225, 200, 200, 210, 52, 178, 240, 214, 104, 82, 130, 169, 7, 96, 49}, | |||
{32, 112, 111, 215, 136, 178, 114, 10, 30, 210, 165, 218, 212, 149, 43, 1, 244, 19, 188, 240, 231, 86, 77, 232, 205, 200, 22, 104, 158, 45, 185, 95}, | |||
{188, 232, 63, 139, 165, 221, 47, 165, 114, 134, 76, 36, 186, 24, 16, 249, 82, 43, 198, 0, 74, 254, 149, 135, 122, 199, 50, 65, 202, 253, 171, 66}, | |||
{228, 84, 158, 225, 107, 154, 160, 48, 153, 202, 32, 140, 103, 173, 175, 202, 250, 76, 63, 62, 78, 83, 3, 222, 96, 38, 227, 202, 143, 248, 68, 96}, | |||
{170, 82, 224, 0, 223, 46, 22, 245, 95, 177, 3, 47, 195, 59, 196, 39, 66, 218, 214, 189, 90, 143, 192, 190, 1, 103, 67, 108, 89, 72, 80, 31}, | |||
{70, 55, 107, 128, 244, 9, 178, 157, 194, 181, 246, 240, 197, 37, 145, 153, 8, 150, 229, 113, 111, 65, 71, 124, 211, 0, 133, 171, 127, 16, 48, 30}, | |||
{224, 196, 24, 247, 200, 217, 196, 205, 215, 57, 91, 147, 234, 18, 79, 58, 217, 144, 33, 187, 104, 29, 252, 51, 2, 169, 217, 154, 46, 83, 230, 78} | |||
}; | |||
template <> struct base_multiples<Ed448Goldilocks> { | |||
static const int count = 16; | |||
static const uint8_t values[count][Ed448Goldilocks::Point::SER_BYTES]; | |||
}; | |||
const uint8_t base_multiples<Ed448Goldilocks>::values[][Ed448Goldilocks::Point::SER_BYTES] = { | |||
/* Computed using SAGE script */ | |||
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, | |||
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, | |||
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, | |||
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, | |||
{0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66, | |||
0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66,0x66, | |||
0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33, | |||
0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33,0x33}, | |||
{0xc8,0x98,0xeb,0x4f,0x87,0xf9,0x7c,0x56,0x4c,0x6f,0xd6,0x1f,0xc7,0xe4, | |||
0x96,0x89,0x31,0x4a,0x1f,0x81,0x8e,0xc8,0x5e,0xeb,0x3b,0xd5,0x51,0x4a, | |||
0xc8,0x16,0xd3,0x87,0x78,0xf6,0x9e,0xf3,0x47,0xa8,0x9f,0xca,0x81,0x7e, | |||
0x66,0xde,0xfd,0xed,0xce,0x17,0x8c,0x7c,0xc7,0x09,0xb2,0x11,0x6e,0x75}, | |||
{0xa0,0xc0,0x9b,0xf2,0xba,0x72,0x08,0xfd,0xa0,0xf4,0xbf,0xe3,0xd0,0xf5, | |||
0xb2,0x9a,0x54,0x30,0x12,0x30,0x6d,0x43,0x83,0x1b,0x5a,0xdc,0x6f,0xe7, | |||
0xf8,0x59,0x6f,0xa3,0x08,0x76,0x3d,0xb1,0x54,0x68,0x32,0x3b,0x11,0xcf, | |||
0x6e,0x4a,0xeb,0x8c,0x18,0xfe,0x44,0x67,0x8f,0x44,0x54,0x5a,0x69,0xbc}, | |||
{0xb4,0x6f,0x18,0x36,0xaa,0x28,0x7c,0x0a,0x5a,0x56,0x53,0xf0,0xec,0x5e, | |||
0xf9,0xe9,0x03,0xf4,0x36,0xe2,0x1c,0x15,0x70,0xc2,0x9a,0xd9,0xe5,0xf5, | |||
0x96,0xda,0x97,0xee,0xaf,0x17,0x15,0x0a,0xe3,0x0b,0xcb,0x31,0x74,0xd0, | |||
0x4b,0xc2,0xd7,0x12,0xc8,0xc7,0x78,0x9d,0x7c,0xb4,0xfd,0xa1,0x38,0xf4}, | |||
{0x1c,0x5b,0xbe,0xcf,0x47,0x41,0xdf,0xaa,0xe7,0x9d,0xb7,0x2d,0xfa,0xce, | |||
0x00,0xea,0xaa,0xc5,0x02,0xc2,0x06,0x09,0x34,0xb6,0xea,0xae,0xca,0x6a, | |||
0x20,0xbd,0x3d,0xa9,0xe0,0xbe,0x87,0x77,0xf7,0xd0,0x20,0x33,0xd1,0xb1, | |||
0x58,0x84,0x23,0x22,0x81,0xa4,0x1f,0xc7,0xf8,0x0e,0xed,0x04,0xaf,0x5e}, | |||
{0x86,0xff,0x01,0x82,0xd4,0x0f,0x7f,0x9e,0xdb,0x78,0x62,0x51,0x58,0x21, | |||
0xbd,0x67,0xbf,0xd6,0x16,0x5a,0x3c,0x44,0xde,0x95,0xd7,0xdf,0x79,0xb8, | |||
0x77,0x9c,0xcf,0x64,0x60,0xe3,0xc6,0x8b,0x70,0xc1,0x6a,0xaa,0x28,0x0f, | |||
0x2d,0x7b,0x3f,0x22,0xd7,0x45,0xb9,0x7a,0x89,0x90,0x6c,0xfc,0x47,0x6c}, | |||
{0x50,0x2b,0xcb,0x68,0x42,0xeb,0x06,0xf0,0xe4,0x90,0x32,0xba,0xe8,0x7c, | |||
0x55,0x4c,0x03,0x1d,0x6d,0x4d,0x2d,0x76,0x94,0xef,0xbf,0x9c,0x46,0x8d, | |||
0x48,0x22,0x0c,0x50,0xf8,0xca,0x28,0x84,0x33,0x64,0xd7,0x0c,0xee,0x92, | |||
0xd6,0xfe,0x24,0x6e,0x61,0x44,0x8f,0x9d,0xb9,0x80,0x8b,0x3b,0x24,0x08}, | |||
{0x0c,0x98,0x10,0xf1,0xe2,0xeb,0xd3,0x89,0xca,0xa7,0x89,0x37,0x4d,0x78, | |||
0x00,0x79,0x74,0xef,0x4d,0x17,0x22,0x73,0x16,0xf4,0x0e,0x57,0x8b,0x33, | |||
0x68,0x27,0xda,0x3f,0x6b,0x48,0x2a,0x47,0x94,0xeb,0x6a,0x39,0x75,0xb9, | |||
0x71,0xb5,0xe1,0x38,0x8f,0x52,0xe9,0x1e,0xa2,0xf1,0xbc,0xb0,0xf9,0x12}, | |||
{0x20,0xd4,0x1d,0x85,0xa1,0x8d,0x56,0x57,0xa2,0x96,0x40,0x32,0x15,0x63, | |||
