@@ -52,12 +52,6 @@ static const gf RISTRETTO_ISOMAGIC = {{{ | |||
0x0fdaa805d40ea, 0x2eb482e57d339, 0x007610274bc58, 0x6510b613dc8ff, 0x786c8905cfaff | |||
}}}; | |||
#if COFACTOR==8 || EDDSA_USE_SIGMA_ISOGENY | |||
static const gf SQRT_ONE_MINUS_D = {FIELD_LITERAL( | |||
0x6db8831bbddec, 0x38d7b56c9c165, 0x016b221394bdc, 0x7540f7816214a, 0x0a0d85b4032b1 | |||
)}; | |||
#endif | |||
#if IMAGINE_TWIST | |||
#define TWISTED_D (-(EDWARDS_D)) | |||
#else | |||
@@ -1193,8 +1187,9 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
gf_sub ( p->t, a, c ); // y^2 - x^2 | |||
gf_sqr ( p->x, p->z ); | |||
gf_add ( p->z, p->x, p->x ); | |||
gf_sub ( a, p->z, p->t ); // 2z^2 - y^2 + x^2 | |||
gf_mul ( c, a, SQRT_ONE_MINUS_D ); | |||
gf_sub ( c, p->z, p->t ); // 2z^2 - y^2 + x^2 | |||
gf_div_qnr ( a, c ); | |||
gf_mul ( c, a, RISTRETTO_ISOMAGIC ); | |||
gf_mul ( p->x, b, p->t); // (2xy)(y^2-x^2) | |||
gf_mul ( p->z, p->t, c ); // (y^2-x^2)sd(2z^2 - y^2 + x^2) | |||
gf_mul ( p->y, d, c ); // (y^2+x^2)sd(2z^2 - y^2 + x^2) | |||
@@ -1363,6 +1358,23 @@ void decaf_x25519_generate_key ( | |||
decaf_x25519_derive_public_key(out,scalar); | |||
} | |||
void API_NS(point_mul_by_cofactor_and_encode_like_x25519) ( | |||
uint8_t out[X_PUBLIC_BYTES], | |||
const point_t p | |||
) { | |||
point_t q; | |||
point_double_internal(q,p,1); | |||
for (unsigned i=1; i<COFACTOR/4; i<<=1) point_double_internal(q,q,1); | |||
gf_invert(q->t,q->x,0); /* 1/x */ | |||
gf_mul(q->z,q->t,q->y); /* y/x */ | |||
gf_sqr(q->y,q->z); /* (y/x)^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub(q->y,ZERO,q->y); | |||
#endif | |||
gf_serialize(out,q->y,1); | |||
API_NS(point_destroy(q)); | |||
} | |||
void decaf_x25519_derive_public_key ( | |||
uint8_t out[X_PUBLIC_BYTES], | |||
const uint8_t scalar[X_PRIVATE_BYTES] | |||
@@ -1390,27 +1402,12 @@ void decaf_x25519_derive_public_key ( | |||
* Jacobi -> Edwards -> Jacobi -> Montgomery, | |||
* we pick up only a factor of 2 over Jacobi -> Montgomery. | |||
*/ | |||
API_NS(scalar_halve)(the_scalar,the_scalar); | |||
for (unsigned i=1; i<COFACTOR; i<<=1) { | |||
API_NS(scalar_halve)(the_scalar,the_scalar); | |||
} | |||
point_t p; | |||
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),the_scalar); | |||
/* Isogenize to Montgomery curve. | |||
* | |||
* Why isn't this just a separate function, eg decaf_encode_like_x25519? | |||
* Basically because in general it does the wrong thing if there is a cofactor | |||
* component in the input. In this function though, there isn't a cofactor | |||
* component in the input. | |||
*/ | |||
gf_invert(p->t,p->x,0); /* 1/x */ | |||
gf_mul(p->z,p->t,p->y); /* y/x */ | |||
gf_sqr(p->y,p->z); /* (y/x)^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub(p->y,ZERO,p->y); | |||
#endif | |||
gf_serialize(out,p->y,1); | |||
decaf_bzero(scalar2,sizeof(scalar2)); | |||
