Browse Source

CFRG crypto back to working, just need to do elligator inversion for identity on x25519

master
Michael Hamburg 7 years ago
parent
commit
1a38c25d9d
7 changed files with 124 additions and 88 deletions
  1. +24
    -27
      src/GENERATED/c/curve25519/decaf.c
  2. +24
    -27
      src/GENERATED/c/ed448goldilocks/decaf.c
  3. +14
    -0
      src/GENERATED/include/decaf/point_255.h
  4. +14
    -0
      src/GENERATED/include/decaf/point_448.h
  5. +24
    -27
      src/per_curve/decaf.tmpl.c
  6. +14
    -0
      src/per_curve/point.tmpl.h
  7. +10
    -7
      test/test_decaf.cxx

+ 24
- 27
src/GENERATED/c/curve25519/decaf.c View File

@@ -52,12 +52,6 @@ static const gf RISTRETTO_ISOMAGIC = {{{
0x0fdaa805d40ea, 0x2eb482e57d339, 0x007610274bc58, 0x6510b613dc8ff, 0x786c8905cfaff
}}};

#if COFACTOR==8 || EDDSA_USE_SIGMA_ISOGENY
static const gf SQRT_ONE_MINUS_D = {FIELD_LITERAL(
0x6db8831bbddec, 0x38d7b56c9c165, 0x016b221394bdc, 0x7540f7816214a, 0x0a0d85b4032b1
)};
#endif

#if IMAGINE_TWIST
#define TWISTED_D (-(EDWARDS_D))
#else
@@ -1193,8 +1187,9 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) (
gf_sub ( p->t, a, c ); // y^2 - x^2
gf_sqr ( p->x, p->z );
gf_add ( p->z, p->x, p->x );
gf_sub ( a, p->z, p->t ); // 2z^2 - y^2 + x^2
gf_mul ( c, a, SQRT_ONE_MINUS_D );
gf_sub ( c, p->z, p->t ); // 2z^2 - y^2 + x^2
gf_div_qnr ( a, c );
gf_mul ( c, a, RISTRETTO_ISOMAGIC );
gf_mul ( p->x, b, p->t); // (2xy)(y^2-x^2)
gf_mul ( p->z, p->t, c ); // (y^2-x^2)sd(2z^2 - y^2 + x^2)
gf_mul ( p->y, d, c ); // (y^2+x^2)sd(2z^2 - y^2 + x^2)
@@ -1363,6 +1358,23 @@ void decaf_x25519_generate_key (
decaf_x25519_derive_public_key(out,scalar);
}

void API_NS(point_mul_by_cofactor_and_encode_like_x25519) (
uint8_t out[X_PUBLIC_BYTES],
const point_t p
) {
point_t q;
point_double_internal(q,p,1);
for (unsigned i=1; i<COFACTOR/4; i<<=1) point_double_internal(q,q,1);
gf_invert(q->t,q->x,0); /* 1/x */
gf_mul(q->z,q->t,q->y); /* y/x */
gf_sqr(q->y,q->z); /* (y/x)^2 */
#if IMAGINE_TWIST
gf_sub(q->y,ZERO,q->y);
#endif
gf_serialize(out,q->y,1);
API_NS(point_destroy(q));
}

void decaf_x25519_derive_public_key (
uint8_t out[X_PUBLIC_BYTES],
const uint8_t scalar[X_PRIVATE_BYTES]
@@ -1390,27 +1402,12 @@ void decaf_x25519_derive_public_key (
* Jacobi -> Edwards -> Jacobi -> Montgomery,
* we pick up only a factor of 2 over Jacobi -> Montgomery.
*/
API_NS(scalar_halve)(the_scalar,the_scalar);
for (unsigned i=1; i<COFACTOR; i<<=1) {
API_NS(scalar_halve)(the_scalar,the_scalar);
}
point_t p;
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),the_scalar);
/* Isogenize to Montgomery curve.
*
* Why isn't this just a separate function, eg decaf_encode_like_x25519?
* Basically because in general it does the wrong thing if there is a cofactor
* component in the input. In this function though, there isn't a cofactor
* component in the input.
*/
gf_invert(p->t,p->x,0); /* 1/x */
gf_mul(p->z,p->t,p->y); /* y/x */
gf_sqr(p->y,p->z); /* (y/x)^2 */
#if IMAGINE_TWIST
gf_sub(p->y,ZERO,p->y);
#endif
gf_serialize(out,p->y,1);
decaf_bzero(scalar2,sizeof(scalar2));
API_NS(scalar_destroy)(the_scalar);
API_NS(point_mul_by_cofactor_and_encode_like_x25519)(out,p);
API_NS(point_destroy)(p);
}