0xbb,0xd0,0x4c,0x2f,0xfb,0xd0,0xa3,0x7a,0x7b,0xa4,0x3a,0x4f,0x7d,0x26, | |||
0x3c,0xe2,0x6f,0xaf,0x4e,0x1f,0x74,0xf9,0xf4,0xb5,0x90,0xc6,0x92,0x29, | |||
0xae,0x57,0x1f,0xe3,0x7f,0xa6,0x39,0xb5,0xb8,0xeb,0x48,0xbd,0x9a,0x55}, | |||
{0xe6,0xb4,0xb8,0xf4,0x08,0xc7,0x01,0x0d,0x06,0x01,0xe7,0xed,0xa0,0xc3, | |||
0x09,0xa1,0xa4,0x27,0x20,0xd6,0xd0,0x6b,0x57,0x59,0xfd,0xc4,0xe1,0xef, | |||
0xe2,0x2d,0x07,0x6d,0x6c,0x44,0xd4,0x2f,0x50,0x8d,0x67,0xbe,0x46,0x29, | |||
0x14,0xd2,0x8b,0x8e,0xdc,0xe3,0x2e,0x70,0x94,0x30,0x51,0x64,0xaf,0x17}, | |||
{0xbe,0x88,0xbb,0xb8,0x6c,0x59,0xc1,0x3d,0x8e,0x9d,0x09,0xab,0x98,0x10, | |||
0x5f,0x69,0xc2,0xd1,0xdd,0x13,0x4d,0xbc,0xd3,0xb0,0x86,0x36,0x58,0xf5, | |||
0x31,0x59,0xdb,0x64,0xc0,0xe1,0x39,0xd1,0x80,0xf3,0xc8,0x9b,0x82,0x96, | |||
0xd0,0xae,0x32,0x44,0x19,0xc0,0x6f,0xa8,0x7f,0xc7,0xda,0xaf,0x34,0xc1}, | |||
{0xa4,0x56,0xf9,0x36,0x97,0x69,0xe8,0xf0,0x89,0x02,0x12,0x4a,0x03,0x14, | |||
0xc7,0xa0,0x65,0x37,0xa0,0x6e,0x32,0x41,0x1f,0x4f,0x93,0x41,0x59,0x50, | |||
0xa1,0x7b,0xad,0xfa,0x74,0x42,0xb6,0x21,0x74,0x34,0xa3,0xa0,0x5e,0xf4, | |||
0x5b,0xe5,0xf1,0x0b,0xd7,0xb2,0xef,0x8e,0xa0,0x0c,0x43,0x1e,0xde,0xc5}, | |||
{0x18,0x6e,0x45,0x2c,0x44,0x66,0xaa,0x43,0x83,0xb4,0xc0,0x02,0x10,0xd5, | |||
0x2e,0x79,0x22,0xdb,0xf9,0x77,0x1e,0x8b,0x47,0xe2,0x29,0xa9,0xb7,0xb7, | |||
0x3c,0x8d,0x10,0xfd,0x7e,0xf0,0xb6,0xe4,0x15,0x30,0xf9,0x1f,0x24,0xa3, | |||
0xed,0x9a,0xb7,0x1f,0xa3,0x8b,0x98,0xb2,0xfe,0x47,0x46,0xd5,0x1d,0x68}, | |||
{0x4a,0xe7,0xfd,0xca,0xe9,0x45,0x3f,0x19,0x5a,0x8e,0xad,0x5c,0xbe,0x1a, | |||
0x7b,0x96,0x99,0x67,0x3b,0x52,0xc4,0x0a,0xb2,0x79,0x27,0x46,0x48,0x87, | |||
0xbe,0x53,0x23,0x7f,0x7f,0x3a,0x21,0xb9,0x38,0xd4,0x0d,0x0e,0xc9,0xe1, | |||
0x5b,0x1d,0x51,0x30,0xb1,0x3f,0xfe,0xd8,0x13,0x73,0xa5,0x3e,0x2b,0x43}, | |||
{0x84,0x19,0x81,0xc3,0xbf,0xee,0xc3,0xf6,0x0c,0xfe,0xca,0x75,0xd9,0xd8, | |||
0xdc,0x17,0xf4,0x6c,0xf0,0x10,0x6f,0x24,0x22,0xb5,0x9a,0xec,0x58,0x0a, | |||
0x58,0xf3,0x42,0x27,0x2e,0x3a,0x5e,0x57,0x5a,0x05,0x5d,0xdb,0x05,0x13, | |||
0x90,0xc5,0x4c,0x24,0xc6,0xec,0xb1,0xe0,0xac,0xeb,0x07,0x5f,0x60,0x56}, | |||
}; | |||
template <typename Group> struct elligator_examples; | |||
/* Examples for Elligator */ | |||
template <> struct elligator_examples<Ristretto> { | |||
static const int count = 16; | |||
static const uint8_t inputs[count][Ristretto::Point::HASH_BYTES]; | |||
static const uint8_t outputs[count][Ristretto::Point::SER_BYTES]; | |||
}; | |||
const uint8_t elligator_examples<Ristretto>::inputs | |||
[elligator_examples<Ristretto>::count][Ristretto::Point::HASH_BYTES] = { | |||
/* Copy-pasted from Dalek, thanks Isis Lovecruft and Henry de Valence */ | |||
{184, 249, 135, 49, 253, 123, 89, 113, 67, 160, 6, 239, 7, 105, 211, 41, 192, 249, 185, 57, 9, 102, 70, 198, 15, 127, 7, 26, 160, 102, 134, 71}, | |||
{229, 14, 241, 227, 75, 9, 118, 60, 128, 153, 226, 21, 183, 217, 91, 136, 98, 0, 231, 156, 124, 77, 82, 139, 142, 134, 164, 169, 169, 62, 250, 52}, | |||
{115, 109, 36, 220, 180, 223, 99, 6, 204, 169, 19, 29, 169, 68, 84, 23, 21, 109, 189, 149, 127, 205, 91, 102, 172, 35, 112, 35, 134, 69, 186, 34}, | |||
{16, 49, 96, 107, 171, 199, 164, 9, 129, 16, 64, 62, 241, 63, 132, 173, 209, 160, 112, 215, 105, 50, 157, 81, 253, 105, 1, 154, 229, 25, 120, 83}, | |||
{156, 131, 161, 162, 236, 251, 5, 187, 167, 171, 17, 178, 148, 210, 90, 207, 86, 21, 79, 161, 167, 215, 234, 1, 136, 242, 182, 248, 38, 85, 79, 86}, | |||
{251, 177, 124, 54, 18, 101, 75, 235, 245, 186, 19, 46, 133, 157, 229, 64, 10, 136, 181, 185, 78, 144, 254, 167, 137, 49, 107, 10, 61, 10, 21, 25}, | |||
{232, 193, 20, 68, 240, 77, 186, 77, 183, 40, 44, 86, 150, 31, 198, 212, 76, 81, 3, 217, 197, 8, 126, 128, 126, 152, 164, 208, 153, 44, 189, 77}, | |||
{173, 229, 149, 177, 37, 230, 30, 69, 61, 56, 172, 190, 219, 115, 167, 194, 71, 134, 59, 75, 28, 244, 118, 26, 162, 97, 64, 16, 15, 189, 30, 64}, | |||
{106, 71, 61, 107, 250, 117, 42, 151, 91, 202, 212, 100, 52, 188, 190, 21, 125, 218, 31, 18, 253, 241, 160, 133, 57, 242, 3, 164, 189, 68, 111, 75}, | |||
{112, 204, 182, 90, 220, 198, 120, 73, 173, 107, 193, 17, 227, 40, 162, 36, 150, 141, 235, 55, 172, 183, 12, 39, 194, 136, 43, 153, 244, 118, 91, 89}, | |||