API_NS(scalar_destroy)(the_scalar); | |||
API_NS(point_mul_by_cofactor_and_encode_like_x25519)(out,p); | |||
API_NS(point_destroy)(p); | |||
} | |||
@@ -52,12 +52,6 @@ static const gf RISTRETTO_ISOMAGIC = {{{ | |||
0x42ef0f45572736, 0x7bf6aa20ce5296, 0xf4fd6eded26033, 0x968c14ba839a66, 0xb8d54b64a2d780, 0x6aa0a1f1a7b8a5, 0x683bf68d722fa2, 0x22d962fbeb24f7 | |||
}}}; | |||
#if COFACTOR==8 || EDDSA_USE_SIGMA_ISOGENY | |||
static const gf SQRT_ONE_MINUS_D = {FIELD_LITERAL( | |||
/* NONE */ | |||
)}; | |||
#endif | |||
#if IMAGINE_TWIST | |||
#define TWISTED_D (-(EDWARDS_D)) | |||
#else | |||
@@ -1193,8 +1187,9 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
gf_sub ( p->t, a, c ); // y^2 - x^2 | |||
gf_sqr ( p->x, p->z ); | |||
gf_add ( p->z, p->x, p->x ); | |||
gf_sub ( a, p->z, p->t ); // 2z^2 - y^2 + x^2 | |||
gf_mul ( c, a, SQRT_ONE_MINUS_D ); | |||
gf_sub ( c, p->z, p->t ); // 2z^2 - y^2 + x^2 | |||
gf_div_qnr ( a, c ); | |||
gf_mul ( c, a, RISTRETTO_ISOMAGIC ); | |||
gf_mul ( p->x, b, p->t); // (2xy)(y^2-x^2) | |||
gf_mul ( p->z, p->t, c ); // (y^2-x^2)sd(2z^2 - y^2 + x^2) | |||
gf_mul ( p->y, d, c ); // (y^2+x^2)sd(2z^2 - y^2 + x^2) | |||
@@ -1363,6 +1358,23 @@ void decaf_x448_generate_key ( | |||
decaf_x448_derive_public_key(out,scalar); | |||
} | |||
void API_NS(point_mul_by_cofactor_and_encode_like_x448) ( | |||
uint8_t out[X_PUBLIC_BYTES], | |||
const point_t p | |||
) { | |||
point_t q; | |||
point_double_internal(q,p,1); | |||
for (unsigned i=1; i<COFACTOR/4; i<<=1) point_double_internal(q,q,1); | |||
gf_invert(q->t,q->x,0); /* 1/x */ | |||
gf_mul(q->z,q->t,q->y); /* y/x */ | |||
gf_sqr(q->y,q->z); /* (y/x)^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub(q->y,ZERO,q->y); | |||
#endif | |||
gf_serialize(out,q->y,1); | |||
API_NS(point_destroy(q)); | |||
} | |||
void decaf_x448_derive_public_key ( | |||
uint8_t out[X_PUBLIC_BYTES], | |||
const uint8_t scalar[X_PRIVATE_BYTES] | |||
@@ -1390,27 +1402,12 @@ void decaf_x448_derive_public_key ( | |||
* Jacobi -> Edwards -> Jacobi -> Montgomery, | |||
* we pick up only a factor of 2 over Jacobi -> Montgomery. | |||
*/ | |||
API_NS(scalar_halve)(the_scalar,the_scalar); | |||
for (unsigned i=1; i<COFACTOR; i<<=1) { | |||
API_NS(scalar_halve)(the_scalar,the_scalar); | |||
} | |||
point_t p; | |||
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),the_scalar); | |||
/* Isogenize to Montgomery curve. | |||
* | |||
* Why isn't this just a separate function, eg decaf_encode_like_x448? | |||
* Basically because in general it does the wrong thing if there is a cofactor | |||
* component in the input. In this function though, there isn't a cofactor | |||
* component in the input. | |||
*/ | |||
gf_invert(p->t,p->x,0); /* 1/x */ | |||
gf_mul(p->z,p->t,p->y); /* y/x */ | |||
gf_sqr(p->y,p->z); /* (y/x)^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub(p->y,ZERO,p->y); | |||