+ 24
- 27
src/GENERATED/c/ed448goldilocks/decaf.c View File

@@ -52,12 +52,6 @@ static const gf RISTRETTO_ISOMAGIC = {{{
0x42ef0f45572736, 0x7bf6aa20ce5296, 0xf4fd6eded26033, 0x968c14ba839a66, 0xb8d54b64a2d780, 0x6aa0a1f1a7b8a5, 0x683bf68d722fa2, 0x22d962fbeb24f7
}}};

#if COFACTOR==8 || EDDSA_USE_SIGMA_ISOGENY
static const gf SQRT_ONE_MINUS_D = {FIELD_LITERAL(
/* NONE */
)};
#endif

#if IMAGINE_TWIST
#define TWISTED_D (-(EDWARDS_D))
#else
@@ -1193,8 +1187,9 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) (
gf_sub ( p->t, a, c ); // y^2 - x^2
gf_sqr ( p->x, p->z );
gf_add ( p->z, p->x, p->x );
gf_sub ( a, p->z, p->t ); // 2z^2 - y^2 + x^2
gf_mul ( c, a, SQRT_ONE_MINUS_D );
gf_sub ( c, p->z, p->t ); // 2z^2 - y^2 + x^2
gf_div_qnr ( a, c );
gf_mul ( c, a, RISTRETTO_ISOMAGIC );
gf_mul ( p->x, b, p->t); // (2xy)(y^2-x^2)
gf_mul ( p->z, p->t, c ); // (y^2-x^2)sd(2z^2 - y^2 + x^2)
gf_mul ( p->y, d, c ); // (y^2+x^2)sd(2z^2 - y^2 + x^2)
@@ -1363,6 +1358,23 @@ void decaf_x448_generate_key (
decaf_x448_derive_public_key(out,scalar);
}

void API_NS(point_mul_by_cofactor_and_encode_like_x448) (
uint8_t out[X_PUBLIC_BYTES],
const point_t p
) {
point_t q;
point_double_internal(q,p,1);
for (unsigned i=1; i<COFACTOR/4; i<<=1) point_double_internal(q,q,1);
gf_invert(q->t,q->x,0); /* 1/x */
gf_mul(q->z,q->t,q->y); /* y/x */
gf_sqr(q->y,q->z); /* (y/x)^2 */
#if IMAGINE_TWIST
gf_sub(q->y,ZERO,q->y);
#endif
gf_serialize(out,q->y,1);
API_NS(point_destroy(q));
}

void decaf_x448_derive_public_key (
uint8_t out[X_PUBLIC_BYTES],
const uint8_t scalar[X_PRIVATE_BYTES]
@@ -1390,27 +1402,12 @@ void decaf_x448_derive_public_key (
* Jacobi -> Edwards -> Jacobi -> Montgomery,
* we pick up only a factor of 2 over Jacobi -> Montgomery.
*/
API_NS(scalar_halve)(the_scalar,the_scalar);
for (unsigned i=1; i<COFACTOR; i<<=1) {
API_NS(scalar_halve)(the_scalar,the_scalar);
}
point_t p;
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),the_scalar);
/* Isogenize to Montgomery curve.
*
* Why isn't this just a separate function, eg decaf_encode_like_x448?
* Basically because in general it does the wrong thing if there is a cofactor
* component in the input. In this function though, there isn't a cofactor
* component in the input.
*/
gf_invert(p->t,p->x,0); /* 1/x */
gf_mul(p->z,p->t,p->y); /* y/x */
gf_sqr(p->y,p->z); /* (y/x)^2 */
#if IMAGINE_TWIST
gf_sub(p->y,ZERO,p->y);
#endif
gf_serialize(out,p->y,1);
decaf_bzero(scalar2,sizeof(scalar2));
API_NS(scalar_destroy)(the_scalar);
API_NS(point_mul_by_cofactor_and_encode_like_x448)(out,p);
API_NS(point_destroy)(p);
}



+ 14
- 0
src/GENERATED/include/decaf/point_255.h View File

@@ -52,6 +52,9 @@ typedef struct gf_25519_s {
/** Number of bits in the "which" field of an elligator inverse */
#define DECAF_255_INVERT_ELLIGATOR_WHICH_BITS 5

/** The cofactor the curve would have, if we hadn't removed it */
#define DECAF_255_REMOVED_COFACTOR 8

/** Number of bytes in an x25519 public key */
#define DECAF_X25519_PUBLIC_BYTES 32

@@ -397,6 +400,17 @@ decaf_error_t decaf_x25519 (
const uint8_t scalar[DECAF_X25519_PRIVATE_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE;