{111, 24, 203, 123, 254, 189, 11, 162, 51, 196, 163, 136, 204, 143, 10, 222, 33, 112, 81, 205, 34, 35, 8, 66, 90, 6, 164, 58, 170, 177, 34, 25}, | |||
{225, 183, 30, 52, 236, 82, 6, 183, 109, 25, 227, 181, 25, 82, 41, 193, 80, 77, 161, 80, 242, 203, 79, 204, 136, 245, 131, 110, 237, 106, 3, 58}, | |||
{207, 246, 38, 56, 30, 86, 176, 90, 27, 200, 61, 42, 221, 27, 56, 210, 79, 178, 189, 120, 68, 193, 120, 167, 77, 185, 53, 197, 124, 128, 191, 126}, | |||
{1, 136, 215, 80, 240, 46, 63, 147, 16, 244, 230, 207, 82, 189, 74, 50, 106, 169, 138, 86, 30, 131, 214, 202, 166, 125, 251, 228, 98, 24, 36, 21}, | |||
{210, 207, 228, 56, 155, 116, 207, 54, 84, 195, 251, 215, 249, 199, 116, 75, 109, 239, 196, 251, 194, 246, 252, 228, 70, 146, 156, 35, 25, 39, 241, 4}, | |||
{34, 116, 123, 9, 8, 40, 93, 189, 9, 103, 57, 103, 66, 227, 3, 2, 157, 107, 134, 219, 202, 74, 230, 154, 78, 107, 219, 195, 214, 14, 84, 80} | |||
}; | |||
const uint8_t elligator_examples<Ristretto>::outputs | |||
[elligator_examples<Ristretto>::count][Ristretto::Point::SER_BYTES] = { | |||
/* Copy-pasted from Dalek, thanks Isis Lovecruft and Henry de Valence */ | |||
{176, 157, 237, 97, 66, 29, 140, 166, 168, 94, 26, 157, 212, 216, 229, 160, 195, 246, 232, 239, 169, 112, 63, 193, 64, 32, 152, 69, 11, 190, 246, 86}, | |||
{234, 141, 77, 203, 181, 225, 250, 74, 171, 62, 15, 118, 78, 212, 150, 19, 131, 14, 188, 238, 194, 244, 141, 138, 166, 162, 83, 122, 228, 201, 19, 26}, | |||
{232, 231, 51, 92, 5, 168, 80, 36, 173, 179, 104, 68, 186, 149, 68, 40, 140, 170, 27, 103, 99, 140, 21, 242, 43, 62, 250, 134, 208, 255, 61, 89}, | |||
{208, 120, 140, 129, 177, 179, 237, 159, 252, 160, 28, 13, 206, 5, 211, 241, 192, 218, 1, 97, 130, 241, 20, 169, 119, 46, 246, 29, 79, 80, 77, 84}, | |||
{202, 11, 236, 145, 58, 12, 181, 157, 209, 6, 213, 88, 75, 147, 11, 119, 191, 139, 47, 142, 33, 36, 153, 193, 223, 183, 178, 8, 205, 120, 248, 110}, | |||
{26, 66, 231, 67, 203, 175, 116, 130, 32, 136, 62, 253, 215, 46, 5, 214, 166, 248, 108, 237, 216, 71, 244, 173, 72, 133, 82, 6, 143, 240, 104, 41}, | |||
{40, 157, 102, 96, 201, 223, 200, 197, 150, 181, 106, 83, 103, 126, 143, 33, 145, 230, 78, 6, 171, 146, 210, 143, 112, 5, 245, 23, 183, 138, 18, 120}, | |||
{220, 37, 27, 203, 239, 196, 176, 131, 37, 66, 188, 243, 185, 250, 113, 23, 167, 211, 154, 243, 168, 215, 54, 171, 159, 36, 195, 81, 13, 150, 43, 43}, | |||
{232, 121, 176, 222, 183, 196, 159, 90, 238, 193, 105, 52, 101, 167, 244, 170, 121, 114, 196, 6, 67, 152, 80, 185, 221, 7, 83, 105, 176, 208, 224, 121}, | |||
{226, 181, 183, 52, 241, 163, 61, 179, 221, 207, 220, 73, 245, 242, 25, 236, 67, 84, 179, 222, 167, 62, 167, 182, 32, 9, 92, 30, 165, 127, 204, 68}, | |||
{226, 119, 16, 242, 200, 139, 240, 87, 11, 222, 92, 146, 156, 243, 46, 119, 65, 59, 1, 248, 92, 183, 50, 175, 87, 40, 206, 53, 208, 220, 148, 13}, | |||
{70, 240, 79, 112, 54, 157, 228, 146, 74, 122, 216, 88, 232, 62, 158, 13, 14, 146, 115, 117, 176, 222, 90, 225, 244, 23, 94, 190, 150, 7, 136, 96}, | |||
{22, 71, 241, 103, 45, 193, 195, 144, 183, 101, 154, 50, 39, 68, 49, 110, 51, 44, 62, 0, 229, 113, 72, 81, 168, 29, 73, 106, 102, 40, 132, 24}, | |||
{196, 133, 107, 11, 130, 105, 74, 33, 204, 171, 133, 221, 174, 193, 241, 36, 38, 179, 196, 107, 219, 185, 181, 253, 228, 47, 155, 42, 231, 73, 41, 78}, | |||
{58, 255, 225, 197, 115, 208, 160, 143, 39, 197, 82, 69, 143, 235, 92, 170, 74, 40, 57, 11, 171, 227, 26, 185, 217, 207, 90, 185, 197, 190, 35, 60}, | |||
{88, 43, 92, 118, 223, 136, 105, 145, 238, 186, 115, 8, 214, 112, 153, 253, 38, 108, 205, 230, 157, 130, 11, 66, 101, 85, 253, 110, 110, 14, 148, 112} | |||
}; | |||
template <> struct elligator_examples<Ed448Goldilocks> { | |||
static const int count = 16; | |||
static const uint8_t inputs[count] [Ed448Goldilocks::Point::HASH_BYTES]; | |||
static const uint8_t outputs[count][Ed448Goldilocks::Point::SER_BYTES]; | |||
}; | |||
const uint8_t elligator_examples<Ed448Goldilocks>::inputs | |||
[elligator_examples<Ed448Goldilocks>::count][Ed448Goldilocks::Point::HASH_BYTES] = { | |||
/* Computed using SAGE script */ | |||