#endif | |||
gf_serialize(out,p->y,1); | |||
decaf_bzero(scalar2,sizeof(scalar2)); | |||
API_NS(scalar_destroy)(the_scalar); | |||
API_NS(point_mul_by_cofactor_and_encode_like_x448)(out,p); | |||
API_NS(point_destroy)(p); | |||
} | |||
@@ -52,6 +52,9 @@ typedef struct gf_25519_s { | |||
/** Number of bits in the "which" field of an elligator inverse */ | |||
#define DECAF_255_INVERT_ELLIGATOR_WHICH_BITS 5 | |||
/** The cofactor the curve would have, if we hadn't removed it */ | |||
#define DECAF_255_REMOVED_COFACTOR 8 | |||
/** Number of bytes in an x25519 public key */ | |||
#define DECAF_X25519_PUBLIC_BYTES 32 | |||
@@ -397,6 +400,17 @@ decaf_error_t decaf_x25519 ( | |||
const uint8_t scalar[DECAF_X25519_PRIVATE_BYTES] | |||
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE; | |||
/** | |||
* @brief Multiply a point by the cofactor, then encode it like RFC 7748 | |||
* | |||
* @param [out] out The scaled and encoded point. | |||
* @param [in] p The point to be scaled and encoded. | |||
*/ | |||
void decaf_255_point_mul_by_cofactor_and_encode_like_x25519 ( | |||
uint8_t out[DECAF_X25519_PUBLIC_BYTES], | |||
const decaf_255_point_t p | |||
); | |||
/** The base point for X25519 Diffie-Hellman */ | |||
extern const uint8_t decaf_x25519_base_point[DECAF_X25519_PUBLIC_BYTES] DECAF_API_VIS; | |||
@@ -52,6 +52,9 @@ typedef struct gf_448_s { | |||
/** Number of bits in the "which" field of an elligator inverse */ | |||
#define DECAF_448_INVERT_ELLIGATOR_WHICH_BITS 3 | |||
/** The cofactor the curve would have, if we hadn't removed it */ | |||
#define DECAF_448_REMOVED_COFACTOR 4 | |||
/** Number of bytes in an x448 public key */ | |||
#define DECAF_X448_PUBLIC_BYTES 56 | |||
@@ -397,6 +400,17 @@ decaf_error_t decaf_x448 ( | |||
const uint8_t scalar[DECAF_X448_PRIVATE_BYTES] | |||
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE; | |||
/** | |||
* @brief Multiply a point by the cofactor, then encode it like RFC 7748 | |||
* | |||
* @param [out] out The scaled and encoded point. | |||
* @param [in] p The point to be scaled and encoded. | |||
*/ | |||
void decaf_448_point_mul_by_cofactor_and_encode_like_x448 ( | |||
uint8_t out[DECAF_X448_PUBLIC_BYTES], | |||
const decaf_448_point_t p | |||
); | |||
/** The base point for X448 Diffie-Hellman */ | |||
extern const uint8_t decaf_x448_base_point[DECAF_X448_PUBLIC_BYTES] DECAF_API_VIS; | |||
@@ -41,12 +41,6 @@ static const gf RISTRETTO_ISOMAGIC = {{{ | |||
$(ser(msqrt(d-1 if imagine_twist else -d,modulus,lo_bit_clear=True),gf_lit_limb_bits)) | |||
}}}; | |||
#if COFACTOR==8 || EDDSA_USE_SIGMA_ISOGENY | |||
static const gf SQRT_ONE_MINUS_D = {FIELD_LITERAL( | |||
$(ser(msqrt(1-d,modulus),gf_lit_limb_bits) if cofactor == 8 else "/* NONE */") | |||
)}; | |||
#endif | |||
#if IMAGINE_TWIST | |||