/**
* @brief Multiply a point by the cofactor, then encode it like RFC 7748
*
* @param [out] out The scaled and encoded point.
* @param [in] p The point to be scaled and encoded.
*/
void decaf_255_point_mul_by_cofactor_and_encode_like_x25519 (
uint8_t out[DECAF_X25519_PUBLIC_BYTES],
const decaf_255_point_t p
);

/** The base point for X25519 Diffie-Hellman */
extern const uint8_t decaf_x25519_base_point[DECAF_X25519_PUBLIC_BYTES] DECAF_API_VIS;



+ 14
- 0
src/GENERATED/include/decaf/point_448.h View File

@@ -52,6 +52,9 @@ typedef struct gf_448_s {
/** Number of bits in the "which" field of an elligator inverse */
#define DECAF_448_INVERT_ELLIGATOR_WHICH_BITS 3

/** The cofactor the curve would have, if we hadn't removed it */
#define DECAF_448_REMOVED_COFACTOR 4

/** Number of bytes in an x448 public key */
#define DECAF_X448_PUBLIC_BYTES 56

@@ -397,6 +400,17 @@ decaf_error_t decaf_x448 (
const uint8_t scalar[DECAF_X448_PRIVATE_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE;

/**
* @brief Multiply a point by the cofactor, then encode it like RFC 7748
*
* @param [out] out The scaled and encoded point.
* @param [in] p The point to be scaled and encoded.
*/
void decaf_448_point_mul_by_cofactor_and_encode_like_x448 (
uint8_t out[DECAF_X448_PUBLIC_BYTES],
const decaf_448_point_t p
);

/** The base point for X448 Diffie-Hellman */
extern const uint8_t decaf_x448_base_point[DECAF_X448_PUBLIC_BYTES] DECAF_API_VIS;



+ 24
- 27
src/per_curve/decaf.tmpl.c View File

@@ -41,12 +41,6 @@ static const gf RISTRETTO_ISOMAGIC = {{{
$(ser(msqrt(d-1 if imagine_twist else -d,modulus,lo_bit_clear=True),gf_lit_limb_bits))
}}};

#if COFACTOR==8 || EDDSA_USE_SIGMA_ISOGENY
static const gf SQRT_ONE_MINUS_D = {FIELD_LITERAL(
$(ser(msqrt(1-d,modulus),gf_lit_limb_bits) if cofactor == 8 else "/* NONE */")
)};
#endif

#if IMAGINE_TWIST
#define TWISTED_D (-(EDWARDS_D))
#else
@@ -1182,8 +1176,9 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) (
gf_sub ( p->t, a, c ); // y^2 - x^2
gf_sqr ( p->x, p->z );
gf_add ( p->z, p->x, p->x );
gf_sub ( a, p->z, p->t ); // 2z^2 - y^2 + x^2
gf_mul ( c, a, SQRT_ONE_MINUS_D );
gf_sub ( c, p->z, p->t ); // 2z^2 - y^2 + x^2
gf_div_qnr ( a, c );
gf_mul ( c, a, RISTRETTO_ISOMAGIC );
gf_mul ( p->x, b, p->t); // (2xy)(y^2-x^2)
gf_mul ( p->z, p->t, c ); // (y^2-x^2)sd(2z^2 - y^2 + x^2)
gf_mul ( p->y, d, c ); // (y^2+x^2)sd(2z^2 - y^2 + x^2)
@@ -1352,6 +1347,23 @@ void decaf_x$(gf_shortname)_generate_key (
decaf_x$(gf_shortname)_derive_public_key(out,scalar);
}

void API_NS(point_mul_by_cofactor_and_encode_like_x$(gf_shortname)) (
uint8_t out[X_PUBLIC_BYTES],
const point_t p
) {
point_t q;
point_double_internal(q,p,1);
for (unsigned i=1; i<COFACTOR/4; i<<=1) point_double_internal(q,q,1);
gf_invert(q->t,q->x,0); /* 1/x */
gf_mul(q->z,q->t,q->y); /* y/x */
gf_sqr(q->y,q->z); /* (y/x)^2 */
#if IMAGINE_TWIST
gf_sub(q->y,ZERO,q->y);
#endif
gf_serialize(out,q->y,1);
API_NS(point_destroy(q));
}