{0x2d,0x86,0xa1,0x42,0x33,0x8d,0xe2,0x74,0x80,0x63,0x54,0xc4,0x3e,0x29, | |||
0xaf,0x70,0x5a,0xa9,0xa1,0x89,0x3e,0x6f,0xd3,0xee,0x2e,0x95,0x22,0xc9, | |||
0xce,0xb4,0x0b,0xe2,0x44,0x1b,0xac,0x8a,0x4f,0x78,0x06,0x43,0x43,0x89, | |||
0x25,0xd7,0x91,0x46,0x98,0x8b,0x1c,0xa1,0x12,0xda,0x71,0x4d,0xe9,0x2a}, | |||
{0xee,0x79,0x8e,0xe0,0x86,0xde,0x1f,0x5a,0x57,0xa2,0xca,0x28,0xdb,0x84, | |||
0x51,0xd3,0x06,0xcb,0xb9,0xee,0x22,0x27,0xc4,0x97,0xf4,0xa6,0x7a,0x69, | |||
0x06,0xd7,0xeb,0xbc,0x7a,0xa8,0x5f,0x94,0x6f,0xf9,0xdf,0xf7,0x9e,0x1b, | |||
0x7e,0x88,0xd9,0x7e,0x3a,0xd4,0xa4,0xe0,0xa1,0x20,0x32,0x32,0x3a,0xb7}, | |||
{0x2e,0x1b,0x10,0x93,0xb3,0x47,0x75,0x97,0x66,0x46,0x49,0xb0,0xb7,0xc6, | |||
0xac,0x1f,0x9b,0xb7,0x5d,0xd9,0xfd,0xb5,0x08,0x96,0xcb,0xaa,0x06,0x15, | |||
0xc5,0x25,0x43,0x6d,0x62,0x54,0xec,0x13,0xd9,0x19,0x0e,0xa4,0x25,0xe5, | |||
0xba,0x80,0xee,0xfc,0x25,0x9b,0xcd,0x1e,0x2a,0x5a,0xf0,0x0e,0x8a,0x9e}, | |||
{0x8a,0x59,0x3f,0xb9,0x9c,0x04,0xb5,0xc0,0x50,0xc9,0x0d,0xc7,0x90,0x93, | |||
0x65,0x89,0x41,0x5b,0x9b,0xd6,0x78,0x3d,0x9e,0x92,0x5e,0x63,0x4b,0x87, | |||
0x81,0x4f,0xd1,0xda,0x2a,0x36,0xcd,0x80,0x45,0xbb,0x6c,0x36,0xd6,0x7e, | |||
0xb8,0x2c,0x17,0x84,0x01,0x35,0x6b,0xe8,0x40,0x42,0x9c,0x78,0x0c,0x70}, | |||
{0x80,0xb2,0x5f,0xfc,0xfb,0xd8,0x0b,0x83,0xa7,0x86,0xc1,0x07,0x6d,0x3a, | |||
0x23,0xd8,0x50,0x49,0xfd,0x4c,0x51,0x91,0x92,0xa7,0xd1,0xe8,0x52,0x38, | |||
0x93,0x6e,0x1c,0x09,0x22,0x15,0xc8,0x0b,0x2d,0x9d,0xd1,0x3d,0x88,0x49, | |||
0x82,0x9d,0x7f,0x6a,0x38,0x2a,0x5a,0xce,0x05,0x16,0x6e,0x4b,0x08,0x5b}, | |||
{0xc1,0x15,0x77,0x32,0xc6,0xd2,0xba,0xf4,0x48,0x88,0x7a,0x1c,0x4a,0x2a, | |||
0x90,0xb4,0x0b,0x07,0x84,0x0f,0xf9,0x62,0xda,0x1f,0x71,0x91,0x05,0x8c, | |||
0xb9,0x37,0xdf,0xe5,0xce,0xb2,0x5e,0x34,0x4e,0x33,0xfc,0x9d,0xf0,0xc6, | |||
0x8e,0x99,0xcb,0x35,0x07,0xaa,0xfe,0xb9,0xa6,0xc9,0x66,0x75,0xbb,0xf1}, | |||
{0xa5,0x50,0x98,0x77,0xa2,0xbb,0xe8,0x0d,0x07,0xc2,0x3b,0x26,0x46,0x73, | |||
0x85,0xf9,0x7c,0x16,0xbe,0x48,0x82,0x40,0x0f,0x31,0x80,0x0e,0x15,0xdd, | |||
0x43,0x9e,0x52,0x34,0x43,0xcf,0x94,0x68,0x88,0x59,0xb7,0x62,0x64,0x3d, | |||
0x64,0xbe,0xda,0x91,0xf7,0x50,0xac,0x6e,0x00,0x16,0xaf,0xaf,0xd3,0x09}, | |||
{0xbd,0x9b,0xe4,0xe9,0x20,0x93,0xcf,0x24,0x40,0x79,0xa6,0xff,0x63,0xad, | |||
0x01,0xe1,0x9c,0xae,0x6d,0x80,0x65,0xed,0x83,0xbb,0x05,0x2e,0x14,0xe2, | |||
0x39,0x04,0x8e,0x3b,0x8a,0xeb,0x90,0xe9,0x35,0xbe,0xbe,0x29,0x24,0x1e, | |||
0x34,0x4d,0xc9,0x0d,0x31,0xd0,0x4e,0x99,0xd6,0xa1,0xad,0xca,0x8b,0x38}, | |||
{0xc3,0x5e,0xfb,0xe1,0xab,0xee,0x01,0xf9,0xe4,0x5e,0x03,0x84,0xfa,0x2f, | |||
0x94,0x3a,0x6e,0x8f,0x56,0x11,0x86,0x4b,0x55,0x5f,0x18,0x6c,0x7c,0xf8, | |||
0xe3,0x4c,0xc6,0x27,0xcb,0xa5,0x85,0xfb,0xcf,0xc4,0x26,0x84,0xeb,0x30, | |||
0xbe,0x62,0x23,0x5c,0x1e,0x10,0xe8,0x82,0xca,0x42,0x19,0xa8,0xc4,0x85}, | |||
{0x3c,0x30,0x0f,0xed,0xd9,0x86,0x6f,0x6a,0xfa,0xbc,0x14,0x3e,0x1f,0x73, | |||
0x0a,0xf6,0xea,0xda,0xc0,0x20,0x7e,0x00,0x88,0x88,0xb6,0xeb,0x79,0xa2, | |||
0xf7,0xe6,0xe6,0x7e,0xd0,0x1e,0x71,0xaf,0x64,0x77,0x7b,0x90,0xbf,0x61, | |||
0x0a,0x5e,0x36,0xca,0xd0,0xcd,0x88,0xef,0x88,0x3a,0x9b,0x6a,0xb8,0x13}, | |||
{0x11,0xf8,0x2f,0x21,0xe4,0x61,0x64,0x36,0xe6,0x9e,0xd8,0xe3,0x57,0x03, | |||
0xcc,0xcd,0x1f,0x65,0xaa,0x75,0xf0,0x7e,0x8a,0xfa,0xa3,0x35,0x29,0xcc, | |||
0x22,0x58,0xeb,0x2b,0x0f,0xb1,0x82,0x71,0x0f,0xfc,0x67,0xd1,0xe0,0xd0, | |||
0xde,0x37,0x3d,0x4f,0xd2,0xd5,0xb1,0x7b,0x58,0xb3,0xc7,0xd4,0x73,0x12}, | |||
{0x3d,0xbd,0xcf,0x91,0xe8,0x35,0xa8,0x30,0xfd,0x8a,0xf9,0xc6,0x9d,0xc1, | |||
0x30,0x66,0xdf,0x1e,0x24,0x44,0x8b,0x91,0x78,0xa0,0x99,0xbb,0x07,0x57, | |||
0x3e,0xfe,0xc4,0x8e,0xab,0x2c,0x11,0x9b,0xcb,0xbb,0x82,0x8d,0x20,0xc1, | |||
0x64,0x7d,0x42,0x31,0xdf,0xeb,0x9b,0xd0,0x86,0xf2,0x6d,0xb7,0x7e,0x71}, | |||
{0xac,0x8b,0xf3,0x02,0x0a,0x1c,0x73,0x3a,0x59,0x10,0x92,0xb6,0x7a,0x32, | |||
0x23,0xca,0x2f,0xab,0x64,0x53,0xd2,0x25,0xba,0x83,0x2e,0x34,0xd0,0xc4, | |||
0xbf,0xca,0x95,0x2b,0xe3,0x2d,0x39,0x76,0xca,0x73,0x8c,0x5a,0xb3,0xdd, | |||
0xc9,0xc7,0x62,0x70,0x78,0x41,0x83,0x72,0xdb,0x77,0x0f,0x17,0xb5,0x5c}, | |||
{0xf6,0xc5,0x5d,0x6b,0x46,0x97,0xd6,0xf8,0x3d,0x6e,0xcc,0xc4,0xdb,0x2f, | |||