#define TWISTED_D (-(EDWARDS_D)) | |||
#else | |||
@@ -1182,8 +1176,9 @@ decaf_error_t API_NS(point_decode_like_eddsa_and_ignore_cofactor) ( | |||
gf_sub ( p->t, a, c ); // y^2 - x^2 | |||
gf_sqr ( p->x, p->z ); | |||
gf_add ( p->z, p->x, p->x ); | |||
gf_sub ( a, p->z, p->t ); // 2z^2 - y^2 + x^2 | |||
gf_mul ( c, a, SQRT_ONE_MINUS_D ); | |||
gf_sub ( c, p->z, p->t ); // 2z^2 - y^2 + x^2 | |||
gf_div_qnr ( a, c ); | |||
gf_mul ( c, a, RISTRETTO_ISOMAGIC ); | |||
gf_mul ( p->x, b, p->t); // (2xy)(y^2-x^2) | |||
gf_mul ( p->z, p->t, c ); // (y^2-x^2)sd(2z^2 - y^2 + x^2) | |||
gf_mul ( p->y, d, c ); // (y^2+x^2)sd(2z^2 - y^2 + x^2) | |||
@@ -1352,6 +1347,23 @@ void decaf_x$(gf_shortname)_generate_key ( | |||
decaf_x$(gf_shortname)_derive_public_key(out,scalar); | |||
} | |||
void API_NS(point_mul_by_cofactor_and_encode_like_x$(gf_shortname)) ( | |||
uint8_t out[X_PUBLIC_BYTES], | |||
const point_t p | |||
) { | |||
point_t q; | |||
point_double_internal(q,p,1); | |||
for (unsigned i=1; i<COFACTOR/4; i<<=1) point_double_internal(q,q,1); | |||
gf_invert(q->t,q->x,0); /* 1/x */ | |||
gf_mul(q->z,q->t,q->y); /* y/x */ | |||
gf_sqr(q->y,q->z); /* (y/x)^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub(q->y,ZERO,q->y); | |||
#endif | |||
gf_serialize(out,q->y,1); | |||
API_NS(point_destroy(q)); | |||
} | |||
void decaf_x$(gf_shortname)_derive_public_key ( | |||
uint8_t out[X_PUBLIC_BYTES], | |||
const uint8_t scalar[X_PRIVATE_BYTES] | |||
@@ -1379,27 +1391,12 @@ void decaf_x$(gf_shortname)_derive_public_key ( | |||
* Jacobi -> Edwards -> Jacobi -> Montgomery, | |||
* we pick up only a factor of 2 over Jacobi -> Montgomery. | |||
*/ | |||
API_NS(scalar_halve)(the_scalar,the_scalar); | |||
for (unsigned i=1; i<COFACTOR; i<<=1) { | |||
API_NS(scalar_halve)(the_scalar,the_scalar); | |||
} | |||
point_t p; | |||
API_NS(precomputed_scalarmul)(p,API_NS(precomputed_base),the_scalar); | |||
/* Isogenize to Montgomery curve. | |||
* | |||
* Why isn't this just a separate function, eg decaf_encode_like_x$(gf_shortname)? | |||
* Basically because in general it does the wrong thing if there is a cofactor | |||
* component in the input. In this function though, there isn't a cofactor | |||
* component in the input. | |||
*/ | |||
gf_invert(p->t,p->x,0); /* 1/x */ | |||
gf_mul(p->z,p->t,p->y); /* y/x */ | |||
gf_sqr(p->y,p->z); /* (y/x)^2 */ | |||
#if IMAGINE_TWIST | |||
gf_sub(p->y,ZERO,p->y); | |||
#endif | |||
gf_serialize(out,p->y,1); | |||
decaf_bzero(scalar2,sizeof(scalar2)); | |||
API_NS(scalar_destroy)(the_scalar); | |||
API_NS(point_mul_by_cofactor_and_encode_like_x$(gf_shortname))(out,p); | |||
API_NS(point_destroy)(p); | |||
} | |||
@@ -37,6 +37,9 @@ typedef struct gf_$(gf_shortname)_s { | |||
/** Number of bits in the "which" field of an elligator inverse */ | |||