void decaf_x$(gf_shortname)_derive_public_key (
uint8_t out[X_PUBLIC_BYTES],
const uint8_t scalar[X_PRIVATE_BYTES]
@@ -1379,27 +1391,12 @@ void decaf_x$(gf_shortname)_derive_public_key (
* Jacobi -> Edwards -> Jacobi -> Montgomery,
* we pick up only a factor of 2 over Jacobi -> Montgomery.
*/
API_NS(scalar_halve)(the_scalar,the_scalar);
for (unsigned i=1; i<COFACTOR; i<<=1) {
API_NS(scalar_halve)(the_scalar,the_scalar);
}
point_t p;
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),the_scalar);
/* Isogenize to Montgomery curve.
*
* Why isn't this just a separate function, eg decaf_encode_like_x$(gf_shortname)?
* Basically because in general it does the wrong thing if there is a cofactor
* component in the input. In this function though, there isn't a cofactor
* component in the input.
*/
gf_invert(p->t,p->x,0); /* 1/x */
gf_mul(p->z,p->t,p->y); /* y/x */
gf_sqr(p->y,p->z); /* (y/x)^2 */
#if IMAGINE_TWIST
gf_sub(p->y,ZERO,p->y);
#endif
gf_serialize(out,p->y,1);
decaf_bzero(scalar2,sizeof(scalar2));
API_NS(scalar_destroy)(the_scalar);
API_NS(point_mul_by_cofactor_and_encode_like_x$(gf_shortname))(out,p);
API_NS(point_destroy)(p);
}



+ 14
- 0
src/per_curve/point.tmpl.h View File

@@ -37,6 +37,9 @@ typedef struct gf_$(gf_shortname)_s {
/** Number of bits in the "which" field of an elligator inverse */
#define $(C_NS)_INVERT_ELLIGATOR_WHICH_BITS $(ceil_log2(cofactor) + 7 + elligator_onto - ((gf_bits-2) % 8))

/** The cofactor the curve would have, if we hadn't removed it */
#define $(C_NS)_REMOVED_COFACTOR $(cofactor)

/** Number of bytes in an x$(gf_shortname) public key */
#define DECAF_X$(gf_shortname)_PUBLIC_BYTES $((gf_bits-1)//8 + 1)

@@ -382,6 +385,17 @@ decaf_error_t decaf_x$(gf_shortname) (
const uint8_t scalar[DECAF_X$(gf_shortname)_PRIVATE_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE;

/**
* @brief Multiply a point by the cofactor, then encode it like RFC 7748
*
* @param [out] out The scaled and encoded point.
* @param [in] p The point to be scaled and encoded.
*/
void $(c_ns)_point_mul_by_cofactor_and_encode_like_x$(gf_shortname) (
uint8_t out[DECAF_X$(gf_shortname)_PUBLIC_BYTES],
const $(c_ns)_point_t p
);

/** The base point for X$(gf_shortname) Diffie-Hellman */
extern const uint8_t decaf_x$(gf_shortname)_base_point[DECAF_X$(gf_shortname)_PUBLIC_BYTES] DECAF_API_VIS;



+ 10
- 7
test/test_decaf.cxx View File

@@ -457,12 +457,15 @@ static void test_cfrg_crypto() {
printf(" Shared secrets disagree on iteration %d.\n",i);
}
if (!memeq(
DhLadder::shared_secret(DhLadder::base_point(),s1),
DhLadder::derive_public_key(s1)
)) {
p1 = DhLadder::shared_secret(DhLadder::base_point(),s1);
p2 = DhLadder::derive_public_key(s1);
if (!memeq(p1,p2)) {
test.fail();
printf(" Public keys disagree on iteration %d.\n",i);
printf(" Public keys disagree on iteration %d.\n Ladder public key: ",i);
for (unsigned j=0; j<s1.size(); j++) { printf("%02x",p1[j]); }
printf("\n Derive public key: ");
for (unsigned j=0; j<s1.size(); j++) { printf("%02x",p2[j]); }
printf("\n");
}
}
}
@@ -581,14 +584,14 @@ static void test_convert_eddsa_to_x() {
SecureBuffer alice_pub_x_generated = DhLadder::derive_public_key(alice_priv_x);
if (!memeq(alice_pub_x_conversion, alice_pub_x_generated)) {
test.fail();
printf(" Ed2X Public key convertion and regeneration from converted private key differs.\n");
printf(" Ed2X Public key conversion and regeneration from converted private key differs.\n");
}
SecureBuffer bob_priv_x = bob_priv.convert_to_x();
SecureBuffer bob_pub_x_conversion = bob_pub.convert_to_x();
SecureBuffer bob_pub_x_generated = DhLadder::derive_public_key(bob_priv_x);
if (!memeq(bob_pub_x_conversion, bob_pub_x_generated)) {
test.fail();
printf(" Ed2X Public key convertion and regeneration from converted private key differs.\n");
printf(" Ed2X Public key conversion and regeneration from converted private key differs.\n");
}

/* compute shared secrets and check they match */


Loading…
Cancel
Save