0x72,0xf8,0xf2,0xf6,0x7e,0x75,0x24,0xff,0x91,0xd6,0xf6,0xc8,0xa7,0x56, | |||
0xab,0x03,0x96,0x7a,0x64,0x89,0x42,0x71,0xe7,0x1e,0x71,0xd8,0x95,0x72, | |||
0x9f,0x06,0x31,0xfd,0x7c,0x0d,0xe1,0xc2,0x73,0xc0,0x90,0x92,0x43,0x23}, | |||
{0x9b,0x30,0x03,0x76,0xa4,0xb9,0x5e,0xa2,0x02,0x4b,0xdb,0xd9,0x7a,0x96, | |||
0x93,0xc3,0xf6,0x0a,0xe0,0xbb,0xdb,0xda,0xfc,0x47,0x09,0x27,0x8b,0x65, | |||
0x34,0xc8,0xa2,0xd5,0xff,0x9b,0xb3,0xd2,0x10,0xd9,0x49,0xd5,0xbf,0x09, | |||
0x49,0x19,0xb9,0x0d,0x2f,0x0f,0xf9,0x82,0xed,0x92,0x79,0x95,0xdc,0x60}, | |||
{0x90,0x95,0x7d,0x59,0x78,0x10,0xb2,0x7b,0x84,0x9a,0x69,0x1f,0x5d,0x27, | |||
0xd5,0x48,0x96,0x3d,0x35,0x4a,0xe9,0xe2,0x9a,0xd5,0x9a,0x23,0x0a,0x15, | |||
0x5a,0xaa,0x6f,0xe7,0xc5,0x4c,0x82,0xd5,0x08,0x14,0xd8,0xfd,0xcd,0x2d, | |||
0x3b,0xb1,0xe5,0x53,0xa8,0x41,0xf9,0x71,0xd7,0x24,0xa4,0x64,0x7a,0xba} | |||
}; | |||
const uint8_t elligator_examples<Ed448Goldilocks>::outputs | |||
[elligator_examples<Ed448Goldilocks>::count][Ed448Goldilocks::Point::SER_BYTES] = { | |||
/* Computed using SAGE script */ | |||
{0xa6,0x99,0x3b,0x5a,0x6c,0xbb,0x40,0x71,0x6e,0xb2,0xaf,0xa1,0x53,0x05, | |||
0x27,0x75,0xd2,0x55,0xff,0x2f,0x64,0x4e,0x2f,0x91,0x32,0xb4,0x04,0xfc, | |||
0x80,0x68,0x08,0x09,0x40,0x43,0xf7,0xa2,0xe4,0x7c,0x0a,0xd9,0x27,0x2f, | |||
0x53,0x33,0x2d,0x21,0xf4,0x07,0x70,0xd6,0x60,0xa8,0xf1,0xf1,0xed,0x23}, | |||
{0xde,0x6a,0x92,0x82,0xee,0x9f,0x8f,0xa9,0xb0,0x2c,0xa9,0x5e,0xd4,0xbf, | |||
0x7f,0x87,0xb7,0x1f,0xc3,0x64,0xbc,0x75,0xd5,0x71,0xf2,0xe9,0xa7,0x07, | |||
0xf7,0x16,0x66,0xb2,0xdf,0x06,0x55,0xf2,0x00,0x2e,0x1c,0x84,0x23,0x9e, | |||
0xed,0x70,0xde,0xd8,0xa6,0x92,0xaf,0x39,0x52,0x03,0x38,0xc7,0xc9,0xef}, | |||
{0x02,0x51,0x0b,0x4c,0x16,0xa7,0x01,0xa1,0x68,0x82,0xb5,0x1e,0xc5,0xd1, | |||
0x4e,0x25,0x18,0x5b,0x7a,0x8c,0xd3,0x12,0xc3,0xcf,0xc0,0x7c,0x11,0x00, | |||
0x40,0xd0,0x01,0xad,0x59,0x0a,0xd7,0x2d,0xc3,0x07,0x74,0xd8,0x2b,0x1a, | |||
0x91,0xb9,0xe3,0x6c,0x42,0x3e,0x93,0x7d,0x26,0x4b,0x2d,0x99,0xd6,0xb6}, | |||
{0x9c,0x64,0x7b,0x77,0x1c,0x28,0x82,0x64,0xe8,0x0f,0xc8,0x11,0x4c,0x58, | |||
0xdb,0x46,0xe8,0xf0,0x66,0x6c,0x10,0xd7,0xf5,0x6b,0xa8,0x56,0xae,0x67, | |||
0x09,0x2a,0xa8,0x8c,0x42,0x16,0x65,0x2e,0x6a,0x12,0x9c,0x1b,0x40,0x90, | |||
0xca,0xab,0xe3,0x9a,0xfd,0x35,0x2b,0xe4,0xdc,0x40,0x99,0x81,0x9c,0x59}, | |||
{0x06,0xe9,0x16,0x29,0xce,0x93,0x48,0x6a,0xd3,0xa7,0xe7,0x29,0xf0,0x1c, | |||
0x4d,0x29,0x4a,0x4b,0xde,0xef,0xaf,0x48,0x32,0x04,0xc1,0x67,0xdf,0xe8, | |||
0xf0,0xc9,0xd2,0x32,0x50,0x6f,0xa5,0x21,0xf5,0x30,0x0e,0x19,0xa0,0x00, | |||
0x43,0x24,0x50,0x8b,0x39,0x0a,0x6f,0x25,0x81,0x4f,0xc8,0x68,0x3a,0xa4}, | |||
{0x68,0x11,0x77,0xb0,0x76,0xc9,0xe5,0x53,0xc7,0xe5,0x7a,0x22,0xe7,0x59, | |||
0x05,0x96,0xe3,0x48,0x2d,0xe2,0x3f,0x28,0x55,0xa8,0xaf,0x82,0xcc,0x51, | |||
0x6c,0x52,0xa9,0x37,0x35,0xed,0x3d,0xde,0x91,0xb8,0x21,0x0b,0xad,0x64, | |||
0xb1,0x7d,0x0c,0x1d,0x7c,0x14,0xcc,0xc1,0x52,0x6c,0xc4,0x14,0x0f,0x11}, | |||
{0x68,0x05,0x63,0x1c,0x06,0xf6,0xd0,0xb5,0xcc,0xf7,0x1f,0xea,0x2e,0x4c, | |||
0xdf,0x3e,0xa3,0x10,0x4a,0x44,0xa8,0x21,0x20,0x5a,0x25,0x01,0x4c,0x9a, | |||
0x17,0xac,0x43,0x33,0xbb,0xf6,0xbb,0x28,0x9b,0x42,0x57,0xcc,0xd7,0xf7, | |||
0xbb,0x11,0xe5,0xc4,0xdd,0xd8,0x6d,0xa9,0x53,0x19,0xdc,0x47,0x04,0x4d}, | |||
{0x4c,0x0e,0x89,0x30,0xee,0x39,0xf2,0xa7,0x43,0xd1,0x79,0x74,0x5b,0x4c, | |||
0x94,0x0f,0xf5,0x8f,0x53,0x99,0x57,0x32,0x31,0x3d,0x7e,0xe7,0x8c,0xa2, | |||
0xde,0xca,0x42,0xa4,0x8f,0x00,0x40,0xc7,0x9a,0x7e,0xd5,0x47,0x00,0x0b, | |||
0x20,0x8b,0x95,0x94,0xce,0xc4,0xe3,0xe9,0xdf,0x5c,0x01,0x38,0xb8,0xaa}, | |||
{0x48,0xc3,0x3a,0x47,0x66,0x05,0xfe,0x0f,0xbb,0x33,0xd3,0x7b,0x67,0x2a, | |||
0xac,0x14,0xd7,0xc6,0x2b,0x84,0x56,0xd2,0x77,0x60,0x8f,0xc2,0x90,0x6d, | |||
0x03,0x87,0x1d,0x39,0x59,0xdd,0x4a,0x4c,0xaf,0xab,0xe7,0xc2,0x5b,0x6f, | |||
0x59,0xc9,0xa9,0xd1,0x7c,0x72,0x4d,0x97,0x55,0x52,0x98,0xc9,0xdf,0x3f}, | |||
{0x0a,0x0c,0x08,0x9d,0x50,0x5d,0x30,0xd1,0xce,0x91,0xcf,0x36,0x96,0xca, | |||
0x76,0x10,0xa4,0xe5,0x4a,0xf6,0xf6,0x05,0xcd,0x68,0xff,0x30,0x3c,0xb5, | |||
0x0b,0xbd,0xba,0xb9,0x90,0x36,0x51,0xed,0x6b,0xdc,0x35,0xf2,0xa8,0x0b, | |||