#define $(C_NS)_INVERT_ELLIGATOR_WHICH_BITS $(ceil_log2(cofactor) + 7 + elligator_onto - ((gf_bits-2) % 8)) | |||
/** The cofactor the curve would have, if we hadn't removed it */ | |||
#define $(C_NS)_REMOVED_COFACTOR $(cofactor) | |||
/** Number of bytes in an x$(gf_shortname) public key */ | |||
#define DECAF_X$(gf_shortname)_PUBLIC_BYTES $((gf_bits-1)//8 + 1) | |||
@@ -382,6 +385,17 @@ decaf_error_t decaf_x$(gf_shortname) ( | |||
const uint8_t scalar[DECAF_X$(gf_shortname)_PRIVATE_BYTES] | |||
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE; | |||
/** | |||
* @brief Multiply a point by the cofactor, then encode it like RFC 7748 | |||
* | |||
* @param [out] out The scaled and encoded point. | |||
* @param [in] p The point to be scaled and encoded. | |||
*/ | |||
void $(c_ns)_point_mul_by_cofactor_and_encode_like_x$(gf_shortname) ( | |||
uint8_t out[DECAF_X$(gf_shortname)_PUBLIC_BYTES], | |||
const $(c_ns)_point_t p | |||
); | |||
/** The base point for X$(gf_shortname) Diffie-Hellman */ | |||
extern const uint8_t decaf_x$(gf_shortname)_base_point[DECAF_X$(gf_shortname)_PUBLIC_BYTES] DECAF_API_VIS; | |||
@@ -457,12 +457,15 @@ static void test_cfrg_crypto() { | |||
printf(" Shared secrets disagree on iteration %d.\n",i); | |||
} | |||
if (!memeq( | |||
DhLadder::shared_secret(DhLadder::base_point(),s1), | |||
DhLadder::derive_public_key(s1) | |||
)) { | |||
p1 = DhLadder::shared_secret(DhLadder::base_point(),s1); | |||
p2 = DhLadder::derive_public_key(s1); | |||
if (!memeq(p1,p2)) { | |||
test.fail(); | |||
printf(" Public keys disagree on iteration %d.\n",i); | |||
printf(" Public keys disagree on iteration %d.\n Ladder public key: ",i); | |||
for (unsigned j=0; j<s1.size(); j++) { printf("%02x",p1[j]); } | |||
printf("\n Derive public key: "); | |||
for (unsigned j=0; j<s1.size(); j++) { printf("%02x",p2[j]); } | |||
printf("\n"); | |||
} | |||
} | |||
} | |||
@@ -581,14 +584,14 @@ static void test_convert_eddsa_to_x() { | |||
SecureBuffer alice_pub_x_generated = DhLadder::derive_public_key(alice_priv_x); | |||
if (!memeq(alice_pub_x_conversion, alice_pub_x_generated)) { | |||
test.fail(); | |||
printf(" Ed2X Public key convertion and regeneration from converted private key differs.\n"); | |||
printf(" Ed2X Public key conversion and regeneration from converted private key differs.\n"); | |||
} | |||
SecureBuffer bob_priv_x = bob_priv.convert_to_x(); | |||
SecureBuffer bob_pub_x_conversion = bob_pub.convert_to_x(); | |||
SecureBuffer bob_pub_x_generated = DhLadder::derive_public_key(bob_priv_x); | |||
if (!memeq(bob_pub_x_conversion, bob_pub_x_generated)) { | |||
test.fail(); | |||
printf(" Ed2X Public key convertion and regeneration from converted private key differs.\n"); | |||
printf(" Ed2X Public key conversion and regeneration from converted private key differs.\n"); | |||
} | |||
/* compute shared secrets and check they match */ | |||