0xc7,0x64,0xe3,0x50,0xf8,0xa2,0x3f,0x70,0x03,0xdc,0xd3,0xaa,0x36,0x4f}, | |||
{0x56,0x21,0x3f,0x80,0x39,0x79,0xce,0x00,0x33,0xa2,0xaa,0x9b,0xcc,0xb8, | |||
0x51,0x3b,0x82,0x0b,0x15,0x52,0xe8,0x14,0x75,0x86,0x4a,0x48,0xfe,0x60, | |||
0xe9,0x22,0x73,0xa8,0xf2,0xe5,0x7a,0x77,0xb8,0x1a,0xf1,0x74,0x6e,0x42, | |||
0xe6,0x47,0xcc,0xc6,0xfa,0x54,0xe0,0xd0,0x7c,0xdd,0x33,0x76,0xc2,0x39}, | |||
{0xf4,0x8f,0xa8,0x82,0xb5,0x2f,0x79,0xf1,0x8f,0x33,0xac,0xfc,0x23,0x71, | |||
0x5e,0x8f,0x3e,0x6c,0xcf,0x8e,0xa8,0x7a,0x3f,0xc0,0x71,0xcd,0xb1,0xeb, | |||
0xd2,0x96,0xf2,0x9e,0x83,0x15,0x78,0xa9,0x21,0x29,0x1d,0x3c,0x80,0x13, | |||
0x52,0x59,0x45,0x96,0xa1,0x7d,0x27,0x68,0xe2,0xc2,0x86,0x32,0x13,0x7d}, | |||
{0xaa,0x3b,0x6c,0x33,0xc2,0x7a,0x5a,0x25,0xf9,0x45,0x20,0x30,0x56,0x73, | |||
0x32,0xe1,0x70,0x5b,0xdf,0x72,0x45,0xef,0xd8,0x98,0x60,0x2c,0xcf,0x79, | |||
0x93,0x4c,0xa7,0x40,0xed,0x8a,0x12,0xc7,0xee,0x82,0x1e,0x99,0x22,0x52, | |||
0x1a,0xb8,0xbf,0xca,0x3a,0x1d,0xb9,0x16,0xe4,0x66,0x78,0xc5,0x1f,0x81}, | |||
{0xba,0x1c,0xfd,0xca,0x84,0x4f,0x16,0x71,0x6a,0x77,0xba,0x74,0x7a,0x1f, | |||
0x46,0xd2,0x9f,0xfa,0x90,0x3a,0x74,0xe5,0xf2,0x14,0xfb,0xef,0x06,0x67, | |||
0x67,0x7d,0xcf,0x9b,0xb0,0x2a,0xf7,0xe3,0x4d,0x27,0x02,0xea,0xdb,0xbe, | |||
0x80,0xeb,0xcf,0x94,0x4c,0x2a,0x54,0x2a,0x98,0x35,0x59,0xd9,0x24,0x8a}, | |||
{0x50,0xdf,0xb7,0xe7,0x92,0x92,0xf3,0xb0,0x4e,0x0d,0x5c,0x73,0x8a,0xf2, | |||
0xba,0xc6,0xda,0xdf,0x00,0xe5,0x37,0x7b,0xbf,0xc1,0xe7,0x13,0xe1,0xda, | |||
0x5f,0xa1,0xa3,0xc2,0xfd,0x4b,0x10,0x81,0x0d,0x99,0xcf,0x8f,0xca,0x91, | |||
0x37,0x3e,0x47,0x8a,0x84,0xab,0xcd,0x65,0xdf,0xf9,0x27,0x3c,0x13,0xf1}, | |||
{0xe4,0xe1,0xa4,0x8d,0x1d,0x72,0xe2,0x72,0x3b,0x09,0x09,0xf9,0x7f,0xcd, | |||
0x57,0x0d,0xdf,0x8c,0xdc,0x47,0xdf,0x6d,0xfa,0x6a,0x8d,0x67,0x45,0x4f, | |||
0x6b,0x44,0x6d,0xbf,0xf3,0x41,0x1c,0x57,0x1c,0xf0,0x77,0x14,0x06,0xf6, | |||
0x8c,0xb9,0xa3,0x40,0x34,0x70,0xd6,0x36,0xe5,0xa6,0xce,0x1b,0x84,0xcc} | |||
}; |
@@ -20,6 +20,8 @@ using namespace decaf; | |||
static bool passing = true; | |||
static const long NTESTS = 10000; | |||
#include "ristretto_vectors.inc.cxx" | |||
class Test { | |||
public: | |||
bool passing_now; | |||
@@ -219,7 +221,6 @@ static void test_elligator() { | |||
if (i==4 && elli_patho.size()) b1 = elli_patho; | |||
len = b1.size(); | |||
Point s = Point::from_hash(b1), ss=s; | |||
for (unsigned int j=0; j<(i&3); j++) ss = ss.debugging_torque(); | |||
@@ -292,6 +293,14 @@ static void test_elligator() { | |||
Point t(rng); | |||
point_check(test,t,t,t,0,0,t,Point::from_hash(t.steg_encode(rng)),"steg round-trip"); | |||
FixedArrayBuffer<Point::HASH_BYTES> b3(rng), b4(b3); | |||
t = Point::from_hash(b3); | |||
for (unsigned j=0; j<256; j+=2<<((Group::bits()-1)%8)) { | |||
b4[Point::HASH_BYTES-1] = b3[Point::HASH_BYTES-1] ^ j; | |||
Point u = Point::from_hash(b4); | |||
point_check(test,t,t,t,0,0,t,u,"elligator twiddle high bits"); | |||
} | |||
} | |||
} | |||
@@ -406,8 +415,8 @@ static void test_ec() { | |||
q=p; | |||
for (int j=1; j<Group::REMOVED_COFACTOR; j<<=1) q = q.times_two(); | |||
decaf_error_t error = r.decode_like_eddsa_and_ignore_cofactor_noexcept( | |||
p.mul_by_cofactor_and_encode_like_eddsa() | |||
decaf_error_t error = r.decode_like_eddsa_and_mul_by_ratio_noexcept( | |||
p.mul_by_ratio_and_encode_like_eddsa() | |||
); | |||
if (error != DECAF_SUCCESS) { | |||
test.fail(); | |||
@@ -457,12 +466,15 @@ static void test_cfrg_crypto() { | |||
printf(" Shared secrets disagree on iteration %d.\n",i); | |||
} | |||
if (!memeq( | |||
DhLadder::shared_secret(DhLadder::base_point(),s1), | |||
DhLadder::derive_public_key(s1) | |||
)) { | |||
p1 = DhLadder::shared_secret(DhLadder::base_point(),s1); | |||
p2 = DhLadder::derive_public_key(s1); | |||
if (!memeq(p1,p2)) { | |||
test.fail(); | |||
printf(" Public keys disagree on iteration %d.\n",i); | |||
printf(" Public keys disagree on iteration %d.\n Ladder public key: ",i); | |||
for (unsigned j=0; j<s1.size(); j++) { printf("%02x",p1[j]); } | |||
printf("\n Derive public key: "); | |||
for (unsigned j=0; j<s1.size(); j++) { printf("%02x",p2[j]); } | |||
printf("\n"); | |||
} | |||
} | |||
} | |||
@@ -483,7 +495,7 @@ static void test_cfrg_vectors() { | |||
SecureBuffer eddsa_pk2 = priv.pub().serialize(); | |||
if (!memeq(SecureBuffer(eddsa_pk[t]), eddsa_pk2)) { | |||
test.fail(); | |||
printf(" EdDSA PK vectors disagree."); | |||
printf(" EdDSA PK vectors #%d disagree.", t); | |||
printf("\n Correct: "); | |||
for (unsigned i=0; i<eddsa_pk[t].size(); i++) printf("%02x", eddsa_pk[t][i]); | |||
printf("\n Incorrect: "); | |||
@@ -540,7 +552,6 @@ static void test_eddsa() { | |||
SpongeRng rng(Block("test_eddsa"),SpongeRng::DETERMINISTIC); | |||
for (int i=0; i<NTESTS && test.passing_now; i++) { | |||
typename EdDSA<Group>::PrivateKey priv(rng); | |||
typename EdDSA<Group>::PublicKey pub(priv); | |||
@@ -557,7 +568,22 @@ static void test_eddsa() { | |||
} catch(CryptoException) { | |||
test.fail(); | |||
printf(" Signature validation failed on sig %d\n", i); | |||
} | |||
} | |||
/* Test encode_like and torque */ | |||
Point p(rng); | |||
SecureBuffer p1 = p.mul_by_ratio_and_encode_like_eddsa(); | |||
SecureBuffer p2 = p.debugging_torque().mul_by_ratio_and_encode_like_eddsa(); | |||
if (!memeq(p1,p2)) { | |||
test.fail(); | |||
printf(" Torque and encode like EdDSA failed\n"); | |||
} | |||
SecureBuffer p3 = p.mul_by_ratio_and_encode_like_ladder(); | |||
SecureBuffer p4 = p.debugging_torque().mul_by_ratio_and_encode_like_ladder(); | |||
if (!memeq(p3,p4)) { | |||
test.fail(); | |||
printf(" Torque and encode like ladder failed\n"); | |||
} | |||
} | |||
} | |||
@@ -581,14 +607,14 @@ static void test_convert_eddsa_to_x() { | |||
SecureBuffer alice_pub_x_generated = DhLadder::derive_public_key(alice_priv_x); | |||
if (!memeq(alice_pub_x_conversion, alice_pub_x_generated)) { | |||
test.fail(); | |||
printf(" Ed2X Public key convertion and regeneration from converted private key differs.\n"); | |||
printf(" Ed2X Public key conversion and regeneration from converted private key differs.\n"); | |||
} | |||
SecureBuffer bob_priv_x = bob_priv.convert_to_x(); | |||
SecureBuffer bob_pub_x_conversion = bob_pub.convert_to_x(); | |||
SecureBuffer bob_pub_x_generated = DhLadder::derive_public_key(bob_priv_x); | |||
if (!memeq(bob_pub_x_conversion, bob_pub_x_generated)) { | |||
test.fail(); | |||
printf(" Ed2X Public key convertion and regeneration from converted private key differs.\n"); | |||
printf(" Ed2X Public key conversion and regeneration from converted private key differs.\n"); | |||
} | |||
/* compute shared secrets and check they match */ | |||
@@ -602,6 +628,23 @@ static void test_convert_eddsa_to_x() { | |||
} | |||
} | |||
static void test_dalek_vectors() { | |||
Test test("Test vectors from Dalek"); | |||
Point p = Point::base(), q; | |||
for (unsigned i=0; i<base_multiples<Group>::count; i++) { | |||
if (!decaf_memeq(q.serialize().data(),base_multiples<Group>::values[i],Point::SER_BYTES)) { | |||
test.fail(); | |||
printf(" Failed test vector for %d * base point.\n", i); | |||
} | |||
q += p; | |||
} | |||
for (unsigned i=0; i<elligator_examples<Group>::count; i++) { | |||
Point r = Point::from_hash(FixedBlock<Point::HASH_BYTES>(elligator_examples<Group>::inputs[i])); | |||
Point s = Point(FixedBlock<Point::SER_BYTES>(elligator_examples<Group>::outputs[i])); | |||
point_check(test,r,r,r,0,0,r,s,"elligator test vector"); | |||
} | |||
} | |||
static void run() { | |||
printf("Testing %s:\n",Group::name()); | |||
test_arithmetic(); | |||
@@ -611,6 +654,7 @@ static void run() { | |||
test_convert_eddsa_to_x(); | |||
test_cfrg_crypto(); | |||
test_cfrg_vectors(); | |||
test_dalek_vectors(); | |||
printf("\n"); | |||
} | |||
@@ -1,18 +1,18 @@ | |||
/* X25519, X448 test vectors */ | |||
template<> const uint8_t Tests<IsoEd25519>::rfc7748_1[32] = { | |||
template<> const uint8_t Tests<Ristretto>::rfc7748_1[32] = { | |||
0x42,0x2c,0x8e,0x7a,0x62,0x27,0xd7,0xbc, | |||
0xa1,0x35,0x0b,0x3e,0x2b,0xb7,0x27,0x9f, | |||
0x78,0x97,0xb8,0x7b,0xb6,0x85,0x4b,0x78, | |||
0x3c,0x60,0xe8,0x03,0x11,0xae,0x30,0x79 | |||
}; | |||
template<> const uint8_t Tests<IsoEd25519>::rfc7748_1000[32] = { | |||
template<> const uint8_t Tests<Ristretto>::rfc7748_1000[32] = { | |||
0x68,0x4c,0xf5,0x9b,0xa8,0x33,0x09,0x55, | |||
0x28,0x00,0xef,0x56,0x6f,0x2f,0x4d,0x3c, | |||
0x1c,0x38,0x87,0xc4,0x93,0x60,0xe3,0x87, | |||
0x5f,0x2e,0xb9,0x4d,0x99,0x53,0x2c,0x51 | |||
}; | |||
template<> const uint8_t Tests<IsoEd25519>::rfc7748_1000000[32] = { | |||
template<> const uint8_t Tests<Ristretto>::rfc7748_1000000[32] = { | |||
0x7c,0x39,0x11,0xe0,0xab,0x25,0x86,0xfd, | |||
0x86,0x44,0x97,0x29,0x7e,0x57,0x5e,0x6f, | |||
0x3b,0xc6,0x01,0xc0,0x88,0x3c,0x30,0xdf, | |||
@@ -53,7 +53,7 @@ const uint8_t sm1_25519[32] = { | |||
0xa7,0xd7,0xfb,0x3d,0x99,0x00,0x4d,0x2b, | |||
0x0b,0xdf,0xc1,0x4f,0x80,0x24,0x83,0x2b | |||
}; | |||
template<> const Block Tests<IsoEd25519>::sqrt_minus_one(sm1_25519,32); | |||
template<> const Block Tests<Ristretto>::sqrt_minus_one(sm1_25519,32); | |||
template<> const Block Tests<Ed448Goldilocks>::minus_sqrt_minus_one(NULL,0); | |||
const uint8_t msm1_25519[32] = { | |||
@@ -62,7 +62,7 @@ const uint8_t msm1_25519[32] = { | |||
0x58,0x28,0x04,0xc2,0x66,0xff,0xb2,0xd4, | |||
0xf4,0x20,0x3e,0xb0,0x7f,0xdb,0x7c,0x54 | |||
}; | |||
template<> const Block Tests<IsoEd25519>::minus_sqrt_minus_one(msm1_25519,32); | |||
template<> const Block Tests<Ristretto>::minus_sqrt_minus_one(msm1_25519,32); | |||
const uint8_t elli_patho_448[56] = { | |||
0x14,0xf0,0x70,0x58,0x41,0xc7,0xf9,0xa5, | |||
@@ -74,7 +74,7 @@ const uint8_t elli_patho_448[56] = { | |||
0x86,0xa9,0x2e,0xc9,0x17,0x68,0x9b,0x20 | |||
}; | |||
template<> const Block Tests<Ed448Goldilocks>::elli_patho(elli_patho_448,56); | |||
template<> const Block Tests<IsoEd25519>::elli_patho(NULL,0); | |||
template<> const Block Tests<Ristretto>::elli_patho(NULL,0); | |||
/* EdDSA test vectors */ | |||
const uint8_t ed448_eddsa_sk[][57] = {{ | |||
@@ -481,7 +481,7 @@ const uint8_t ed25519_eddsa_sig[][64] = {{ | |||
0x91,0xc2,0x04,0x3d,0x4e,0xb3,0xe9,0x0d | |||
}}; | |||
template<> const bool Tests<IsoEd25519>::eddsa_prehashed[] = { | |||
template<> const bool Tests<Ristretto>::eddsa_prehashed[] = { | |||
false, | |||
false, | |||
false, | |||
@@ -489,7 +489,7 @@ template<> const bool Tests<IsoEd25519>::eddsa_prehashed[] = { | |||
false, | |||
false | |||
}; | |||
template<> const Block Tests<IsoEd25519>::eddsa_sk[] = { | |||
template<> const Block Tests<Ristretto>::eddsa_sk[] = { | |||
Block(ed25519_eddsa_sk[0],32), | |||
Block(ed25519_eddsa_sk[1],32), | |||
Block(ed25519_eddsa_sk[2],32), | |||
@@ -498,7 +498,7 @@ template<> const Block Tests<IsoEd25519>::eddsa_sk[] = { | |||
Block(ed25519_eddsa_sk[4],32), | |||
Block(NULL,0) | |||
}; | |||
template<> const Block Tests<IsoEd25519>::eddsa_pk[] = { | |||
template<> const Block Tests<Ristretto>::eddsa_pk[] = { | |||
Block(ed25519_eddsa_pk[0],32), | |||
Block(ed25519_eddsa_pk[1],32), | |||
Block(ed25519_eddsa_pk[2],32), | |||
@@ -506,15 +506,15 @@ template<> const Block Tests<IsoEd25519>::eddsa_pk[] = { | |||
Block(ed25519_eddsa_pk[4],32), | |||
Block(ed25519_eddsa_pk[4],32) | |||
}; | |||
template<> const Block Tests<IsoEd25519>::eddsa_context[] = { | |||
EdDSA<IsoEd25519>::NO_CONTEXT(), | |||
EdDSA<IsoEd25519>::NO_CONTEXT(), | |||
EdDSA<IsoEd25519>::NO_CONTEXT(), | |||
template<> const Block Tests<Ristretto>::eddsa_context[] = { | |||
EdDSA<Ristretto>::NO_CONTEXT(), | |||
EdDSA<Ristretto>::NO_CONTEXT(), | |||
EdDSA<Ristretto>::NO_CONTEXT(), | |||
Block(NULL,0), | |||
Block(ed25519_eddsa_context[0],3), | |||
Block(ed25519_eddsa_context[1],3) | |||
}; | |||
template<> const Block Tests<IsoEd25519>::eddsa_message[] = { | |||
template<> const Block Tests<Ristretto>::eddsa_message[] = { | |||
Block(ed25519_eddsa_message[0],0), | |||
Block(ed25519_eddsa_message[1],1), | |||
Block(ed25519_eddsa_message[2],2), | |||
@@ -522,7 +522,7 @@ template<> const Block Tests<IsoEd25519>::eddsa_message[] = { | |||
Block(ed25519_eddsa_message[4],16), | |||
Block(ed25519_eddsa_message[4],16) | |||
}; | |||
template<> const Block Tests<IsoEd25519>::eddsa_sig[] = { | |||
template<> const Block Tests<Ristretto>::eddsa_sig[] = { | |||
Block(ed25519_eddsa_sig[0],64), | |||
Block(ed25519_eddsa_sig[1],64), | |||
Block(ed25519_eddsa_sig[2],64), | |||